1
|
McRae S, Pagliai FA, Mohapatra NP, Gener A, Mahmou ASA, Gunn JS, Lorca GL, Gonzalez CF. Inhibition of AcpA phosphatase activity with ascorbate attenuates Francisella tularensis intramacrophage survival. J Biol Chem 2009; 285:5171-7. [PMID: 20028980 DOI: 10.1074/jbc.m109.039511] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acid phosphatase activity in the highly infectious intracellular pathogen Francisella tularensis is directly related with the ability of these bacteria to survive inside host cells. Pharmacological inactivation of acid phosphatases could potentially help in the treatment of tularemia or even be utilized to neutralize the infection. In the present work, we report inhibitory compounds for three of the four major acid phosphatases produced by F. tularensis SCHU4: AcpA, AcpB, and AcpC. The inhibitors were identified using a catalytic screen from a library of chemicals approved for use in humans. The best results were obtained against AcpA. The two compounds identified, ascorbate (K(i) = 380 +/- 160 microM) and 2-phosphoascorbate (K(i) = 3.2 +/- 0.85 microM) inhibit AcpA in a noncompetitive, nonreversible fashion. A potential ascorbylation site in the proximity of the catalytic pocket of AcpA was identified using site-directed mutagenesis. The effects of the inhibitors identified in vitro were evaluated using bioassays determining the ability of F. tularensis to survive inside infected cells. The presence of ascorbate or 2-phosphoascorbate impaired the intramacrophage survival of F. tularensis in an AcpA-dependent manner as it was probed using knockout strains. The evidence presented herein indicated that ascorbate could be a good alternative to be used clinically to improve treatments against tularemia.
Collapse
Affiliation(s)
- Steven McRae
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32610-3610, USA
| | | | | | | | | | | | | | | |
Collapse
|
2
|
McArthur JD, West NP, Cole JN, Jungnitz H, Guzmán CA, Chin J, Lehrbach PR, Djordjevic SP, Walker MJ. An aromatic amino acid auxotrophic mutant of Bordetella bronchiseptica is attenuated and immunogenic in a mouse model of infection. FEMS Microbiol Lett 2003; 221:7-16. [PMID: 12694904 DOI: 10.1016/s0378-1097(03)00162-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have constructed an aromatic amino acid auxotrophic mutant of Bordetella bronchiseptica, harbouring mutations in aroA and trpE to investigate the use of such a strain as a live-attenuated vaccine. B. bronchiseptica aroA trpE was unable to grow in minimal medium without aromatic supplementation. Compared to the parental wild-type strain, the mutant displayed significantly reduced abilities to invade and survive within the mouse macrophage-like cell line J774A.1 in vitro and in the murine respiratory tract following experimental intranasal infection. Mice vaccinated with B. bronchiseptica aroA trpE displayed significant dose-dependent increases in B. bronchiseptica-specific antibody responses, and exhibited increases in the number of B. bronchiseptica-reactive spleen cells in lymphoproliferation assays. Immunised animals were protected against lung colonisation after challenge with the wild-type parental strain. With such a broad host range displayed by B. bronchiseptica, the attenuated strain constructed in this study may not only be used for the prevention of B. bronchiseptica-associated disease, but also for the potential delivery of heterologous antigen.
Collapse
Affiliation(s)
- Jason D McArthur
- Department of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
du Plessis EM, Theron J, Joubert L, Lotter T, Watson TG. Characterization of a phosphatase secreted by Staphylococcus aureus strain 154, a new member of the bacterial class C family of nonspecific acid phosphatases. Syst Appl Microbiol 2002; 25:21-30. [PMID: 12086184 DOI: 10.1078/0723-2020-00098] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An acid phosphatase, designated SapS, hydrolyzing p-nitrophenyl phosphate (pNPP), was identified and characterized from the culture supernatant of a Staphylococcus aureus strain isolated from vegetables. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the protein indicated an estimated molecular mass of 30 kDa. The enzyme displayed optimum activity at 40 degrees C and pH 5. Characterization of the phosphatase in a reconstitution assay showed that MgCl2 and Triton X-100, respectively, restored maximal activity, but not CaCl2 The phosphatase activity was affected by EDTA and sodium molybdate. The DNA sequence encoding SapS was cloned and sequenced. The putative acid phosphatase gene encodes a protein of 296 amino acids with a 31-residue signal peptide. Database searches revealed significant structural homology of SapS to several proteins belonging to the bacterial class C family of nonspecific acid phosphatases. Comparison of the sequences indicated that despite a low level of overall conservation between the proteins, four conserved sequence motifs could be identified.
