1
|
O'Brien NL, Quadri G, Lightley I, Sharp SI, Guerrini I, Smith I, Heydtmann M, Morgan MY, Thomson AD, Bass NJ, McHugh PC, McQuillin A. SLC19A1 Genetic Variation Leads to Altered Thiamine Diphosphate Transport: Implications for the Risk of Developing Wernicke-Korsakoff's Syndrome. Alcohol Alcohol 2022; 57:581-588. [PMID: 35952336 DOI: 10.1093/alcalc/agac032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 04/29/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022] Open
Abstract
AIMS Wernicke-Korsakoff syndrome (WKS) is commonly associated with chronic alcohol misuse, a condition known to have multiple detrimental effects on thiamine metabolism. This study was conducted to identify genetic variants that may contribute to the development of WKS in individuals with alcohol dependence syndrome through alteration of thiamine transport into cells. METHODS Exome sequencing data from a panel of genes related to alcohol metabolism and thiamine pathways were analysed in a discovery cohort of 29 individuals with WKS to identify possible genetic risk variants associated with its development. Variant frequencies in this discovery cohort were compared with European frequencies in the Genome Aggregation Database browser, and those present at significantly higher frequencies were genotyped in an additional cohort of 87 alcohol-dependent cases with WKS and 197 alcohol-dependent cognitively intact controls. RESULTS Thirty non-synonymous variants were identified in the discovery cohort and, after filtering, 23 were taken forward and genotyped in the case-control cohort. Of these SLC19A1:rs1051266:G was nominally associated with WKS. SLC19A1 encodes the reduced folate carrier, a major transporter for physiological folate in plasma; rs1051266 is reported to impact folate transport. Thiamine pyrophosphate (TPP) efflux was significantly decreased in HEK293 cells, stably transfected with rs1051266:G, under thiamine deficient conditions when compared with the efflux from cells transfected with rs1051266:A (P = 5.7 × 10-11). CONCLUSION This study provides evidence for the role of genetic variation in the SLC19A1 gene, which may contribute to the development of WKS in vivo through modulation of TPP transport in cells.
Collapse
Affiliation(s)
- Niamh L O'Brien
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, UK
| | - Giorgia Quadri
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, UK
| | - Iain Lightley
- Centre for Biomarker Research, University of Huddersfield, Huddersfield, UK
| | - Sally I Sharp
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, UK
| | - Irene Guerrini
- Erith Health Centre, South London and Maudsley NHS Foundation Trust, London, UK.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Iain Smith
- Alcohol Related Brain Injury Team, Stirling, UK
| | - Mathis Heydtmann
- Department of Gastroenterology, Dumfries & Galloway Royal Infirmary, Cargenbridge, Dumfries, UK
| | - Marsha Y Morgan
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College London, UK
| | - Allan D Thomson
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, UK.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Nicholas J Bass
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, UK
| | - Patrick C McHugh
- Centre for Biomarker Research, University of Huddersfield, Huddersfield, UK
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, UK
| |
Collapse
|
2
|
Pharmacogenomic Markers of Methotrexate Response in the Consolidation Phase of Pediatric Acute Lymphoblastic Leukemia Treatment. Genes (Basel) 2020; 11:genes11040468. [PMID: 32344632 PMCID: PMC7230684 DOI: 10.3390/genes11040468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Methotrexate (MTX) is one of the staples of pediatric acute lymphoblastic leukemia (ALL) treatment. MTX targets the folate metabolic pathway (FMP). Abnormal function of the enzymes in FMP, due to genetic aberrations, leads to adverse drug reactions. The aim of this study was to investigate variants in pharmacogenes involved in FMP and their association with MTX pharmacokinetics (MTX elimination profile) and toxicity in the consolidation therapy phase of pediatric ALL patients. Eleven variants in the thymidylate synthetase (TYMS), methylenetetrahydrofolate reductase (MTHFR), dihydrofolate reductase (DHFR), SLC19A1 and SLCO1B genes were analyzed in 148 patients, using PCR- and sequencing-based methodology. For the Serbian and European control groups, data on allele frequency distribution were extracted from in-house and public databases. Our results show that the A allele of SLC19A1 c.80 variant contributes to slow MTX elimination. Additionally, the AA genotype of the same variant is a predictor of MTX-related hepatotoxicity. Patients homozygous for TYMS 6bp deletion were more likely to experience gastrointestinal toxicity. No allele frequency dissimilarity was found for the analyzed variants between Serbian and European populations. Statistical modelling did not show a joint effect of analyzed variants. Our results indicate that SLC19A1 c.80 variant and TYMS 6bp deletion are the most promising pharmacogenomic markers of MTX response in pediatric ALL patients.
