1
|
Gao Y, Lu Y, Song Y, Jing L. Analysis of codon usage bias of WRKY transcription factors in Helianthus annuus. BMC Genom Data 2022; 23:46. [PMID: 35725374 PMCID: PMC9210703 DOI: 10.1186/s12863-022-01064-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The phenomenon of codon usage bias is known to exist in many genomes and is mainly determined by mutation and selection. Codon usage bias analysis is a suitable strategy for identifying the principal evolutionary driving forces in different organisms. Sunflower (Helianthus annuus L.) is an annual crop that is cultivated worldwide as ornamentals, food plants and for their valuable oil. The WRKY family genes in plants play a central role in diverse regulation and multiple stress responses. Evolutionary analysis of WRKY family genes of H. annuus can provide rich genetic information for developing hybridization resources of the genus Helianthus.
Results
Bases composition analysis showed the average GC content of WRKY genes of H. annuus was 43.42%, and the average GC3 content was 39.60%, suggesting that WRKY gene family prefers A/T(U) ending codons. There were 29 codons with relative synonymous codon usage (RSCU) greater than 1 and 22 codons ending with A and U base. The effective number of codons (ENC) and codon adaptation index (CAI) in WRKY genes ranged from 43.47–61.00 and 0.14–0.26, suggesting that the codon bias was weak and WRKY genes expression level was low. Neutrality analysis found a significant correlation between GC12 and GC3. ENC-plot showed most genes on or close to the expected curve, suggesting that mutational bias played a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that the usage of AT and GC was disproportionate. A total of three codons were identified as the optimal codons.
Conclusion
Apart from natural selection effects, most of the genetic evolution in the H. annuus WRKY genome might be driven by mutation pressure. Our results provide a theoretical foundation for elaborating the genetic architecture and mechanisms of H. annuus and contributing to enrich H. annuus genetic resources.
Collapse
|
2
|
Nguyen TH, Wang D, Rahman SU, Bai H, Yao X, Chen D, Tao S. Analysis of codon usage patterns and influencing factors in rice tungro bacilliform virus. INFECTION GENETICS AND EVOLUTION 2021; 90:104750. [PMID: 33548490 DOI: 10.1016/j.meegid.2021.104750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/08/2021] [Accepted: 01/29/2021] [Indexed: 12/17/2022]
Abstract
Rice tungro bacilliform virus (RTBV) belongs to genus Tungrovirus within the family Caulimoviridae harbors circular double-stranded DNA (dsDNA). Rice tungro disease (RTD) caused by RTBV, responsible for severe rice yield losses in South and Southeast Asia. Here, we performed a systematic evolutionary and codon usage bias (CUB) analysis of RTBV genome sequences. We analysed different bioinformatics techniques to calculate the nucleotide compositions, the relative synonymous codon usage (RSCU), and other indices. The results indicated slightly or low codon usage bias in RTBV isolates. Mutation and natural selection pressures have equally contributed to this low codon usage bias. Additionally, multiple factors such as host, geographical distribution also affect codon usage patterns in RTBV genomes. RSCU analysis revealed that RTBV shows mutation bias and prefers A and U ended codons to code amino acids. Codon usage patterns of RTBV were also found to be influenced by its host. This indicates that RTBV have evolved codon usage patterns that are specific to its host. The findings from this study are expected to increase our understanding of factors leading to viral evolution and fitness with respect to hosts and the environment.
Collapse
Affiliation(s)
- Thi Hung Nguyen
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Genetic Engineering, Agricultural Genetics Institute, Tuliem, Hanoi 100000, Viet Nam
| | - Dong Wang
- China animal health and epidemiology center, Qingdao, Shandong, China
| | - Siddiq Ur Rahman
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Computer Science and Bioinformatics, Khushal Khan Khattak university, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Haoxiang Bai
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoting Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shiheng Tao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Deb B, Uddin A, Chakraborty S. Composition, codon usage pattern, protein properties, and influencing factors in the genomes of members of the family Anelloviridae. Arch Virol 2021; 166:461-474. [PMID: 33392821 PMCID: PMC7779081 DOI: 10.1007/s00705-020-04890-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/02/2020] [Indexed: 01/31/2023]
Abstract
The present study was carried out on 62 genome sequences of members of the family Anelloviridae, as there have been no reports of genome analysis of these DNA viruses using a bioinformatics approach. The genes were found to be rich in AC content with low codon usage bias (CUB). Relative synonymous codon usage (RSCU) values identified the preferred codons for each amino acid in the family. The codon AGA was overrepresented, while the codons TCG, TTG, CGG, CGT, ACG, GCG and GAT were underrepresented in all of the genomes. A significant correlation was found between the effective number of codons (ENC) and base constraints, indicating that compositional properties might have influenced the CUB. A highly significant correlation was observed between the overall base content and the base content at the third codon position, indicating that mutations might have affected the CUB. A highly significant positive correlation was observed between GC12 and GC3 (r = 0.904, p < 0.01), which indicated that directional mutation pressure influenced all three codon positions. A neutrality plot revealed that the contribution of mutation and natural selection in determining the CUB was 58.6% and 41.4%, respectively.
Collapse
Affiliation(s)
- Bornali Deb
- Department of Biotechnology, Assam University, Silchar, Assam 788150 India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, Assam 788150 India
| | | |
Collapse
|
4
|
Analysis of Synonymous Codon Usage Bias in Flaviviridae Virus. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5857285. [PMID: 31346520 PMCID: PMC6620835 DOI: 10.1155/2019/5857285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 01/04/2023]
Abstract
Background Flaviviridae viruses are single-stranded, positive-sense RNA viruses, which threat human constantly mediated by mosquitoes, ticks, and sandflies. Considering the recent increase in the prevalence of the family virus and its risk potential, we investigated the codon usage pattern to understand its evolutionary processes and provide some useful data to develop the medications for most of Flaviviridae viruses. Results The overall extent of codon usage bias in 65 Flaviviridae viruses is low with the average value of GC contents being 50.5% and the highest value being 55.9%; the lowest value is 40.2%. ENC values of Flaviviridae virus genes vary from 48.75 to 57.83 with a mean value of 55.56. U- and A-ended codons are preferred in the Flaviviridae virus. Correlation analysis shows that the positive correlation between ENC value and GC content at the third nucleotide positions was significant in this family virus. The result of analysis of ENC, neutrality plot analysis, and correlation analysis revealed that codon usage bias of all the viruses was affected mainly by natural selection. Meanwhile, according to correspondence analysis (CoA) based on RSCU and phylogenetic analysis, the Flaviviridae viruses mainly are made up of two groups, Group I (Yellow fever virus, Apoi virus, Tembusu virus, Dengue virus 1, and others) and Group II (West Nile virus lineage 2, Japanese encephalitis virus, Usutu virus, Kedougou virus, and others). Conclusions All in, the bias of codon usage pattern is affected not only by compositional constraints but also by natural selection. Phylogenetic analysis also illustrates that codon usage bias of virus can serve as an effective means of evolutionary classification in Flaviviridae virus.
