1
|
Lee YS, Braun EL, Grotewold E. Evolutionary trajectory of transcription factors and selection of targets for metabolic engineering. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230367. [PMID: 39343015 PMCID: PMC11439498 DOI: 10.1098/rstb.2023.0367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 10/01/2024] Open
Abstract
Transcription factors (TFs) provide potentially powerful tools for plant metabolic engineering as they often control multiple genes in a metabolic pathway. However, selecting the best TF for a particular pathway has been challenging, and the selection often relies significantly on phylogenetic relationships. Here, we offer examples where evolutionary relationships have facilitated the selection of the suitable TFs, alongside situations where such relationships are misleading from the perspective of metabolic engineering. We argue that the evolutionary trajectory of a particular TF might be a better indicator than protein sequence homology alone in helping decide the best targets for plant metabolic engineering efforts. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824, USA
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL32611, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824, USA
| |
Collapse
|
2
|
Li Z, Peng R, Tian Y, Han H, Xu J, Yao Q. Genome-Wide Identification and Analysis of the MYB Transcription Factor Superfamily in Solanum lycopersicum. PLANT & CELL PHYSIOLOGY 2016; 57:1657-77. [PMID: 27279646 DOI: 10.1093/pcp/pcw091] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/29/2016] [Indexed: 05/21/2023]
Abstract
MYB proteins constitute one of the largest transcription factor families in the plant kingdom, members of which perform a variety of functions in plant biological processes. However, there are only very limited reports on the characterization of MYB transcription factors in tomato (Solanum lycopersicum). In our study, a total of 127 MYB genes have been identified in the tomato genome. A complete overview of these MYB genes is presented, including the phylogeny, gene structures, protein motifs, chromosome locations and expression patterns. The 127 SlMYB proteins could be classified into 18 subgroups based on domain similarity and phylogenetic topology. Phylogenetic analysis of SlMYBs along with MYBs from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) indicated 14 subfamilies. Conserved motifs outside the MYB domain may reflect their functional conservation. The identified tomato MYB genes were distributed on 12 chromosomes at various densities but mainly in chromosomes 6 and 10 (12.6% and 11.8%, respectively). Genome-wide segmental and tandem duplications were also found, which may contribute to the expansion of SlMYB genes. RNA-sequencing and microarray data revealed tissue-specific and stress-responsive expression patterns of SlMYB genes. The expression profiles of SlMYB genes in response to salicylic acid (SA) and jasmonic acid methyl ester (MeJA) were also investigated by real-time PCR. Moreover, ethylene-responsive element-binding factor-associated amphiphilic repression (EAR) motifs were found in 24 SlMYB proteins. Collectively, our comprehensive analysis of SlMYB genes will facilitate future functional studies of the tomato MYB gene family and probably other Solanaceae plants.
Collapse
Affiliation(s)
- Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Hongjuan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Jing Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| |
Collapse
|
3
|
Du H, Feng BR, Yang SS, Huang YB, Tang YX. The R2R3-MYB transcription factor gene family in maize. PLoS One 2012; 7:e37463. [PMID: 22719841 PMCID: PMC3370817 DOI: 10.1371/journal.pone.0037463] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/20/2012] [Indexed: 12/15/2022] Open
Abstract
MYB proteins comprise a large family of plant transcription factors, members of which perform a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). In the present study, we performed a comprehensive computational analysis, to yield a complete overview of the R2R3-MYB gene family in maize, including the phylogeny, expression patterns, and also its structural and functional characteristics. The MYB gene structure in maize and Arabidopsis were highly conserved, indicating that they were originally compact in size. Subgroup-specific conserved motifs outside the MYB domain may reflect functional conservation. The genome distribution strongly supports the hypothesis that segmental and tandem duplication contribute to the expansion of maize MYB genes. We also performed an updated and comprehensive classification of the R2R3-MYB gene families in maize and other plant species. The result revealed that the functions were conserved between maize MYB genes and their putative orthologs, demonstrating the origin and evolutionary diversification of plant MYB genes. Species-specific groups/subgroups may evolve or be lost during evolution, resulting in functional divergence. Expression profile study indicated that maize R2R3-MYB genes exhibit a variety of expression patterns, suggesting diverse functions. Furthermore, computational prediction potential targets of maize microRNAs (miRNAs) revealed that miR159, miR319, and miR160 may be implicated in regulating maize R2R3-MYB genes, suggesting roles of these miRNAs in post-transcriptional regulation and transcription networks. Our comparative analysis of R2R3-MYB genes in maize confirm and extend the sequence and functional characteristics of this gene family, and will facilitate future functional analysis of the MYB gene family in maize.