Collapse
|
3
|
Rudin S, Marable M, Huang RS. The Promise of Pharmacogenomics in Reducing Toxicity During Acute Lymphoblastic Leukemia Maintenance Treatment. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:82-93. [PMID: 28391009 PMCID: PMC5414888 DOI: 10.1016/j.gpb.2016.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/19/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
Abstract
Pediatric acute lymphoblastic leukemia (ALL) affects a substantial number of children every year and requires a long and rigorous course of chemotherapy treatments in three stages, with the longest phase, the maintenance phase, lasting 2–3 years. While the primary drugs used in the maintenance phase, 6-mercaptopurine (6-MP) and methotrexate (MTX), are necessary for decreasing risk of relapse, they also have potentially serious toxicities, including myelosuppression, which may be life-threatening, and gastrointestinal toxicity. For both drugs, pharmacogenomic factors have been identified that could explain a large amount of the variance in toxicity between patients, and may serve as effective predictors of toxicity during the maintenance phase of ALL treatment. 6-MP toxicity is associated with polymorphisms in the genes encoding thiopurine methyltransferase (TPMT), nudix hydrolase 15 (NUDT15), and potentially inosine triphosphatase (ITPA), which vary between ethnic groups. Moreover, MTX toxicity is associated with polymorphisms in genes encoding solute carrier organic anion transporter family member 1B1 (SLCO1B1) and dihydrofolate reductase (DHFR). Additional polymorphisms potentially associated with toxicities for MTX have also been identified, including those in the genes encoding solute carrier family 19 member 1 (SLC19A1) and thymidylate synthetase (TYMS), but their contributions have not yet been well quantified. It is clear that pharmacogenomics should be incorporated as a dosage-calibrating tool in pediatric ALL treatment in order to predict and minimize the occurrence of serious toxicities for these patients.
Collapse
Affiliation(s)
- Shoshana Rudin
- Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Marcus Marable
- Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - R Stephanie Huang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
4
|
Dubchak I, Balasubramanian S, Wang S, Meyden C, Sulakhe D, Poliakov A, Börnigen D, Xie B, Taylor A, Ma J, Paciorkowski AR, Mirzaa GM, Dave P, Agam G, Xu J, Al-Gazali L, Mason CE, Ross ME, Maltsev N, Gilliam TC. An integrative computational approach for prioritization of genomic variants. PLoS One 2014; 9:e114903. [PMID: 25506935 PMCID: PMC4266634 DOI: 10.1371/journal.pone.0114903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/15/2014] [Indexed: 12/27/2022] Open
Abstract
An essential step in the discovery of molecular mechanisms contributing to disease phenotypes and efficient experimental planning is the development of weighted hypotheses that estimate the functional effects of sequence variants discovered by high-throughput genomics. With the increasing specialization of the bioinformatics resources, creating analytical workflows that seamlessly integrate data and bioinformatics tools developed by multiple groups becomes inevitable. Here we present a case study of a use of the distributed analytical environment integrating four complementary specialized resources, namely the Lynx platform, VISTA RViewer, the Developmental Brain Disorders Database (DBDB), and the RaptorX server, for the identification of high-confidence candidate genes contributing to pathogenesis of spina bifida. The analysis resulted in prediction and validation of deleterious mutations in the SLC19A placental transporter in mothers of the affected children that causes narrowing of the outlet channel and therefore leads to the reduced folate permeation rate. The described approach also enabled correct identification of several genes, previously shown to contribute to pathogenesis of spina bifida, and suggestion of additional genes for experimental validations. The study demonstrates that the seamless integration of bioinformatics resources enables fast and efficient prioritization and characterization of genomic factors and molecular networks contributing to the phenotypes of interest.