Collapse
|
5
|
Analysis of the codon usage pattern in Middle East Respiratory Syndrome Coronavirus. Oncotarget 2017; 8:110337-110349. [PMID: 29299151 PMCID: PMC5746386 DOI: 10.18632/oncotarget.22738] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/27/2017] [Indexed: 11/25/2022] Open
Abstract
Middle East Respiratory Syndrome Coronavirus (MERS-CoV), which first broken out in Jeddah in 2012, causes a severe acute respiratory illness with a high mortality rate. To better understand the molecular characteristics of isolated MERS-CoV genomes, we first analysed the codon usage pattern of the zoonotic MERS-CoV strains comprehensively to gain an insight into the mechanism of cross-species transmission. We found that MERS human/camel isolates showed a low codon usage bias. Both mutation and nature selection pressure have contributed to this low codon usage bias, with the former being the main determining factor. We also observed that gene function, evolution time and the different host species of the virus all contributed to the bias of MERS-CoV, to some extent. Additionally, the codon usage pattern of MERS-CoV isolates is different from other related Nidovirales viruses isolated from bats and hedgehogs. In the future, more epidemiological surveys are required to examine the factors that resulted in the emergence and outbreak of this virus.
Collapse
|
6
|
Genome-wide analysis of codon usage bias patterns in an enterotoxigenic Escherichia coli F18 strain. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Synonymous codon usage pattern in glycoprotein gene of rabies virus. Gene 2016; 584:1-6. [DOI: 10.1016/j.gene.2016.02.047] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 11/20/2022]
|
8
|
Analysis of codon usage pattern evolution in avian rotaviruses and their preferred host. INFECTION GENETICS AND EVOLUTION 2015; 34:17-25. [PMID: 26086995 DOI: 10.1016/j.meegid.2015.06.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/26/2015] [Accepted: 06/14/2015] [Indexed: 10/23/2022]
Abstract
Rotavirus infection is a worldwide problem, with occurrence of highly divergent viruses classified in 8 species (A-H). We report here the evolution assessment of codon usage patterns in virus-host system in avian rotavirus (AvRV) of species RVA, RVD, RVF and RVG (preferentially affecting birds). The nucleotide contents, codon usage bias (CUB), relative synonymous codon usage (RSCU), and effective number of codons (ENCs) values were investigated targeting overexpressing major inner capsid viral protein (VP6) of these AvRV species. The results confirm that the evolutionary characteristics influences the rotavirus (RV) genetic diversity and impact of host's natural selection on the AvRVs codons. Synonymous codon usage patterns were evaluated following multivariate statistical procedures on all available AvRV coding gene sequences. RSCU trees accommodated all AvRV species and preferred host sequences in one topology confirming greater imminence of AvRVs with the host chicken cell genes. Similarly, the codon adaptation index (CAI) results also displayed a higher adaptation of AvRVs to its chicken host. The codon preference analysis of RVs revealed that VP6 gene express more proficiently in the yeast system, whereas, codon optimization might be required for the effectual expression in Escherichia coli and Homo sapiens. The findings provide basic evidence on the dynamics of AvRV evolution and its host adaptation, which could be exploited for additional research on avian species in future.
Collapse
|
9
|
Analysis of synonymous codon usage pattern in duck circovirus. Gene 2015; 557:138-45. [DOI: 10.1016/j.gene.2014.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/27/2014] [Accepted: 12/10/2014] [Indexed: 11/18/2022]
|
10
|
Wang SF, Su MW, Tseng SP, Li MC, Tsao CH, Huang SW, Chu WC, Liu WT, Chen YMA, Huang JC. Analysis of codon usage preference in hemagglutinin genes of the swine-origin influenza A (H1N1) virus. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 49:477-86. [PMID: 25442859 DOI: 10.1016/j.jmii.2014.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/14/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND The swine-origin influenza A (H1N1) virus (S-OIV) has come to the forefront since 2009 and was identified as a new reassortant strain. The hemagglutinin (HA) glycoprotein mediates virus binding, contains antigenic regions recognized by neutralizing antibodies, and is associated with viral cross-species infection and adaption. The comparison study of codon usage preferences in influenza viral genomes was less extensive. In this study, we used codon usage pattern analyses to validate the adaption and origins of S-OIV. METHODS Codon usage pattern was used to estimate the host adaption of S-OIVs. Phylogenetic analysis of the HA gene was conducted to understand the phylogeny of H1N1 viruses isolated from different hosts. Amino acid signature pattern on antigenic sites of HA was analyzed to understand the antigenic characteristics. RESULTS Results of phylogenetic analyses of HA gene indicate that S-OIVs group in identical clusters. The synonymous codon usage pattern analyses indicate that the effective number of codons versus GC content at the third codon position in the HA1 gene slightly differ from those in swine H1N1 and gradually adapted to human. Our data indicate that S-OIV evolution occurred according to positive selection within these antigenic regions. A comparison of antigenic site amino acids reveals similar signature patterns between S-OIV and 1918 human influenza strains. CONCLUSION This study proposes a new and effective way to gain a better understanding of the features of the S-OIV genome and evolutionary processes based on the codon usage pattern. It is useful to trace influenza viral origins and cross-species virus transmission.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan; AIDS Prevention and Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Wei Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Chun Li
- Department of Pediatrics, Taipei City Hospital, Yang-Ming Branch, Taipei, Taiwan
| | - Ching-Han Tsao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Szu-Wei Huang
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Woei-Chyn Chu
- Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Wu-Tse Liu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Ming Arthur Chen
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Microbiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Jason C Huang
- AIDS Prevention and Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
11
|
Aravind S, Kamble N, Gaikwad S, Khulape S, Dey S, Dhama K, Madhan Moh C. Bioinformatics Study Involving Characterization of Synonymous Codon Usage Bias in the Duck Enteritis Virus Glycoprotein D (gD) Gene. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ajava.2014.229.242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Cao HW, Li DS, Zhang H. Analysis of synonymous codon usage in Newcastle disease virus hemagglutinin-neuraminidase (HN) gene and fusion protein (F) gene. Virusdisease 2013; 25:132-6. [PMID: 24426322 DOI: 10.1007/s13337-013-0175-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/29/2013] [Indexed: 10/26/2022] Open
Abstract
Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) is a multifunctional protein, which possesses both the receptor recognition and neuraminidase activities. The fusion (F) protein is a type I membrane glycoprotein that mediates the merger of the viral envelope to the host cell membrane. Although the functions of the HN and F proteins have been well studied, however, the factors shaping synonymous codon usage bias and nucleotide composition in HN and F genes have been few reported. In our study, we analyzed synonymous codon usage using the 69 NDV HN and F genes, respectively. The general correlation between base composition and codon usage bias suggests that mutational pressure rather than natural selection is the main factor that determines the codon usage bias in HN and F genes. In addition, other factors, such as the aromaticity and hydrophobicity, also influence the codon usage variation among HN and F genes. This study represents the most comprehensive analysis to date of NDV HN and F genes codon usage patterns and provides a basic understanding of the mechanisms for codon usage bias.