Collapse
Affiliation(s)
- Hai Du
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Ministry of Agriculture, Chengdu, Sichuan, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo-Run Feng
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Si-Si Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu-Bi Huang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Ministry of Agriculture, Chengdu, Sichuan, China
- * E-mail: (YBH); (YXT)
| | - Yi-Xiong Tang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (YBH); (YXT)
| |
Collapse
|
4
|
Du H, Huang Y, Tang Y. Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol 2010; 86:1293-312. [DOI: 10.1007/s00253-010-2512-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
|
5
|
Abstract
The PAS (Per-ARNT-Sim) superfamily is presented as a well-suited study case to demonstrate how comparison of functional motions among distant homologous proteins with conserved fold characteristics may give insight into their functional specialization. Based on the importance of structural flexibility of the receptive structures in anticipating the signal-induced conformational changes of these sensory systems, the dynamics of these structures were analysed. Molecular dynamics was proved to be an effective method to obtain a reliable picture of the dynamics of the crystal structures of HERG, phy3, PYP and FixL, provided that an extensive conformational space sampling is performed. Other reliable sources of dynamic information were the ensembles of NMR structures of hPASK, HIF-2alpha and PYP. Essential dynamics analysis was successfully employed to extract the relevant information from the sampled conformational spaces. Comparison of motion patterns in the essential subspaces, based on the structural alignment, allowed identification of the specialized region in each domain. This appears to be evolved in the superfamily by following a specific trend, that also suggests the presence of a limited number of general solutions adopted by the PAS domains to sense external signals. These findings may give insight into unknown mechanisms of PAS domains and guide further experimental studies.
Collapse
Affiliation(s)
- A Pandini
- Dipartimento di Scienze dell'Ambiente e del Territorio, Università degli Studi di Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | | |
Collapse
|
6
|
Abstract
We present a directed essential dynamics (DED) method for peptide and protein folding. DED is a molecular dynamics method based on the essential dynamics sampling and the principal component analysis. The main idea of DED is to use principal component analysis to determine the direction of the most active collective motion of peptides at short intervals of time (20 fs) during the folding process and then add an additional force along it to adjust the folding direction. This method can make the peptides avoid being trapped in the local minima for a long time and enhance the sampling efficiency in conformational space during the simulation. An S-peptide with 15 amino acids is used to demonstrate the DED method. The results show that DED can lead the S-peptide to fold quickly into the native state, whereas traditional molecular dynamics needs more time to do this.