Collapse
|
4
|
Abstract
The success of a bacterial pathogen may depend on its ability to sense and respond to different environments. This is particularly true of those pathogens whose survival depends on adaptation to different niches both within and outside the host. Members of the genus Bordetella cause infections in humans, other animals and birds. Two closely related species, B. pertussis and B. bronchiseptica, cause respiratory disease and express a similar range of virulence factors during infection, but exhibit different host ranges and responses to environmental change. B. pertussis has no known reservoir other than humans and is assumed to be transmitted directly via aerosol droplets between hosts. B. bronchiseptica, on the other hand, has the potential to survive and grow in the natural environment. Comparison of the manner in which these two organisms respond to external signals has provided important insights into the co-ordinate regulation of gene expression as a response to a changing environment. During infection, both species produce a range of virulence factors whose expression is co-ordinated by two members of the two-component family of signal transduction proteins, the bvg (bordetella virulence gene) and ris (regulator of intracellular stress response) loci. When active, the bvg locus directs the activity of a number of virulence determinants in both species whose products, such as adhesins and toxins, establish colonization of the host by the bacteria, although each organism has evolved a slightly different strategy during pathogenesis. B. pertussis, the causative agent of whooping cough, promotes an acute disease and tends to be more virulent than B. bronchiseptica which generally causes chronic and persistent asymptomatic colonization of the respiratory tract. The recently identified ris locus appears to control the expression of factors important for intracellular survival of B. bronchiseptica, but a role for this regulatory locus in B. pertussis infection has not been established. Expression of the virulence determinants controlled by the bvg and ris loci is subject to modulation by different environmental signals, such as low temperature, which act through these two-component systems. Evidence indicates that, for B. bronchiseptica, bvg-controlled determinants expressed under modulating conditions, such as motility, facilitate adaptation and survival in environments outside the host. With B. pertussis, however, there is no apparent requirement for prolonged survival outside the host and this difference is reflected in the expression of different, as yet uncharacterized, determinants as a response to modulating signals. The nature of the gene products involved and their assumed role in the life cycle of B. pertussis remains to be determined. Thus, comparative analysis of these species provides an excellent model for understanding the genetic requirements for pathogenesis of respiratory infection and adaptation to changing environments, both within and outside the host.
Collapse
Affiliation(s)
- J G Coote
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK
| |
Collapse
|
5
|
Zimna K, Medina E, Jungnitz H, Guzmán CA. Role played by the response regulator Ris in Bordetella bronchiseptica resistance to macrophage killing. FEMS Microbiol Lett 2001; 201:177-80. [PMID: 11470358 DOI: 10.1111/j.1574-6968.2001.tb10753.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Previous studies suggested that the persistence in eukaryotic cells of a Bordetella bronchiseptica mutant carrying an insertion in the locus encoding the response regulator RisAS is impaired. This suggested that ris-dependent products are required for the intracellular survival of bacteria. In this study we demonstrate that ris-regulated products play a role in B. bronchiseptica resistance against both phagosomal acidification and reactive oxygen intermediates.
Collapse
Affiliation(s)
- K Zimna
- Division of Microbiology, GBF-German Research Centre for Biotechnology, Braumschweig, Germany
| | | | | | | |
Collapse
|
6
|
Smith AM, Guzmán CA, Walker MJ. The virulence factors ofBordetella pertussis: a matter of control. FEMS Microbiol Rev 2001; 25:309-33. [PMID: 11348687 DOI: 10.1111/j.1574-6976.2001.tb00580.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bordetella pertussis is the causative agent of whooping cough, a contagious childhood respiratory disease. Increasing public concern over the safety of whole-cell vaccines led to decreased immunisation rates and a subsequent increase in the incidence of the disease. Research into the development of safer, more efficacious, less reactogenic vaccine preparations was concentrated on the production and purification of detoxified B. pertussis virulence factors. These virulence factors include adhesins such as filamentous haemagglutinin, fimbriae and pertactin, which allow B. pertussis to bind to ciliated epithelial cells in the upper respiratory tract. Once attachment is initiated, toxins produced by the bacterium enable colonisation to proceed by interfering with host clearance mechanisms. B. pertussis co-ordinately regulates the expression of virulence factors via the Bordetella virulence gene (bvg) locus, which encodes a response regulator responsible for signal-mediated activation and repression. This strict regulation mechanism allows the bacterium to express different gene subsets in different environmental niches within the host, according to the stage of disease progression.