Collapse
Affiliation(s)
- Hong-Wei Cao
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319 China ; College of Life Science, Northeast Agricultural University, Harbin, 150030 China
| | - De-Shan Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030 China
| | - Hua Zhang
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| |
Collapse
|
13
|
Bishal AK, Mukherjee R, Chakraborty C. Synonymous codon usage pattern analysis of Hepatitis D virus. Virus Res 2013; 173:350-3. [DOI: 10.1016/j.virusres.2013.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 01/15/2013] [Accepted: 01/15/2013] [Indexed: 11/24/2022]
|
14
|
Chartier M, Gaudreault F, Najmanovich R. Large-scale analysis of conserved rare codon clusters suggests an involvement in co-translational molecular recognition events. ACTA ACUST UNITED AC 2012; 28:1438-45. [PMID: 22467916 DOI: 10.1093/bioinformatics/bts149] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
MOTIVATION An increasing amount of evidence from experimental and computational analysis suggests that rare codon clusters are functionally important for protein activity. Most of the studies on rare codon clusters were performed on a limited number of proteins or protein families. In the present study, we present the Sherlocc program and how it can be used for large scale protein family analysis of evolutionarily conserved rare codon clusters and their relation to protein function and structure. This large-scale analysis was performed using the whole Pfam database covering over 70% of the known protein sequence universe. Our program Sherlocc, detects statistically relevant conserved rare codon clusters and produces a user-friendly HTML output. RESULTS Statistically significant rare codon clusters were detected in a multitude of Pfam protein families. The most statistically significant rare codon clusters were predominantly identified in N-terminal Pfam families. Many of the longest rare codon clusters are found in membrane-related proteins which are required to interact with other proteins as part of their function, for example in targeting or insertion. We identified some cases where rare codon clusters can play a regulating role in the folding of catalytically important domains. Our results support the existence of a widespread functional role for rare codon clusters across species. Finally, we developed an online filter-based search interface that provides access to Sherlocc results for all Pfam families. AVAILABILITY The Sherlocc program and search interface are open access and are available at http://bcb.med.usherbrooke.ca
Collapse
Affiliation(s)
- Matthieu Chartier
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
15
|
Abstract
In this paper, the comprehensive analysis of codon usage bias of Duck enteritis virus (DEV) UL21 gene was performed by using CAI, CHIPS and CUSP program of EMBOSS. Our study showed that codon usage bias of DEV UL21 had strong bias towards the A-ended or T-ended codons, and GC3s contents of the codon usage bias in DEV UL21 gene were significantly varied compared with those of other 27 reference herpesviruses. The CAI, ENC value of DEV CHv strain UL21 gene is 0.615 and 55.167, respectively, indicating that the codon usage bias of this gene is weak and lowly expressed. The plot of ENC versus GC3S content revealed that DEV UL21 gene is subject to GC compositional constraints. The phylogentic analysis about amino acids codon usage bias of DEV UL21 and the27 reference herpesviruses showed that DEV was evolutionarily closer to herpesviruses Mardivirus. In addition, the codon usage bias of DEV UL21 gene was compared with those of E. coli, yeast and humans. There are 42, 45, 39 same codons usage bias between the DEV UL21 to E.coli, Yeast, H.sapiens, respectively, indicaiting that UL21 gene of DEV may be more efficiently expressed in the yeast system.
Collapse
|
16
|
Ma MR, Ha XQ, Ling H, Wang ML, Zhang FX, Zhang SD, Li G, Yan W. The characteristics of the synonymous codon usage in hepatitis B virus and the effects of host on the virus in codon usage pattern. Virol J 2011; 8:544. [PMID: 22171933 PMCID: PMC3287100 DOI: 10.1186/1743-422x-8-544] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/15/2011] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is one of the main human health problem and causes a large-scale of patients chronic infection worldwide.. As the replication of HBV depends on its host cell system, codon usage pattern for the viral gene might be susceptible to two main selections, namely mutation pressure and translation selection. In this case, a deeper investigation between HBV evolution and host adaptive response might assist control this disease. RESULT Relative synonymous codon usage (RSCU) values for the whole HBV coding sequence were studied by Principal component analysis (PCA). The characteristics of the synonymous codon usage patterns, nucleotide contents and the comparison between ENC values of the whole HBV coding sequence indicated that the interaction between virus mutation pressure and host translation selection exists in the processes of HBV evolution. The synonymous codon usage pattern of HBV is a mixture of coincidence and antagonism to that of host cell. But the difference of genetic characteristic of HBV failed to be observed to its different epidemic areas or subtypes, suggesting that geographic factor is limited to influence the evolution of this virus, while genetic characteristic based on HBV genotypes could be divided into three groups, namely (i) genotyps A and E, (ii) genotype B, (iii) genotypes C, D and G. CONCLUSION Codon usage patterns from PCA for identification of evolutionary trends in HBV provide an alternative approach to understand the evolution of HBV. Further more, a combined selection of mutation pressure with translation selection on codon usage might shed a light on understanding the evolutionary trends of HBV genotypes.
Collapse
Affiliation(s)
- Ming-ren Ma
- Experimental Center of Medicine, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou 730000, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Luo XL, Xu JG, Ye CY. Analysis of synonymous codon usage inShigella flexneri2a strain 301 and otherShigellaandEscherichia colistrains. Can J Microbiol 2011; 57:1016-23. [DOI: 10.1139/w11-095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we analysed synonymous codon usage in Shigella flexneri 2a strain 301 (Sf301) and performed a comparative analysis of synonymous codon usage patterns in Sf301 and other strains of Shigella and Escherichia coli . Although there was a significant variety in codon usage bias among different Sf301 genes, there was a slight but observable codon usage bias that could primarily be attributable to mutational pressure and translational selection. In addition, the relative abundance of dinucleotides in Sf301 was observed to be independent of the overall base composition but was still caused by differential mutational pressure; this also shaped codon usage. By comparing the relative synonymous codon usage values across different Shigella and E. coli strains, we suggested that the synonymous codon usage pattern in the Shigella genomes was strain specific. This study represents a comprehensive analysis of Shigella codon usage patterns and provides a basic understanding of the mechanisms underlying codon usage bias.
Collapse
Affiliation(s)
- Xue Lian Luo
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, People’s Republic of China
| | - Jian Guo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, People’s Republic of China
| | - Chang Yun Ye
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, People’s Republic of China
| |
Collapse
|
18
|
Hu JS, Wang QQ, Zhang J, Chen HT, Xu ZW, Zhu L, Ding YZ, Ma LN, Xu K, Gu YX, Liu YS. The characteristic of codon usage pattern and its evolution of hepatitis C virus. INFECTION GENETICS AND EVOLUTION 2011; 11:2098-102. [DOI: 10.1016/j.meegid.2011.08.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/22/2011] [Accepted: 08/24/2011] [Indexed: 01/29/2023]
|
19
|
Tian XT, Li BY, Zhang L, Jiao WQ, Liu JX. Bioinformatics analysis of rabbit haemorrhagic disease virus genome. Virol J 2011; 8:494. [PMID: 22044910 PMCID: PMC3377956 DOI: 10.1186/1743-422x-8-494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/01/2011] [Indexed: 11/10/2022] Open
Abstract
Background Rabbit haemorrhagic disease virus (RHDV), as the pathogeny of Rabbit haemorrhagic disease, can cause a highly infectious and often fatal disease only affecting wild and domestic rabbits. Recent researches revealed that it, as one number of the Caliciviridae, has some specialties in its genome, its reproduction and so on. Results In this report, we firstly analyzed its genome and two open reading frameworks (ORFs) from this aspect of codon usage bias. Our researches indicated that mutation pressure rather than natural is the most important determinant in RHDV with high codon bias, and the codon usage bias is nearly contrary between ORF1 and ORF2, which is maybe one of factors regulating the expression of VP60 (encoding by ORF1) and VP10 (encoding by ORF2). Furthermore, negative selective constraints on the RHDV whole genome implied that VP10 played an important role in RHDV lifecycle. Conclusions We conjectured that VP10 might be beneficial for the replication, release or both of virus by inducing infected cell apoptosis initiate by RHDV. According to the results of the principal component analysis for ORF2 of RSCU, we firstly separated 30 RHDV into two genotypes, and the ENC values indicated ORF1 and ORF2 were independent among the evolution of RHDV.