Collapse
Affiliation(s)
- Changjun Chen
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | | | | |
Collapse
|
7
|
Merlino A, Vitagliano L, Ceruso MA, Mazzarella L. Subtle functional collective motions in pancreatic-like ribonucleases: from ribonuclease A to angiogenin. Proteins 2003; 53:101-10. [PMID: 12945053 DOI: 10.1002/prot.10466] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The analysis of the dynamic behavior of enzymes is fundamental to structural biology. A direct relationship between protein flexibility and biological function has been shown for bovine pancreatic ribonuclease (RNase A) (Rasmussen et al., Nature 1992;357:423-424). More recently, crystallographic studies have shown that functional motions in RNase A involve the enzyme beta-sheet regions that move concertedly on substrate binding and release (Vitagliano et al., Proteins 2002;46:97-104). These motions have been shown to correspond to intrinsic dynamic properties of the native enzyme by molecular dynamics (MD) simulations. To unveil the occurrence of these collective motions in other members of pancreatic-like superfamily, we carried out MD simulations on human angiogenin (Ang). Essential dynamics (ED) analyses performed on the trajectories reveal that Ang exhibits collective motions similar to RNase A, despite the limited sequence identity (33%) of the two proteins. Furthermore, we show that these collective motions are also present in ensembles of experimentally determined structures of both Ang and RNase A. Finally, these subtle concerted beta-sheet motions were also observed for other two members of the pancreatic-like superfamily by comparing the ligand-bound and ligand-free structures of these enzymes. Taken together, these findings suggest that pancreatic-like ribonucleases share an evolutionary conserved dynamic behavior consisting of subtle beta-sheet motions, which are essential for substrate binding and release.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Napoli, Italy
| | | | | | | |
Collapse
|
8
|
Ecker GF, Csaszar E, Kopp S, Plagens B, Holzer W, Ernst W, Chiba P. Identification of ligand-binding regions of P-glycoprotein by activated-pharmacophore photoaffinity labeling and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Mol Pharmacol 2002; 61:637-48. [PMID: 11854445 DOI: 10.1124/mol.61.3.637] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Energy dependent efflux pumps confer resistance to anticancer, antimicrobial, and antiparasitic drugs. P-glycoprotein (Pgp, ABCB1) mediates resistance to a broad spectrum of antitumor drugs. Compounds that themselves are nontoxic to cells have been shown to act as inhibitors of Pgp. The mechanism of binding and transport of low-molecular-mass ligands by Pgp is still incompletely understood. This study introduces a series of propafenone-related photoaffinity ligands, which combine high specificity and selectivity for Pgp with high labeling efficiency. Molecules are intrinsically photoactivatable in the arylcarbonyl group, which represents a pharmacophoric substructure for this group of ligand molecules. A detailed study of the structure-activity relationship for this type of photoligand is presented. In subsequent experiments, these ligands were used to characterize the drug-binding domain of propafenone-type analogs. Matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry shows that propafenone-type ligands preferentially label fragments assigned to putative transmembrane segments 3, 5, 6, 8, 10, 11, and 12. Labeled fragments are also identified in a highly charged region of 15 amino acids in the second cytoplasmic loop. This region corresponds to the so-called EAA-like motif, which has been proposed to play a role in the interaction between transmembrane domain and nucleotide binding domain of peroxisomal ATP-binding cassette transporters. In addition, a region in cytoplasmic loop 3 and between TM12 and the N terminus of the Walker A sequence of NBD2 are labeled by the ligands. Therefore, a number of confined protein regions contribute to the drug-binding domain of propafenone-type analogs.
Collapse
Affiliation(s)
- Gerhard F Ecker
- Institute of Pharmaceutical Chemistry, University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
9
|
Kerb R, Hoffmeyer S, Brinkmann U. ABC drug transporters: hereditary polymorphisms and pharmacological impact in MDR1, MRP1 and MRP2. Pharmacogenomics 2001; 2:51-64. [PMID: 11258197 DOI: 10.1517/14622416.2.1.51] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transport by ATP-dependent efflux pumps, such as P-glycoprotein (PGP) and multi-drug resistance related proteins (MRPs), influences bioavailability and disposition of drugs. These efflux pumps serve as defence mechanisms and determine bioavailability and CNS concentrations of many drugs. However, despite the fact that substantial data have been accumulated on the structure, function and pharmacological role of ABC transporters and even though modification of PGP function is an important mechanism of drug interactions and adverse effects in humans, there is a striking lack of data on variability of the underlying genes. This review focuses on the human drug transporter proteins PGP (MDR1) and the multi-drug resistance proteins MRP1 and MRP2. An overview is provided of pharmacologically relevant genetic, structural and functional data as well as on hereditary polymorphisms, their phenotypical consequences and pharmacological implications.