Collapse
Affiliation(s)
- A M Smith
- Department of Biological Sciences, University of Wollongong, Wollongong. N.S.W. 2522, Australia
| | | | | |
Collapse
|
7
|
Aragon V, Kurtz S, Cianciotto NP. Legionella pneumophila major acid phosphatase and its role in intracellular infection. Infect Immun 2001; 69:177-85. [PMID: 11119504 PMCID: PMC97870 DOI: 10.1128/iai.69.1.177-185.2001] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is an intracellular pathogen of protozoa and alveolar macrophages. This bacterium contains a gene (pilD) that is involved in both type IV pilus biogenesis and type II protein secretion. We previously demonstrated that the PilD prepilin peptidase is crucial for intracellular infection by L. pneumophila and that the secreted pilD-dependent proteins include a metalloprotease, an acid phosphatase, an esterase/lipase, a phospholipase A, and a p-nitrophenyl phosphorylcholine hydrolase. Since mutants lacking type IV pili, the protease, or the phosphorylcholine hydrolase are not defective for intracellular infection, we sought to determine the significance of the secreted acid phosphatase activity. Three mutants defective in acid phosphatase activity were isolated from a population of mini-Tn10-mutagenized L. pneumophila. Supernatants as well as cell lysates from these mutants contained minimal acid phosphatase activity while possessing normal levels of other pilD-dependent exoproteins. Genetic studies indicated that the gene affected by the transposon insertions encoded a novel bacterial histidine acid phosphatase, which we designated Map for major acid phosphatase. Subsequent inhibitor studies indicated that Map, like its eukaryotic homologs, is a tartrate-sensitive acid phosphatase. The map mutants grew within macrophage-like U937 cells and Hartmannella amoebae to the same degree as did wild-type legionellae, indicating that this acid phosphatase is not essential for L. pneumophila intracellular infection. However, in the course of characterizing our new mutants, we gained evidence for a second pilD-dependent acid phosphatase activity that, unlike Map, is tartrate resistant.
Collapse
Affiliation(s)
- V Aragon
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
8
|
Schneider B, Gross R, Haas A. Phagosome acidification has opposite effects on intracellular survival of Bordetella pertussis and B. bronchiseptica. Infect Immun 2000; 68:7039-48. [PMID: 11083829 PMCID: PMC97814 DOI: 10.1128/iai.68.12.7039-7048.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2000] [Accepted: 09/26/2000] [Indexed: 11/20/2022] Open
Abstract
Bordetella pertussis is readily killed after uptake by professional phagocytes, whereas its close relative Bordetella bronchiseptica is not and can persist intracellularly for days. Phagocytosis of members of either species by a mouse macrophage cell line results in transport of the bacteria to a phagosomal compartment positive for the lysosome-associated membrane protein 1, the protease cathepsin D, and the late endosomal vacuolar proton-pumping ATPase but negative for the early endosome antigen 1 and the early endosomal transferrin receptor. In addition, we demonstrate that Bordetella-containing phagosomes rapidly acidify to pH 4.5 to 5.0. Taken together, these data demonstrate that Bordetella-containing phagosomes rapidly mature to an acidic late endosomal/lysosomal compartment. Following up on this observation, we determined that B. pertussis does not survive in bacterial growth media adjusted to a pH of 4.5, whereas this pH has only minor effects on the growth of B. bronchiseptica. Raising the intracellular pH in infected macrophages by the addition of bafilomycin A(1), ammonium chloride, or monensin increases the survival of acid-sensitive B. pertussis but, surprisingly, decreases that of acid-tolerant B. bronchiseptica. In summary, we hypothesize that the differential survival of B. pertussis and B. bronchiseptica in macrophages is, at least in part, due to the differences in their acid tolerance.