Collapse
Affiliation(s)
- Xiao-ting Tian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujia ping 1, Yanchang bu, Lanzhou, Gansu, China
| | | | | | | | | |
Collapse
|
20
|
Zhang Y, Liu Y, Liu W, Zhou J, Chen H, Wang Y, Ma L, Ding Y, Zhang J. Analysis of synonymous codon usage in hepatitis A virus. Virol J 2011; 8:174. [PMID: 21496278 PMCID: PMC3087699 DOI: 10.1186/1743-422x-8-174] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/16/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Hepatitis A virus is the causative agent of type A viral hepatitis, which causes occasional acute hepatitis. Nevertheless, little information about synonymous codon usage pattern of HAV genome in the process of its evolution is available. In this study, the key genetic determinants of codon usage in HAV were examined. RESULTS The overall extent of codon usage bias in HAV is high in Picornaviridae. And the patterns of synonymous codon usage are quite different in HAV genomes from different location. The base composition is closely correlated with codon usage bias. Furthermore, the most important determinant that results in such a high codon bias in HAV is mutation pressure rather than natural selection. CONCLUSIONS HAV presents a higher codon usage bias than other members of Picornaviridae. Compositional constraint is a significant element that influences the variation of synonymous codon usage in HAV genome. Besides, mutation pressure is supposed to be the major factor shaping the hyperendemic codon usage pattern of HAV.
Collapse
Affiliation(s)
- Yiqiang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
- Laboratory of Animal Quarantine, College of Animal Medical, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Wenqian Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Jianhua Zhou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Haotai Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Yin Wang
- Laboratory of Animal Quarantine, College of Animal Medical, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Lina Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Yaozhong Ding
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Jie Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| |
Collapse
|
21
|
D' Andrea L, Pintó RM, Bosch A, Musto H, Cristina J. A detailed comparative analysis on the overall codon usage patterns in hepatitis A virus. Virus Res 2011; 157:19-24. [PMID: 21296111 PMCID: PMC7172775 DOI: 10.1016/j.virusres.2011.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 01/21/2011] [Accepted: 01/28/2011] [Indexed: 12/25/2022]
Abstract
Hepatitis A virus (HAV) is a hepatotropic member of the family Picornaviridae. HAV has several unique biological characteristics that distinguish it from other members of this family. Recent and previous studies revealed that codon usage plays a key role in HAV replication and evolution. In this study, the patterns of synonymous codon usage in HAV have been studied through multivariate statistical methods on 30 complete open reading frames (ORFs) from the available 30 full-length HAV sequences. Effective number of codons (ENC) indicates that the overall extent of codon usage bias in HAV genomes is significant. The relative dinucleotide abundances suggest that codon usage in HAV can also be strongly influenced by underlying biases in dinucleotide frequencies. These factors strongly correlated with the first major axis of correspondence analysis (COA) on relative synonymous codon usage (RSCU). The distribution of the HAV ORFs along the plane defined by the first two major axes in COA showed that different genotypes are located at different places in the plane, suggesting that HAV codon usage is also reflecting an evolutionary process. It has been very recently described that fine-tuning translation kinetics selection also contributes to codon usage bias of HAV. The results of these studies suggest that HAV genomic biases are the result of the co-evolution of genome composition, controlled translation kinetics and probably the ability to escape the antiviral cell responses.
Collapse
Affiliation(s)
- Lucía D' Andrea
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
22
|
The characteristics of the synonymous codon usage in enterovirus 71 virus and the effects of host on the virus in codon usage pattern. INFECTION GENETICS AND EVOLUTION 2011; 11:1168-73. [PMID: 21382519 PMCID: PMC7185409 DOI: 10.1016/j.meegid.2011.02.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 01/25/2023]
Abstract
To give a new perspective on the evolutionary characteristics shaping the genetic diversity of enterovirus 71 (EV71) and the effects of natural selection from its host on the codon usage pattern of the virus, the relative synonymous codon usage (RSCU) values, codon usage bias (CUB) values, effective number of codons (ENCs) values and nucleotide contents were calculated to implement a comparative analysis to evaluate the dynamics of the virus evolution. The characteristics of the synonymous codon usage patterns and nucleotide contents of EV71 and the comparison between ENC values for the whole coding sequence of EV71 and that of coding sequences for viral proteins of EV71 all indicate that the interaction between mutation pressure from virus and natural selection from host exists in the processes of evolution of EV71. The synonymous codon usage pattern of EV71 is a mixture of coincidence and antagonism to that of host cell. In addition, the genetic diversity of EV71 strains and the preferential selection of some synonymous codons in EV71 strains based on the different epidemic areas were observed, suggesting that geographic and social factors may play roles in influencing the evolution of this virus.
Collapse
|
23
|
Nunes A, Nogueira PJ, Borrego MJ, Gomes JP. Adaptive evolution of the Chlamydia trachomatis dominant antigen reveals distinct evolutionary scenarios for B- and T-cell epitopes: worldwide survey. PLoS One 2010; 5. [PMID: 20957150 PMCID: PMC2950151 DOI: 10.1371/journal.pone.0013171] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/14/2010] [Indexed: 11/23/2022] Open
Abstract
Background Chlamydia trachomatis is one of the most disseminated human pathogens, for which no vaccine is available yet. Understanding the impact of the host pressure on pathogen antigens is crucial, but so far it was only assessed for highly-restricted geographic areas. We aimed to evaluate the evolutionary picture of the chlamydial key antigen (MOMP), which is one of the leading multi-subunit vaccine candidates, in a worldwide basis. Methodology/Principal Findings Using genetics, molecular evolution methods and mathematical modelling, we analyzed all MOMP sequences reported worldwide, composed by 5026 strains from 33 geographic regions of five continents. Overall, 35.9% of variants were detected. The evolutionary pattern of MOMP amino acid gains/losses was found to differ from the remaining chromosome, reflecting the demanding constraints of this porin, adhesin and dominant antigen. Amino acid changes were 4.3-fold more frequent in host-interacting domains (P<10−12), specifically within B-cell epitopes (P<10−5), where 25% of them are at fixation (P<10−5). According to the typical pathogen-host arms race, this rampant B-cell antigenic variation likely represents neutralization escape mutants, as some mutations were previously shown to abrogate neutralization of chlamydial infectivity in vitro. In contrast, T-cell clusters of diverse HLA specificities are under purifying selection, suggesting a strategy that may lead to immune subversion. Moreover, several silent mutations are at fixation, generating preferential codons that may influence expression, and may also reflect recombination-derived ‘hitchhiking-effect’ from favourable nonsilent changes. Interestingly, the most prevalent C. trachomatis genotypes, E and F, showed a mutation rate 22.3-fold lower than that of the remainder (P<10−20), suggesting more fitted antigenic profiles. Conclusions/Significance Globally, the adaptive evolution of the C. trachomatis dominant antigen is likely driven by its complex pathogenesis-related function and reflects distinct evolutionary antigenic scenarios that may benefit the pathogen, and thus should be taking into account in the development of a MOMP-based vaccine.