Collapse
Affiliation(s)
- Inna Dubchak
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
- * E-mail: (ID); (NM)
| | - Sandhya Balasubramanian
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Sheng Wang
- Toyota Technological Institute at Chicago, Chicago, Illinois, United States of America
| | - Cem Meyden
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, United States of America
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, United States of America
| | - Dinanath Sulakhe
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Computation Institute, University of Chicago/Argonne National Laboratory, Chicago, Illinois, United States of America
| | - Alexander Poliakov
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Daniela Börnigen
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Toyota Technological Institute at Chicago, Chicago, Illinois, United States of America
| | - Bingqing Xie
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Computer Science, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Andrew Taylor
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Jianzhu Ma
- Toyota Technological Institute at Chicago, Chicago, Illinois, United States of America
| | - Alex R. Paciorkowski
- Departments of Neurology, Pediatrics, and Biomedical Genetics and Center for Neural Development and Disease, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Ghayda M. Mirzaa
- Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Paul Dave
- Computation Institute, University of Chicago/Argonne National Laboratory, Chicago, Illinois, United States of America
| | - Gady Agam
- Department of Computer Science, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, Illinois, United States of America
| | - Lihadh Al-Gazali
- Department of Pediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, United States of America
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, United States of America
| | - M. Elizabeth Ross
- Laboratory of Neurogenetics and Development, Weill Cornell Medical College, New York, New York, United States of America
| | - Natalia Maltsev
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Computation Institute, University of Chicago/Argonne National Laboratory, Chicago, Illinois, United States of America
- * E-mail: (ID); (NM)
| | - T. Conrad Gilliam
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Computation Institute, University of Chicago/Argonne National Laboratory, Chicago, Illinois, United States of America
| |
Collapse
|
5
|
Sukla KK, Raman R. Association of MTHFR and RFC1 gene polymorphism with hyperhomocysteinemia and its modulation by vitamin B12 and folic acid in an Indian population. Eur J Clin Nutr 2011; 66:111-8. [DOI: 10.1038/ejcn.2011.152] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
|
7
|
Koppen IJN, Hermans FJR, Kaspers GJL. Folate related gene polymorphisms and susceptibility to develop childhood acute lymphoblastic leukaemia. Br J Haematol 2010; 148:3-14. [DOI: 10.1111/j.1365-2141.2009.07898.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Abstract
BACKGROUND Stroke is a rare disorder in childhood; among its risk factors, C677T mutations in the methylenetetrahydrofolate reductase (MTHFR) gene with secondary hyperhomocysteinemia are considered. PATIENTS AND METHODS We report on a family in which two brothers had arterial ischemic stroke (AIS). One of these siblings came to our observation at the age of 4 years because of decreased motility of the right arm, mild hypotrophy of the right limbs, and frequent falls: brain magnetic resonance imaging revealed a large left AIS. Family history revealed that his older brother had died at the age of 7 due to AIS. An extensive metabolic investigation revealed a homozygous C677T [G80A-reduced folate carrier 1 (RFC1)] mutation in the MTHFR gene in both the affected siblings and in their healthy older brother and heterozygous mutations in the parents. None of these family members presented hyperhomocysteinemia. CONCLUSIONS To the best of our knowledge, this is the first family with multiple AIS patients harboring homozygous MTHFR gene C677T (G80A-RFC1) mutations without associated hyperhomocysteinemia (the latter factor is usually considered as effector of vascular damage in patients with MTHFR C677T mutations). The pathogenic hypotheses of stroke in this family are considered.
Collapse
|
9
|
Folate pathway genetic polymorphisms and susceptibility of central nervous system tumors in Thai children. ACTA ACUST UNITED AC 2008; 32:72-8. [PMID: 18406541 DOI: 10.1016/j.cdp.2008.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2008] [Indexed: 02/03/2023]
Abstract
BACKGROUND Folate is an important micronutrient molecule participating in DNA synthesis, methylation and repair mechanisms. Genetic polymorphisms in folate pathway related enzymes including methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C, methionine synthase (MTR) A2756G, thymidylate synthase (TS) 28-bp tandem repeat, and reduced folate carrier (RFC) G80A have been shown to be associated with increased susceptibility for several cancers. The aim of the present study was to evaluate whether single nucleotide polymorphisms in the genes encoding enzymes of the folate pathway predispose to any CNS tumors in Thai children. METHODS In the present case-control study, we investigated these polymorphisms in genomic DNA from peripheral blood mononuclear cells in 73 Thai children with various types of central nervous system tumors and in 205 age and sex matched controls. RESULTS Thirty-one out of 73 patients were diagnosed with glial tumors (astrocytoma, oigodendroglioma and ependymoma), 28 with embryonal CNS tumors (medulloblastoma, pinealoblastoma and primitive neuroectodermal tumor), 13 with germ cell tumors and 1 with meningioma. We found that the homozygous CC allele of MTHFR A1298C conferred an increased risk of embryonal CNS tumors (OR: 3.9; 95% CI: 1.3-11.4, p=0.02). CONCLUSION Our findings thus suggest that folate metabolism may play a role in the pathogenesis of certain specific subtypes of pediatric brain tumor in Thai children, especially embryonal CNS tumors.