Collapse
Affiliation(s)
- B Schneider
- Lehrstuhl für Mikrobiologie, Biozentrum der Universität Würzburg, D-97074 Würzburg, Germany
| | | | | |
Collapse
|
9
|
West NP, Jungnitz H, Fitter JT, McArthur JD, Guzmán CA, Walker MJ. Role of phosphoglucomutase of Bordetella bronchiseptica in lipopolysaccharide biosynthesis and virulence. Infect Immun 2000; 68:4673-80. [PMID: 10899872 PMCID: PMC98408 DOI: 10.1128/iai.68.8.4673-4680.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphoglucomutase (PGM)-encoding gene of Bordetella bronchiseptica is required for lipopolysaccharide (LPS) biosynthesis. An insertion mutant of the wild-type B. bronchiseptica strain BB7865 which disrupted LPS biosynthesis was created and characterized (BB7865pgm). Genetic analysis of the mutated gene showed it shares high identity with PGM genes of various bacterial species and forms part of an operon which also encompasses the gene encoding phosphoglucose isomerase. Functional assays for PGM revealed that enzyme activity is expressed in both bvg-positive and bvg-negative strains of B. bronchiseptica and is substantially reduced in BB7865pgm. Complementation of the mutated PGM gene with that from BB7865 restored the wild-type condition for all phenotypes tested. The ability of the mutant BB7865pgm to survive within J774. A1 cells was significantly reduced at 2 h (40% reduction) and 24 h (56% reduction) postinfection. BB7865pgm was also significantly attenuated in its ability to survive in vivo following intranasal infection of mice, being effectively cleared from the lungs within 4 days, whereas the wild-type strain persisted at least 35 days. The activities of superoxide dismutase, urease, and acid phosphatase were unaffected in the PGM-deficient strain. In contrast, the inability to produce wild-type LPS resulted in a reduced bacterial resistance to oxidative stress and a higher susceptibility to the antimicrobial peptide cecropin P.
Collapse
Affiliation(s)
- N P West
- Department of Biological Sciences, University of Wollongong, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
10
|
Weingart CL, Weiss AA. Bordetella pertussis virulence factors affect phagocytosis by human neutrophils. Infect Immun 2000; 68:1735-9. [PMID: 10679000 PMCID: PMC97341 DOI: 10.1128/iai.68.3.1735-1739.2000] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction between human neutrophils and wild-type Bordetella pertussis or mutants expressing altered lipopolysaccharide or lacking virulence factors-pertussis toxin, adenylate cyclase toxin, dermonecrotic toxin, filamentous hemagglutinin (FHA), pertactin, or BrkA-was examined. In the absence of antibodies, the wild-type strain and the mutants, with the exception of mutants lacking FHA, attached efficiently to neutrophils. The addition of opsonizing antibodies caused a significant reduction (approximately 50%) in attachment of the wild-type strain and most of the mutants expressing FHA, suggesting that bacterium-mediated attachment is more efficient than Fc-mediated attachment. Phagocytosis was also examined. In the absence of antibodies, about 12% of the wild-type bacteria were phagocytosed. Opsonization caused a statistically significant reduction in phagocytosis (to 3%), possibly a consequence of reduced attachment. Phagocytosis of most of the mutants was similar to that of the wild type, with the exception of the mutants lacking adenylate cyclase toxin. About 70% of the adenylate cyclase toxin mutants were phagocytosed, but only in the presence of opsonizing antibody, suggesting that Fc receptor-mediated signaling may be needed for phagocytosis. These studies indicate that FHA mediates attachment of B. pertussis to neutrophils, but adenylate cyclase toxin blocks phagocytosis.