Collapse
Affiliation(s)
- Alexandra Nunes
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Paulo J. Nogueira
- Department of Epidemiology, National Institute of Health, Lisbon, Portugal
| | - Maria J. Borrego
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - João P. Gomes
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
24
|
Liu YS, Zhou JH, Chen HT, Ma LN, Ding YZ, Wang M, Zhang J. Analysis of synonymous codon usage in porcine reproductive and respiratory syndrome virus. INFECTION GENETICS AND EVOLUTION 2010; 10:797-803. [PMID: 20438864 PMCID: PMC7106271 DOI: 10.1016/j.meegid.2010.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/23/2010] [Accepted: 04/24/2010] [Indexed: 11/30/2022]
Abstract
In this study, we calculated the relative synonymous codon usage (RSCU) values and codon usage bias (CUB) values to implement a comparative analysis of codon usage pattern of open reading frames (ORFs) which belong to the two main genotypes of porcine reproductive and respiratory syndrome virus (PRRSV). By analysis of synonymous codon usage values in each ORF of PRRSV, the optimal codons for most amino acids were all C or G-ended codons except GAU for Asp, CAU for His, UUU for Phe and CCU for Pro. The synonymous codon usage patterns in different ORFs of PRRSV were different and genetically conserved. Among them, ORF1a, ORF4, ORF5 and ORF7 could cluster these strains into the two main serotypes (EU and US). Due to mutational pressure, compositional constraint played an important role in shaping the synonymous codon usage pattern in different ORFs, and the synonymous codon usage diversity in ORFs was correlated with gene function. The degree of CUB for some particular amino acids under strong selection pressure probably served as a potential genetic marker for each ORF in PRRSV. However, gene length and translational selection in nature had no effect on the synonymous codon usage pattern in PRRSV. These conclusions could not only offer an insight into the synonymous codon usage pattern and differentiation of gene function, but also assist in understanding the discrepancy of evolution among ORFs in PRRSV.
Collapse
Affiliation(s)
- Yong-sheng Liu
- Key Laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu, PR China
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhou JH, Zhang J, Chen HT, Ma LN, Liu YS. Analysis of synonymous codon usage in foot-and-mouth disease virus. Vet Res Commun 2010; 34:393-404. [PMID: 20425142 DOI: 10.1007/s11259-010-9359-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
In this study, we calculate the relative synonymous codon usage (RSCU) values and codon usage bias (CUB) values to carry out a comparative analysis of codon usage pattern for open reading frames (ORFs) among 85 samples which belong to all seven serotypes of foot-and-mouth disease virus (FMDV). Although the degree of CUB for ORFs is a relatively slight, there is a significant variation for CUB among different serotypes, which is mainly determined by codon usage pattern depending on RSCU. By comparison with RSCU values for all samples, although RSCU values fail to show the relationship of specific-lineage serotype, there are two main genetic populations existing in FMDV, namely (i) serotypes Asia 1, A, C & O; (ii) serotypes SAT 1, 2 & 3. This interesting characteristic may be formed by the mechanism of RNA virus recombination. The analysis of quantitative & qualitative evaluation based on CUB indicates interesting characteristic of codon usage, which suggests that more FMDV genome diversity may exist in specific-lineage serotypes rather than exist randomly. Furthermore, the relationship between amino acids and codon usage pattern indicates that mutation pressure rather than translational selection in nature is the important determinant of the codon usage bias observed. Our work might give some sight into some characteristics of FMDV ORF and some evolutionary information of this virus.
Collapse
Affiliation(s)
- Jian-Hua Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | | | | | | | | |
Collapse
|
26
|
Jiang P, Sun X, Lu Z. Analysis of synonymous codon usage in Aeropyrum pernix K1 and other Crenarchaeota microorganisms. J Genet Genomics 2009; 34:275-84. [PMID: 17498625 PMCID: PMC7129909 DOI: 10.1016/s1673-8527(07)60029-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 08/22/2006] [Indexed: 11/18/2022]
Abstract
In this study, a comparative analysis of the codon usage bias was performed in Aeropyrum pernix K1 and two other phylogenetically related Crenarchaeota microorganisms (i.e., Pyrobaculum aerophilum str. IM2 and Sulfolobus acidocaldarius DSM 639). The results indicated that the synonymous codon usage in A. pernix K1 was less biased, which was highly correlated with the GC(3S) value. The codon usage patterns were phylogenetically conserved among these Crenarchaeota microorganisms. Comparatively, it is the species function rather than the gene function that determines their gene codon usage patterns. A. pernix K1, P. aerophilum str. IM2, and S. acidocaldarius DSM 639 live in differently extreme conditions. It is presumed that the living environment played an important role in determining the codon usage pattern of these microorganisms. Besides, there was no strain-specific codon usage among these microorganisms. The extent of codon bias in A. pernix K1 and S. acidocaldarius DSM 639 were highly correlated with the gene expression level, but no such association was detected in P. aerophilum str. IM2 genomes.
Collapse
Affiliation(s)
- Peng Jiang
- State Key Laboratory of Bioelectronics, Department of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | | | | |
Collapse
|
27
|
Analysis of synonymous codon usage in classical swine fever virus. Virus Genes 2008; 38:104-12. [PMID: 18958611 PMCID: PMC7089228 DOI: 10.1007/s11262-008-0296-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 10/09/2008] [Indexed: 01/27/2023]
Abstract
Using the complete genome sequences of 35 classical swine fever viruses (CSFV) representing all three genotypes and all three kinds of virulence, we analyzed synonymous codon usage and the relative dinucleotide abundance in CSFV. The general correlation between base composition and codon usage bias suggests that mutational pressure rather than natural selection is the main factor that determines the codon usage bias in CSFV. Furthermore, we observed that the relative abundance of dinucleotides in CSFV is independent of the overall base composition but is still the result of differential mutational pressure, which also shapes codon usage. In addition, other factors, such as the subgenotypes and aromaticity, also influence the codon usage variation among the genomes of CSFV. This study represents the most comprehensive analysis to date of CSFV codon usage patterns and provides a basic understanding of the mechanisms for codon usage bias.