Collapse
|
10
|
Cunningham L, Aplenc R. Pharmacogenetics of acute lymphoblastic leukemia treatment response. Expert Opin Pharmacother 2007; 8:2519-31. [DOI: 10.1517/14656566.8.15.2519] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Coppedè F, Marini G, Bargagna S, Stuppia L, Minichilli F, Fontana I, Colognato R, Astrea G, Palka G, Migliore L. Folate gene polymorphisms and the risk of Down syndrome pregnancies in young Italian women. Am J Med Genet A 2006; 140:1083-91. [PMID: 16596679 DOI: 10.1002/ajmg.a.31217] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Maternal impairments in folate metabolism and elevated homocysteinemia are known risk factors for having a child with Down syndrome (DS) at a young age. The 80G>A polymorphism of the reduced folate carrier gene (RFC-1) has been recently demonstrated to affect plasma folate and homocysteine levels, alone or in combination with the 677C>T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene. We performed the present study on 80 Italian mothers of DS individuals, aged less than 35 at conception, and 111 Italian control mothers, to study the role of the RFC-1 80G>A, MTHFR 677C>T, and MTHFR 1298A>C genotypes to the risk of a DS offspring at a young maternal age. When polymorphisms were considered alone, both allele and genotype frequencies did not significantly differ between DS mothers and control mothers. However, the combined MTHFR677TT/RFC-1 80GG genotype was borderline associated with an increased risk (OR 6 (CI 95%: 1.0-35.9), P = 0.05), and to be MTHF1298AA/RFC-1 80(GA or AA) was inversely associated with the risk (OR 0.36 (CI 95%: 0.14-0.96), P = 0.04). Present results seem to indicate that none of the RFC-1 80G>A, MTHFR 677C>T, and MTHFR 1298A>C polymorphisms is an independent risk factor for a DS offspring at a young maternal age; however, a role for the combined MTHFR/RFC-1 genotypes in the risk of DS pregnancies among young Italian women cannot be excluded.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Human and Environmental Sciences, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Robien K, Boynton A, Ulrich CM. Pharmacogenetics of folate-related drug targets in cancer treatment. Pharmacogenomics 2006; 6:673-89. [PMID: 16207145 DOI: 10.2217/14622416.6.7.673] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Folate metabolism is the target of two major drug groups: folate antagonists (for example, methotrexate) and thymidylate synthase inhibitors (for example, 5-fluorouracil). These agents are used in the treatment of cancer, as well as for other conditions, such as rheumatoid arthritis. High-dose cancer treatment protocols can induce a state of acute folate depletion which may lead to significant treatment-related toxicity. Polymorphisms in folate-metabolizing enzymes may modify the therapeutic effectiveness and toxicity of these drugs. This review briefly summarizes the drugs targeting the folate pathway and describes common polymorphisms in folate-metabolizing enzymes and transport proteins. Pharmacogenetic studies investigating folate-related drug targets in the treatment of colorectal cancers and hematologic malignancies will subsequently be discussed. Findings to date illustrate a potential for targeting therapy based on patients' genotypes, in order to improve outcomes and reduce toxicity. However, larger, well-designed studies are needed to confirm these early findings.