Collapse
Affiliation(s)
- R Kerb
- Epidauros Biotechnology, Pharmacogenetics Laboratory, Am Neuland 1, D-82347 Bernried, Germany
| | | | | |
Collapse
|
10
|
Grotewold E, Sainz MB, Tagliani L, Hernandez JM, Bowen B, Chandler VL. Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. Proc Natl Acad Sci U S A 2000; 97:13579-84. [PMID: 11095727 PMCID: PMC17618 DOI: 10.1073/pnas.250379897] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The maize Myb transcription factor C1 depends on the basic helix-loop-helix (bHLH) proteins R or B for regulatory function, but the closely related Myb protein P does not. We have used the similarity between the Myb domains of C1 and P to identify residues that specify the interaction between the Myb domain of C1 and the N-terminal region of R. Substitution of four predicted solvent-exposed residues in the first helix of the second Myb repeat of P with corresponding residues from C1 is sufficient to confer on P the ability to physically interact with R. However, two additional Myb domain amino acid changes are needed to make the P regulatory activity partially dependent on R in maize cells. Interestingly, when P is altered so that it interacts with R, it can activate the Bz1 promoter, normally regulated by C1 + R but not by P. Together, these findings demonstrate that the change of a few amino acids within highly similar Myb domains can mediate differential interactions with a transcriptional coregulator that plays a central role in the regulatory specificity of C1, and that Myb domains play important roles in combinatorial transcriptional regulation.
Collapse
Affiliation(s)
- E Grotewold
- Department of Plant Biology and Plant Biotechnology Center, Ohio State University, Columbus, OH 43210, USA. 1Wosu.edu
| | | | | | | | | | | |
Collapse
|
11
|
van Aalten DM, Crielaard W, Hellingwerf KJ, Joshua-Tor L. Conformational substates in different crystal forms of the photoactive yellow protein--correlation with theoretical and experimental flexibility. Protein Sci 2000; 9:64-72. [PMID: 10739248 PMCID: PMC2144441 DOI: 10.1110/ps.9.1.64] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The conformational changes during the photocycle of the photoactive yellow protein have been the subject of many recent studies. Spectroscopic measurements have shown that the photocycle also occurs in a crystalline environment, and this has been the basis for subsequent Laue diffraction and cryocrystallographic studies. These studies have shown that conformational changes during the photocycle are limited to the chromophore and its immediate environment. However, spectroscopic studies suggest the presence of large conformational changes in the protein. Here, we address this apparent discrepancy in two ways. First, we obtain a description of large concerted motions in the ground state of the yellow protein from NMR data and theoretical calculations. Second, we describe the high-resolution structure of the yellow protein crystallized in a different space group. The structure of the yellow protein differs significantly between the two crystal forms. We show that these differences can be used to obtain a description of the flexibility of the protein that is consistent with the motions observed in solution.
Collapse
Affiliation(s)
- D M van Aalten
- W.M. Keck Structural Biology, Cold Spring Harbor Laboratory, New York 11724, USA.