Collapse
|
28
|
Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus. Virus Genes 2008; 38:96-103. [PMID: 18958612 DOI: 10.1007/s11262-008-0295-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022]
Abstract
The analysis on codon usage bias of UL24 gene of duck enteritis virus (DEV) may improve our understanding of the evolution and pathogenesis of DEV and provide a basis for understanding the relevant mechanism for biased usage of synonymous codons and for selecting appropriate expression systems to improve the expression of target genes. The codon usage bias of UL24 genes of DEV and 27 reference herpesviruses were analyzed. The results showed that codon of UL24 gene of DEV was strong bias toward the synonymous codons with A and T at the third codon position. A high level of diversity in codon usage bias existed, and the effective number of codons used in a gene plot revealed that the genetic heterogeneity in UL24 gene of herpesviruses was constrained by the G + C content. The phylogentic analysis suggested that DEV was evolutionarily closer to Alphaherpesvirinae and that there was no significant deviation in codon usage in different virus strains. There were 20 codons showing distinct usage differences between DEV and Escherichia coli, 23 between DEV and Homo sapiens, but only 16 codons between DEV and yeast. Therefore the yeast expression system may be more suitable for the expression of DEV genes.
Collapse
|
29
|
Tsai CT, Lin CH, Chang CY. Analysis of codon usage bias and base compositional constraints in iridovirus genomes. Virus Res 2007; 126:196-206. [PMID: 17434639 DOI: 10.1016/j.virusres.2007.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 10/23/2022]
Abstract
The codon usage bias and the base composition variations in the available 12 complete iridovirus genome sequences have been investigated. We re-evaluated the number of open reading frames (ORFs) in each published iridovirus genome and analyzed its correlation against the genome size. The result shows that there is a direct relationship between the number of ORFs and the genome size. The codon usage patterns of these iridoviruses are found to be phylogenetically conserved. A significant variation in the base content among the 12 iridovirus genomes has been observed, with G+C content ranges widely from 27 to 55%. Moreover, the preferential use of bases in codons is different among higher and lower G+C content genomes. A preferential codon usage among viral genomes is also noticed. Effective number of codon (Enc) plot reveals that the G+C compositional constraint is the main factor that determines the codon usage bias. Relative synonymous codon usage analysis of methyltransferase containing as well as lacking viruses suggests that the codon usage is not influenced by the methylation-mediated mutation. In addition, the comparison of the codon usage of iridovirus hosts and the iridovirus genomes reveals that the host tRNA pool may be responsible for the base compositional constraint. This study represents the most comprehensive analysis to date for iridovirus codon usage patterns.
Collapse
Affiliation(s)
- Chih-Tung Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | | | | |
Collapse
|
30
|
Sau K, Gupta SK, Sau S, Ghosh TC. Synonymous codon usage bias in 16 Staphylococcus aureus phages: implication in phage therapy. Virus Res 2005; 113:123-31. [PMID: 15970346 DOI: 10.1016/j.virusres.2005.05.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 05/06/2005] [Accepted: 05/10/2005] [Indexed: 11/22/2022]
Abstract
To reveal the factors influencing architecture of protein-coding genes in staphylococcal phages, relative synonymous codon usage variation has been investigated in 920 protein-coding genes of 16 staphylococcal phages. As expected for AT rich genomes, there are predominantly A and T ending codons in all 16 phages. Both Nc plot and correspondence analysis on relative synonymous codon usage indicates that mutation bias influences codon usage variation in the 16 phages. Correspondence analysis also suggests that translational selection and gene length also influence the codon usage variation in the phages to some extent and codon usage in staphylococcal phages is phage-specific but not S. aureus-specific. Further analysis indicates that among 16 staphylococcal phages, 44AHJD, P68 and K may be extremely virulent in nature as most of their genes have high translation efficiency. If this is true, then above three phages may be useful for curing staphylococcal infections.
Collapse
Affiliation(s)
- K Sau
- Bioinformatics Centre, Bose Institute, P1/12, CIT Scheme VII M, Calcutta 700 054, India.
| | | | | | | |
Collapse
|
31
|
Niemitalo O, Neubauer A, Liebal U, Myllyharju J, Juffer AH, Neubauer P. Modelling of translation of human protein disulfide isomerase in Escherichia coli—A case study of gene optimisation. J Biotechnol 2005; 120:11-24. [PMID: 16111781 DOI: 10.1016/j.jbiotec.2005.05.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 04/21/2005] [Accepted: 05/04/2005] [Indexed: 11/30/2022]
Abstract
Recombinant human protein disulfide isomerase (PDI) was expressed in vivo in Escherichia coli using a non-optimised gene sequence and an optimised sequence with four 5' codons substituted by synonymous codons that take less time to translate. The optimisation resulted in a 2-fold increase of total PDI concentration and by successive optimisation with expression at low temperature in a 10-fold increase of the amount of soluble PDI in comparison with the original wild-type construct. The improvement can be due to a faster clearing of the ribosome binding site on the mRNA, elevating the translation initiation rate and resulting in higher ribosome loading and better ribosome protection of the PDI mRNA against endonucleolytic cleavage by RNase. This hypothesis was supported by a novel computer simulation model of E. coli translational ribosome traffic based upon the stochastic Gillespie algorithm. The study indicates the applicability of such models in optimisation of recombinant protein sequences.
Collapse
Affiliation(s)
- Olli Niemitalo
- Bioprocess Engineering Laboratory, Department of Process and Environmental Engineering, University of Oulu, Oulu, Finland
| | | | | | | | | | | |
Collapse
|
32
|
Sau K, Sau S, Mandal SC, Ghosh TC. Factors influencing the synonymous codon and amino acid usage bias in AT-rich Pseudomonas aeruginosa phage PhiKZ. Acta Biochim Biophys Sin (Shanghai) 2005; 37:625-33. [PMID: 16143818 PMCID: PMC7109957 DOI: 10.1111/j.1745-7270.2005.00089.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
To reveal how the AT-rich genome of bacteriophage PhiKZ has been shaped in order to carry out its growth in the GC-rich host Pseudomonas aeruginosa, synonymous codon and amino acid usage bias of PhiKZ was investigated and the data were compared with that of P. aeruginosa. It was found that synonymous codon and amino acid usage of PhiKZ was distinct from that of P. aeruginosa. In contrast to P. aeruginosa, the third codon position of the synonymous codons of PhiKZ carries mostly A or T base; codon usage bias in PhiKZ is dictated mainly by mutational bias and, to a lesser extent, by translational selection. A cluster analysis of the relative synonymous codon usage values of 16 myoviruses including PhiKZ shows that PhiKZ is evolutionary much closer to Escherichia coli phage T4. Further analysis reveals that the three factors of mean molecular weight, aromaticity and cysteine content are mostly responsible for the variation of amino acid usage in PhiKZ proteins, whereas amino acid usage of P. aeruginosa proteins is mainly governed by grand average of hydropathicity, aromaticity and cysteine content. Based on these observations, we suggest that codons of the phage-like PhiKZ have evolved to preferentially incorporate the smaller amino acid residues into their proteins during translation, thereby economizing the cost of its development in GC-rich P. aeruginosa.