Collapse
Affiliation(s)
- Kim Robien
- Fred Hutchinson Cancer Research Center, Cancer Prevention Program, 1100 Fairview Ave N, M4-B402, Seattle, WA 98109 1024, USA
| | | | | |
Collapse
|
13
|
Spiegelstein O, Gould A, Wlodarczyk B, Tsie M, Lu X, Le C, Troen A, Selhub J, Piedrahita JA, Salbaum JM, Kappen C, Melnyk S, James J, Finnell RH. Developmental consequences of in utero sodium arsenate exposure in mice with folate transport deficiencies. Toxicol Appl Pharmacol 2005; 203:18-26. [PMID: 15694460 PMCID: PMC3938173 DOI: 10.1016/j.taap.2004.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2004] [Accepted: 07/21/2004] [Indexed: 01/13/2023]
Abstract
Previous studies have demonstrated that mice lacking a functional folate binding protein 2 gene (Folbp2-/-) were significantly more sensitive to in utero arsenic exposure than were the wild-type mice similarly exposed. When these mice were fed a folate-deficient diet, the embryotoxic effect of arsenate was further exacerbated. Contrary to expectations, studies on 24-h urinary speciation of sodium arsenate did not demonstrate any significant difference in arsenic biotransformation between Folbp2-/- and Folbp2+/+ mice. To better understand the influence of folate pathway genes on arsenic embryotoxicity, the present investigation utilized transgenic mice with disrupted folate binding protein 1 (Folbp1) and reduced folate carrier (RFC) genes. Because complete inactivation of Folbp1 and RFC genes results in embryonic lethality, we used heterozygous animals. Overall, no RFC genotype-related differences in embryonic susceptibility to arsenic exposure were observed. Embryonic lethality and neural tube defect (NTD) frequency in Folbp1 mice was dose-dependent and differed from the RFC mice; however, no genotype-related differences were observed. The RFC heterozygotes tended to have higher plasma levels of S-adenosylhomocysteine (SAH) than did the wild-type controls, although this effect was not robust. It is concluded that genetic modifications at the Folbp1 and RFC loci confers no particular sensitivity to arsenic toxicity compared to wild-type controls, thus disproving the working hypothesis that decreased methylating capacity of the genetically modified mice would put them at increased risk for arsenic-induced reproductive toxicity.
Collapse
Affiliation(s)
- Ofer Spiegelstein
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | - Amy Gould
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
- NIDCR T32 Fellow, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Bogdan Wlodarczyk
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | - Marlene Tsie
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | - Xiufen Lu
- Department of Public Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chris Le
- Department of Public Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Aron Troen
- Vitamin Metabolism and Neurocognitive Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Jacob Selhub
- Vitamin Metabolism and Neurocognitive Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Jorge A. Piedrahita
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA
| | - J. Michael Salbaum
- S.C. Johnson Medical Research Center, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Claudia Kappen
- S.C. Johnson Medical Research Center, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Stepan Melnyk
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Jill James
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Richard H. Finnell
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
- Center for Environmental and Rural Health, Texas A&M University, College Station, TX 77843, USA
- Corresponding author: Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Boulevard, Houston, TX 77030. Fax: +1 713 677 7790. (R.H. Finnell)
| |
Collapse
|
14
|
Ulrich CM, Robien K, Sparks R. Pharmacogenetics and folate metabolism -- a promising direction. Pharmacogenomics 2002; 3:299-313. [PMID: 12052139 DOI: 10.1517/14622416.3.3.299] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Folate metabolism is the target of two major drug groups: folate antagonists (e.g., methotrexate) and thymidylate synthase inhibitors (for example, 5-fluorouracil). These agents are widely used in cancer chemotherapy, as treatment for rheumatoid arthritis, and for other conditions. The administration of these drugs in cancer chemotherapy can induce a state of acute folate depletion with sometimes life-threatening toxic sequelae. Recent studies suggest that polymorphisms in folate-metabolizing enzymes may modify the therapeutic effectiveness and toxicity of drugs targeting folate metabolism. This review briefly summarizes major drugs targeting the folate pathway and describes common polymorphisms in folate-metabolizing enzymes and transport proteins. Pharmacogenetic studies investigating the relevance of these polymorphisms with respect to patients' response to antifolate chemotherapeutic agents are discussed. Investigating genetic variability in folate metabolism in the framework of pharmacogenetics is a promising field. Findings to date illustrate the potential for targeting therapy based on patients' genotypes with improved outcomes and reduced toxicity.
Collapse
Affiliation(s)
- Cornelia M Ulrich
- Cancer Prevention Research Program, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, MP-900, Seattle, WA 98109-1024, USA.
| | | | | |
Collapse
|