| | | | | | | |
Collapse
|
12
|
Kumar S, Ma B, Tsai CJ, Wolfson H, Nussinov R. Folding funnels and conformational transitions via hinge-bending motions. Cell Biochem Biophys 1999; 31:141-64. [PMID: 10593256 DOI: 10.1007/bf02738169] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this article we focus on presenting a broad range of examples illustrating low-energy transitions via hinge-bending motions. The examples are divided according to the type of hinge-bending involved; namely, motions involving fragments of the protein chains, hinge-bending motions involving protein domains, and hinge-bending motions between the covalently unconnected subunits. We further make a distinction between allosterically and nonallosterically regulated proteins. These transitions are discussed within the general framework of folding and binding funnels. We propose that the conformers manifesting such swiveling motions are not the outcome of "induced fit" binding mechanism; instead, molecules exist in an ensemble of conformations that are in equilibrium in solution. These ensembles, which populate the bottoms of the funnels, a priori contain both the "open" and the "closed" conformational isomers. Furthermore, we argue that there are no fundamental differences among the physical principles behind the folding and binding funnels. Hence, there is no basic difference between funnels depicting ensembles of conformers of single molecules with fragment, or domain motions, as compared to subunits in multimeric quaternary structures, also showing such conformational transitions. The difference relates only to the size and complexity of the system. The larger the system, the more complex its corresponding fused funnel(s). In particular, funnels associated with allosterically regulated proteins are expected to be more complicated, because allostery is frequently involved with movements between subunits, and consequently is often observed in multichain and multimolecular complexes. This review centers on the critical role played by flexibility and conformational fluctuations in enzyme activity. Internal motions that extend over different time scales and with different amplitudes are known to be essential for the catalytic cycle. The conformational change observed in enzyme-substrate complexes as compared to the unbound enzyme state, and in particular the hinge-bending motions observed in enzymes with two domains, have a substantial effect on the enzymatic catalytic activity. The examples we review span the lipolytic enzymes that are particularly interesting, owing to their activation at the water-oil interface; an allosterically controlled dehydrogenase (lactate dehydrogenase); a DNA methyltransferase, with a covalently-bound intermediate; large-scale flexible loop motions in a glycolytic enzyme (TIM); domain motion in PGK, an enzyme which is essential in most cells, both for ATP generation in aerobes and for fermentation in anaerobes; adenylate kinase, showing large conformational changes, owing to their need to shield their catalytic centers from water; a calcium-binding protein (calmodulin), involved in a wide range of cellular calcium-dependent signaling; diphtheria toxin, whose large domain motion has been shown to yield "domain swapping;" the hexameric glutamate dehydrogenase, which has been studied both in a thermophile and in a mesophile; an allosteric enzyme, showing subunit motion between the R and the T states (aspartate transcarbamoylase), and the historically well-studied lac repressor. Nonallosteric subunit transitions are also addressed, with some examples (aspartate receptor and BamHI endonuclease). Hence, using this enzyme-catalysis-centered discussion, we address energy funnel landscapes of large-scale conformational transitions, rather than the faster, quasi-harmonic, thermal fluctuations.
Collapse
Affiliation(s)
- S Kumar
- Intramural Research Support Program-SAIC, Laboratory of Experimental and Computational Biology, NCI-FCRDC, Frederick, MD, 21702, USA
| | | | | | | | | |
Collapse
|
13
|
Rabinowicz PD, Braun EL, Wolfe AD, Bowen B, Grotewold E. Maize R2R3 Myb genes: Sequence analysis reveals amplification in the higher plants. Genetics 1999; 153:427-44. [PMID: 10471724 PMCID: PMC1460732 DOI: 10.1093/genetics/153.1.427] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcription factors containing the Myb-homologous DNA-binding domain are widely found in eukaryotes. In plants, R2R3 Myb-domain proteins are involved in the control of form and metabolism. The Arabidopsis genome harbors >100 R2R3 Myb genes, but few have been found in monocots, animals, and fungi. Using RT-PCR from different maize organs, we cloned 480 fragments corresponding to a 42-44 residue-long sequence spanning the region between the conserved DNA-recognition helices (Myb(BRH)) of R2R3 Myb domains. We determined that maize expresses >80 different R2R3 Myb genes, and evolutionary distances among maize Myb(BRH) sequences indicate that most of the amplification of the R2R3 Myb gene family occurred after the origin of land plants but prior to the separation of monocots and dicots. In addition, evidence is provided for the very recent duplication of particular classes of R2R3 Myb genes in the grasses. Together, these findings render a novel line of evidence for the amplification of the R2R3 Myb gene family in the early history of land plants and suggest that maize provides a possible model system to examine the hypothesis that the expansion of Myb genes is associated with the regulation of novel plant cellular functions.
Collapse
Affiliation(s)
- P D Rabinowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | |
Collapse
|