Collapse
Affiliation(s)
- K. Sau
- Department of Mathematics, Jadavpur UniversityCalcutta 700 032, India
| | - S. Sau
- Department of Biochemistry, Bose Institute, P1/12-CIT Scheme VII MCalcutta 700 054, India
| | - S. C. Mandal
- Department of Mathematics, Jadavpur UniversityCalcutta 700 032, India
- Corresponding authors: S. C. MANDAL: E-mail,
| | - T. C. Ghosh
- Bioinformatics Centre, Bose Institute, P1/12-CIT Scheme VII MCalcutta 700 054, India
- T. C. GHOSH: Tel, +91-33-2334 6626; Fax, +91-33-2334 3886; E-mail,
| |
Collapse
|
33
|
Sahu K, Gupta SK, Sau S, Ghosh TC. Comparative Analysis of the Base Composition and Codon Usages in Fourteen Mycobacteriophage Genomes. J Biomol Struct Dyn 2005; 23:63-71. [PMID: 15918677 DOI: 10.1080/07391102.2005.10507047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
To study the possible codon usage and base composition variation in the bacteriophages, fourteen mycobacteriophages were used as a model system here and both the parameters in all these phages and their plating bacteria, M. smegmatis had been determined and compared. As all the organisms are GC-rich, the GC contents at third codon positions were found in fact higher than the second codon positions as well as the first + second codon positions in all the organisms indicating that directional mutational pressure is strongly operative at the synonymous third codon positions. Nc plot indicates that codon usage variation in all these organisms are governed by the forces other than compositional constraints. Correspondence analysis suggests that: (i) there are codon usage variation among the genes and genomes of the fourteen mycobacteriophages and M. smegmatis, i.e., codon usage patterns in the mycobacteriophages is phage-specific but not the M. smegmatis-specific; (ii) synonymous codon usage patterns of Barnyard, Che8, Che9d, and Omega are more similar than the rest mycobacteriophages and M. smegmatis; (iii) codon usage bias in the mycobacteriophages are mainly determined by mutational pressure; and (iv) the genes of comparatively GC rich genomes are more biased than the GC poor genomes. Translational selection in determining the codon usage variation in highly expressed genes can be invoked from the predominant occurrences of C ending codons in the highly expressed genes. Cluster analysis based on codon usage data also shows that there are two distinct branches for the fourteen mycobacteriophages and there is codon usage variation even among the phages of each branch.
Collapse
Affiliation(s)
- K Sahu
- Bioinformatics Centre, Bose Institute, P1/12 - CIT Scheme VII M, Calcutta 700 054, India
| | | | | | | |
Collapse
|
34
|
Zhou T, Gu W, Ma J, Sun X, Lu Z. Analysis of synonymous codon usage in H5N1 virus and other influenza A viruses. Biosystems 2005; 81:77-86. [PMID: 15917130 DOI: 10.1016/j.biosystems.2005.03.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2004] [Revised: 03/05/2005] [Accepted: 03/07/2005] [Indexed: 10/25/2022]
Abstract
In this study, we calculated the codon usage bias in H5N1 virus and performed a comparative analysis of synonymous codon usage patterns in H5N1 virus, five other evolutionary related influenza A viruses and a influenza B virus. Codon usage bias in H5N1 genome is a little slight, which is mainly determined by the base compositions on the third codon position. By comparing synonymous codon usage patterns in different viruses, we observed that the codon usage pattern of H5N1 virus is similar with other influenza A viruses, but not influenza B virus, and the synonymous codon usage in influenza A virus genes is phylogenetically conservative, but not strain-specific. Synonymous codon usage in genes encoded by different influenza A viruses is genus conservative. Compositional constraints could explain most of the variation of synonymous codon usage among these virus genes, while gene function is also correlated to synonymous codon usages to a certain extent. However, translational selection and gene length have no effect on the variations of synonymous codon usage in these virus genes.
Collapse
Affiliation(s)
- Tong Zhou
- Key Laboratory of Molecular and Biomolecular Electronics of the Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China
| | | | | | | | | |
Collapse
|
35
|
Gu W, Zhou T, Ma J, Sun X, Lu Z. The relationship between synonymous codon usage and protein structure in Escherichia coli and Homo sapiens. Biosystems 2004; 73:89-97. [PMID: 15013221 DOI: 10.1016/j.biosystems.2003.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2003] [Revised: 10/05/2003] [Accepted: 10/05/2003] [Indexed: 11/15/2022]
Abstract
The role of silent position in the codon on the protein structure is an interesting and yet unclear problem. In this paper, 563 Homo sapiens genes and 417 Escherichia coli genes coding for proteins with four different folding types have been analyzed using variance analysis, a multivariate analysis method newly used in codon usage analysis, to find the correlation between amino acid composition, synonymous codon, and protein structure in different organisms. It has been found that in E. coli, both amino acid compositions in differently folded proteins and synonymous codon usage in different gene classes coding for differently folded proteins are significantly different. It was also found that only amino acid composition is different in different protein classes in H. sapiens. There is no universal correlation between synonymous codon usage and protein structure in these two different organisms. Further analysis has shown that GC content on the second codon position can distinguish coding genes for different folded proteins in both organisms.
Collapse
Affiliation(s)
- Wanjun Gu
- Key Laboratory of Molecular and Biomolecular Electronics (Southeast University), Ministry of Education, Nanjing 210096, China
| | | | | | | | | |
Collapse
|
36
|
Gu W, Zhou T, Ma J, Sun X, Lu Z. Analysis of synonymous codon usage in SARS Coronavirus and other viruses in the Nidovirales. Virus Res 2004; 101:155-61. [PMID: 15041183 PMCID: PMC7127446 DOI: 10.1016/j.virusres.2004.01.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2003] [Revised: 01/09/2004] [Accepted: 01/09/2004] [Indexed: 12/04/2022]
Abstract
In this study, we calculated the codon usage bias in severe acute respiratory syndrome Coronavirus (SARSCoV) and performed a comparative analysis of synonymous codon usage patterns in SARSCoV and 10 other evolutionary related viruses in the Nidovirales. Although there is a significant variation in codon usage bias among different SARSCoV genes, codon usage bias in SARSCoV is a little slight, which is mainly determined by the base compositions on the third codon position. By comparing synonymous codon usage patterns in different viruses, we observed that synonymous codon usage pattern in these virus genes was virus specific and phylogenetically conserved, but it was not host specific. Phylogenetic analysis based on codon usage pattern suggested that SARSCoV was diverged far from all three known groups of Coronavirus. Compositional constraints could explain most of the variation of synonymous codon usage among these virus genes, while gene function is also correlated to synonymous codon usages to a certain extent. However, translational selection and gene length have no effect on the variations of synonymous codon usage in these virus genes.
Collapse
Affiliation(s)
| | | | | | | | - Zuhong Lu
- Corresponding author. Tel.: +86-25-83619983; fax: +86-25-83619983.
| |
Collapse
|
37
|
Shaw LB, Sethna JP, Lee KH. Mean-field approaches to the totally asymmetric exclusion process with quenched disorder and large particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 70:021901. [PMID: 15447509 DOI: 10.1103/physreve.70.021901] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Indexed: 05/24/2023]
Abstract
The process of protein synthesis in biological systems resembles a one-dimensional driven lattice gas in which the particles (ribosomes) have spatial extent, covering more than one lattice site. Realistic, nonuniform gene sequences lead to quenched disorder in the particle hopping rates. We study the totally asymmetric exclusion process with large particles and quenched disorder via several mean-field approaches and compare the mean-field results with Monte Carlo simulations. Mean-field equations obtained from the literature are found to be reasonably effective in describing this system. A numerical technique is developed for computing the particle current rapidly. The mean-field approach is extended to include two-point correlations between adjacent sites. The two-point results are found to match Monte Carlo simulations more closely.
