1
|
Gao F, Tom E, Rydz C, Cho W, Kolesnikov AV, Sha Y, Papadam A, Jafari S, Joseph A, Ahanchi A, Saraei NBS, Lyon D, Foik A, Nie Q, Grassmann F, Kefalov VJ, Skowronska-Krawczyk D. Polyunsaturated Fatty Acid - mediated Cellular Rejuvenation for Reversing Age-related Vision Decline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601592. [PMID: 39005302 PMCID: PMC11244954 DOI: 10.1101/2024.07.01.601592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The retina is uniquely enriched in polyunsaturated fatty acids (PUFAs), which are primarily localized in cell membranes, where they govern membrane biophysical properties such as diffusion, permeability, domain formation, and curvature generation. During aging, alterations in lipid metabolism lead to reduced content of very long-chain PUFAs (VLC-PUFAs) in the retina, and this decline is associated with normal age-related visual decline and pathological age-related macular degeneration (AMD). ELOVL2 (Elongation of very-long-chain fatty acids-like 2) encodes a transmembrane protein that produces precursors to docosahexaenoic acid (DHA) and VLC-PUFAs, and methylation level of its promoter is currently the best predictor of chronological age. Here, we show that mice lacking ELOVL2-specific enzymatic activity (Elovl2 C234W ) have impaired contrast sensitivity and slower rod response recovery following bright light exposure. Intravitreal supplementation with the direct product of ELOVL2, 24:5n-3, in aged animals significantly improved visual function and reduced accumulation of ApoE, HTRA1 and complement proteins in sub-RPE deposits. At the molecular level, the gene expression pattern observed in retinas supplemented with 24:5n-3 exhibited a partial rejuvenation profile, including decreased expression of aging-related genes and a transcriptomic signature of younger retina. Finally, we present the first human genetic data showing significant association of several variants in the human ELOVL2 locus with the onset of intermediate AMD, underlying the translational significance of our findings. In sum, our study identifies novel therapeutic opportunities and defines ELOVL2 as a promising target for interventions aimed at preventing age-related vision loss.
Collapse
Affiliation(s)
- Fangyuan Gao
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine, CA, 92697, USA
| | - Emily Tom
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, CA
| | - Cezary Rydz
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, CA
| | - William Cho
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, CA
| | - Alexander V. Kolesnikov
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine, CA, 92697, USA
| | - Yutong Sha
- Department of Mathematics, University of California Irvine, CA
| | | | - Samantha Jafari
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine, CA, 92697, USA
| | - Andrew Joseph
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine, CA, 92697, USA
| | - Ava Ahanchi
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine, CA, 92697, USA
| | - Nika Balalaei Someh Saraei
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine, CA, 92697, USA
| | - David Lyon
- Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, CA
| | - Andrzej Foik
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Qing Nie
- Department of Mathematics, University of California Irvine, CA
| | - Felix Grassmann
- Institute for Clinical Research and System Medicine, Health and Medical University, Potsdam, Germany
| | - Vladimir J. Kefalov
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine, CA, 92697, USA
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, CA
| | - Dorota Skowronska-Krawczyk
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine, CA, 92697, USA
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, CA
| |
Collapse
|
2
|
Li Y, Yu S, Duncan T, Li Y, Liu P, Gene E, Cortes-Pena Y, Qian H, Dong L, Redmond TM. Mouse model of human RPE65 P25L hypomorph resembles wild type under normal light rearing but is fully resistant to acute light damage. Hum Mol Genet 2015; 24:4417-28. [PMID: 25972377 DOI: 10.1093/hmg/ddv178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/11/2015] [Indexed: 01/21/2023] Open
Abstract
Human RPE65 mutations cause a spectrum of blinding retinal dystrophies from severe early-onset disease to milder manifestations. The RPE65 P25L missense mutation, though having <10% of wild-type (WT) activity, causes relatively mild retinal degeneration. To better understand these mild forms of RPE65-related retinal degeneration, and their effect on cone photoreceptor survival, we generated an Rpe65/P25L knock-in (KI/KI) mouse model. We found that, when subject to the low-light regime (∼100 lux) of regular mouse housing, homozygous Rpe65/P25L KI/KI mice are morphologically and functionally very similar to WT siblings. While mutant protein expression is decreased by over 80%, KI/KI mice retinae retain comparable 11-cis-retinal levels with WT. Consistently, the scotopic and photopic electroretinographic (ERG) responses to single-flash stimuli also show no difference between KI/KI and WT mice. However, the recovery of a-wave response following moderate visual pigment bleach is delayed in KI/KI mice. Importantly, KI/KI mice show significantly increased resistance to high-intensity (20 000 lux for 30 min) light-induced retinal damage (LIRD) as compared with WT, indicating impaired rhodopsin regeneration in KI/KI. Taken together, the Rpe65/P25L mutant produces sufficient chromophore under normal conditions to keep opsins replete and thus manifests a minimal phenotype. Only when exposed to intensive light is this hypomorphic mutation manifested physiologically, as its reduced expression and catalytic activity protects against the successive cycles of opsin regeneration underlying LIRD. These data also help define minimal requirements of chromophore for photoreceptor survival in vivo and may be useful in assessing a beneficial therapeutic dose for RPE65 gene therapy in humans.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Retinal Cell and Molecular Biology
| | - Shirley Yu
- Laboratory of Retinal Cell and Molecular Biology
| | - Todd Duncan
- Laboratory of Retinal Cell and Molecular Biology
| | | | - Pinghu Liu
- Genetic Engineering Core, National Eye Institute/NIH, Bethesda, MD, USA
| | - Erelda Gene
- Laboratory of Retinal Cell and Molecular Biology
| | | | | | - Lijin Dong
- Genetic Engineering Core, National Eye Institute/NIH, Bethesda, MD, USA
| | | |
Collapse
|