Collapse
Affiliation(s)
- C L Weingart
- Department of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio 45267-0524, USA
| | | |
Collapse
|
11
|
Lenz DH, Weingart CL, Weiss AA. Phagocytosed Bordetella pertussis fails to survive in human neutrophils. Infect Immun 2000; 68:956-9. [PMID: 10639471 PMCID: PMC97230 DOI: 10.1128/iai.68.2.956-959.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have reported that phagocytosed Bordetella pertussis survives in human neutrophils. This issue has been reexamined. Opsonized or unopsonized bacteria expressing green fluorescent protein (GFP) were incubated with adherent human neutrophils. Phagocytosis was quantified by fluorescence microscopy, and the viability of phagocytosed bacteria was determined by colony counts following treatment with polymyxin B to kill extracellular bacteria. Only 1 to 2% of the phagocytosed bacteria remained viable. Opsonization with heat-inactivated immune serum reduced the amount of attachment and phagocytosis of the bacteria but did not alter survival rates. In contrast to previous reports, these data suggest that phagocytosed B. pertussis bacteria are killed by human neutrophils.
Collapse
Affiliation(s)
- D H Lenz
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267-0524, USA
| | | | | |
Collapse
|
12
|
Forde CB, Shi X, Li J, Roberts M. Bordetella bronchiseptica-mediated cytotoxicity to macrophages is dependent on bvg-regulated factors, including pertactin. Infect Immun 1999; 67:5972-8. [PMID: 10531256 PMCID: PMC96982 DOI: 10.1128/iai.67.11.5972-5978.1999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of Bordetella bronchiseptica infection on the viability of murine macrophage-like cells and on primary porcine alveolar macrophages was investigated. The bacterium was shown to be cytotoxic for both cell types, particularly where tight cell-to-cell contacts were established. In addition, bvg mutants were poorly cytotoxic for the eukaryotic cells, while a prn mutant was significantly less toxic than wild-type bacteria. B. bronchiseptica-mediated cytotoxicity was inhibited in the presence of cytochalasin D or cycloheximide, an inhibitor of microfilament-dependent phagocytosis or de novo eukaryotic protein synthesis, respectively. The mechanism of eukaryotic cell death was examined, and cell death was found to occur primarily through a necrotic pathway, although a small proportion of the population underwent apoptosis.
Collapse
Affiliation(s)
- C B Forde
- Department of Veterinary Pathology, University of Glasgow Veterinary School, Garscube Estate, Glasgow G61 1QH, Scotland
| | | | | | | |
Collapse
|
13
|
Reilly TJ, Chance DL, Smith AL. Outer membrane lipoprotein e (P4) of Haemophilus influenzae is a novel phosphomonoesterase. J Bacteriol 1999; 181:6797-805. [PMID: 10542183 PMCID: PMC94146 DOI: 10.1128/jb.181.21.6797-6805.1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/1999] [Accepted: 08/10/1999] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae exists as a commensal of the upper respiratory tract of humans but also causes infections of contiguous structures. We describe the identification, localization, purification, and characterization of a novel, surface-localized phosphomonoesterase from a nontypeable H. influenzae strain, R2866. Sequences obtained from two CNBr-derived fragments of this protein matched lipoprotein e (P4) within the H. influenzae sequence database. Escherichia coli DH5alpha transformed with plasmids containing the H. influenzae hel gene, which encodes lipoprotein e (P4), produced high levels of a membrane-associated phosphomonoesterase. The isolated approximately 28-kDa enzyme was tartrate resistant and displayed narrow substrate specificity with the highest activity for arylphosphates, excluding 5-bromo-4-chloro-3-indolylphosphate. Optimum enzymatic activity was observed at pH 5.0 and only in the presence of divalent copper. The enzyme was inhibited by vanadate, molybdate, and EDTA but was resistant to inorganic phosphate. The association of phosphomonoesterase activity with a protein that has also been recognized as a heme transporter suggests a unique role for this unusual phosphohydrolase.