Collapse
Affiliation(s)
- Leah B Shaw
- Department of Physics, Cornell University, Ithaca, New York 14853-2501, USA.
| | | | | |
Collapse
|
38
|
Shaw LB, Zia RKP, Lee KH. Totally asymmetric exclusion process with extended objects: a model for protein synthesis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2003; 68:021910. [PMID: 14525009 DOI: 10.1103/physreve.68.021910] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Indexed: 05/23/2023]
Abstract
The process of protein synthesis in biological systems resembles a one dimensional driven lattice gas in which the particles have spatial extent, covering more than one lattice site. We expand the well studied totally asymmetric exclusion process, in which particles typically cover a single lattice site, to include cases with extended objects. Exact solutions can be determined for a uniform closed system. We analyze the uniform open system through two approaches. First, a continuum limit produces a modified diffusion equation for particle density profiles. Second, an extremal principle based on domain wall theory accurately predicts the phase diagram and currents in each phase. Finally, we briefly consider approximate approaches to a nonuniform open system with quenched disorder in the particle hopping rates and compare these approaches with Monte Carlo simulations.
Collapse
Affiliation(s)
- Leah B Shaw
- Department of Physics, Cornell University, Ithaca, New York 14853-2501, USA.
| | | | | |
Collapse
|
39
|
Reiss C, Ehrlich R, Lesnick T, Parvez S, Parvez H. Conformational diseases: misfolding mechanisms may pave the way to early therapy. Neurotoxicol Teratol 2002; 24:ix-xiv. [PMID: 12200201 DOI: 10.1016/s0892-0362(02)00312-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- C Reiss
- Alzheim' R&D-Vigicell, 2, rue de la Noue, F91190 Gif, France
| | | | | | | | | |
Collapse
|
40
|
Jin H, Björnsson A, Isaksson LA. Cis control of gene expression in E.coli by ribosome queuing at an inefficient translational stop signal. EMBO J 2002; 21:4357-67. [PMID: 12169638 PMCID: PMC126163 DOI: 10.1093/emboj/cdf424] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An UGA stop codon context which is inefficient because of the 3'-flanking context and the last two amino acids in the gene protein product has a negative effect on gene expression, as shown using a model protein A' gene. This is particularly true at low mRNA levels, corresponding to a high intracellular ribosome/mRNA ratio. The negative effect is smaller if this ratio is decreased, or if the distance between the initiation and termination signals is increased. The results suggest that an inefficient termination codon can cause ribosomal pausing and queuing along the upstream mRNA region, thus blocking translation initiation of short genes. This cis control effect is dependent on the stop codon context, including the C-terminal amino acids in the gene product, the translation initiation signal strength, the ribosome/mRNA ratio and the size of the mRNA coding region. A large proportion of poorly expressed natural Escherichia coli genes are small, and the weak termination codon UGA is under-represented in small, highly expressed E.coli genes as compared with the efficient stop codon UAA.
Collapse
Affiliation(s)
| | - Asgeir Björnsson
- Department of Microbiology, Stockholm University, S-10691 Stockholm, Sweden
Present address: deCODE Genetics, Sturlugata 8, IS-101 Reykjavik, Iceland Corresponding author e-mail:
| | - Leif A. Isaksson
- Department of Microbiology, Stockholm University, S-10691 Stockholm, Sweden
Present address: deCODE Genetics, Sturlugata 8, IS-101 Reykjavik, Iceland Corresponding author e-mail:
| |
Collapse
|
41
|
Mukhopadhyay UK, Sahni G. An insight into the possible mechanism of working of two-cistronic gene expression systems and rational designing of newer systems. J Biosci 2002; 27:219-31. [PMID: 12089471 DOI: 10.1007/bf02704911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The initial attempts at hyper-expressing buffalo/goat growth hormone (GH)-ORFs in Escherichia coli directly under various strong promoters were not successful despite the presence of a functional gene. High level expression of GH was achieved as a fusion protein with glutathione-S-transferase (GST). To produce native GH in an unfused state, we adapted an established strategy of two-cistronic approach in our system. In this strategy, utilizing one of the highly efficient reported sequences as the first cistron led to a nearly 1000-fold enhancement in the level of expression under an E. coli promoter (trc). In search of a newer first-cistron sequence as well as to see the generality of the two-cistronic approach, we explored the ability of different lengths of a highly expressing natural gene to act as an efficient first cistron. Surprisingly, GST, which is naturally highly expressible in E. coli, could not be fitted into a successful two-cistronic construct. In addition, placement of the entire two-cistronic expression cassette (which had earlier given high-level GH expression under trc promoter) under the T7 promoter in E. coli failed to hyper-express GH. These results suggest that the successful exploitation of the two-cistron arrangement for hyper-expression of eukaryotic ORFs in bacteria is not as straightforward as was previously thought. It appears probable that factors such as the sequence context, together with the length and codons used in the first cistron are important as well.
Collapse
|
42
|
Reiss C, Lesnik T, Parvez H, Parvez S, Ehrlich R. Conformational toxicity and sporadic conformational diseases. Toxicology 2000; 153:115-21. [PMID: 11090951 DOI: 10.1016/s0300-483x(00)00308-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spontaneous, so-called 'conformational' diseases, specially of the neurodegenerative type like Alzheimer's, are linked to certain protein types which have the normal amino-acid sequence but are misfolded and accumulate due to resistance to proteolysis. In the case of prion diseases, the 'protein only' hypothesis assumes that the misconformation of a native protein could be initiated upon interaction with a sister-protein already in the misfolded state. There is an alternative to this sister protein contamination scheme, which assumes that the misconformation is acquired upon protein synthesis, that is de novo. Misfoldling and resistance to proteolysis could result from defects responsible for shortage or inactivity of the cellular factors in charge of protein folding and degradation. The defects could have a genetic origin (the gene of the faulty factor involved could have been mutated, or control and regulation of its expression could have been altered, etc.). Alternatively, the cell's actual biosynthetic and/or proteolytic resources could have become overloaded and unavailable, due to unscheduled mass-production of proteins resulting from unscheduled cell growth or proliferation, cell stress, etc. Xenobiotics, active for instance as endocrine proliferators, stressors, or inducing copious, unscheduled gene expression, etc. could give rise to shortage of cellular factors necessary for the production of native proteins and for proteolysis. Alternatively, xenobiotics could alter expression or activity of some of these factors. In both cases, the xenobiotic could be a 'conformational toxicant' by inducing misfolding of selected proteins. The xenobiotic could trigger some conformational disease if it targets a specific protein and tissue.
Collapse
Affiliation(s)
- C Reiss
- Centre de Genetique Moleculaire, CNRS, F91198 Cedex, Gif-sur Yvette, France
| | | | | | | | | |
Collapse
|