Collapse
Affiliation(s)
- T J Reilly
- Department of Molecular Microbiology and Immunology, University of Missouri Medical School, Columbia, Missouri 65212, USA
| | | | | |
Collapse
|
14
|
Jungnitz H, West NP, Walker MJ, Chhatwal GS, Guzmán CA. A second two-component regulatory system of Bordetella bronchiseptica required for bacterial resistance to oxidative stress, production of acid phosphatase, and in vivo persistence. Infect Immun 1998; 66:4640-50. [PMID: 9746560 PMCID: PMC108571 DOI: 10.1128/iai.66.10.4640-4650.1998] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Random minitransposon mutagenesis was used to identify genes involved in the survival of Bordetella bronchiseptica within eukaryotic cells. One of the mutants which exhibited a reduced ability to survive intracellularly harbored a minitransposon insertion in a locus (ris) which displays a high degree of homology to two-component regulatory systems. This system exhibited less than 25% amino acid sequence homology to the only other two-component regulatory system described in Bordetella spp., the bvg locus. A risA'-'lacZ translational fusion was constructed and integrated into the chromosome of B. bronchiseptica. Determination of beta-galactosidase activity under different environmental conditions suggested that ris is regulated independently of bvg and is optimally expressed at 37 degrees C, in the absence of Mg2+, and when bacteria are in the intracellular niche. This novel regulatory locus, present in all Bordetella spp., is required for the expression of acid phosphatase by B. bronchiseptica. Although catalase and superoxide dismutase production were unaffected, the ris mutant was more sensitive to oxidative stress than the wild-type strain. Complementation of bvg-positive and bvg-negative ris mutants with the intact ris operon incorporated as a single copy into the chromosome resulted in the reestablishment of the ability of the bacterium to produce acid phosphatase and to resist oxidative stress. Mouse colonization studies demonstrated that the ris mutant is cleared by the host much earlier than the wild-type strain, suggesting that ris-regulated products play a significant role in natural infections. The identification of a second two-component system in B. bronchiseptica highlights the complexity of the regulatory network needed for organisms with a life cycle requiring adaptation to both the external environment and a mammalian host.
Collapse
Affiliation(s)
- H Jungnitz
- Division of Microbiology, GBF-National Research Centre for Biotechnology, 38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
15
|
Merkel TJ, Stibitz S, Keith JM, Leef M, Shahin R. Contribution of regulation by the bvg locus to respiratory infection of mice by Bordetella pertussis. Infect Immun 1998; 66:4367-73. [PMID: 9712789 PMCID: PMC108527 DOI: 10.1128/iai.66.9.4367-4373.1998] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/1998] [Accepted: 06/22/1998] [Indexed: 11/20/2022] Open
Abstract
Whooping cough is an acute respiratory disease caused by the small, gram-negative bacterium Bordetella pertussis. B. pertussis expresses several factors that contribute to its ability to cause disease. These factors include surface-associated molecules, which are involved in the adherence of the organism to respiratory epithelial cells, as well as several extracellular toxins that inhibit host defenses and induce damage to host tissues. The expression of virulence factors in B. pertussis is dependent upon the bvg locus, which consists of three genes: bvgA, bvgS, and bvgR. The bvgAS genes encode a two-component regulatory system consisting of a sensor protein, BvgS, and a transcriptional activator, BvgA. Upon modification by BvgS, BvgA binds to the promoter regions of the bvg-activated genes and activates transcription. One of the bvg-activated genes, bvgR, is responsible for the regulation of the bvg-repressed genes, the functions of which are unknown. The fact that these genes are regulated by the bvg locus suggests that they play a role in the pathogenesis of the bacterium. In order to evaluate the contribution of bvg-mediated regulation to the virulence of B. pertussis and determine if expression of the bvg-repressed genes is required for the virulence of B. pertussis, we examined the ability of B. pertussis mutants, defective in their ability to regulate the expression of the bvg-activated and/or the bvg-repressed genes, to cause disease in the mouse aerosol challenge model. Our results indicate that the bvgR-mediated regulation of gene expression contributes to respiratory infection of mice.
Collapse
Affiliation(s)
- T J Merkel
- National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
16
|
Malke H. Cytoplasmic membrane lipoprotein LppC of Streptococcus equisimilis functions as an acid phosphatase. Appl Environ Microbiol 1998; 64:2439-42. [PMID: 9647812 PMCID: PMC106408 DOI: 10.1128/aem.64.7.2439-2442.1998] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The function of the streptococcal cytoplasmic membrane lipoprotein, LppC, was identified with isogenic Streptococcus equisimilis H46A and Escherichia coli JM109 strain pairs differing in whether they contained [H46A and JM109(pLPP2)] or lacked (H46A lppC::pLPP10 and JM109) the functional lppC gene for comparative phosphatase determinations under acidic conditions. lppC-directed acid phosphatase activity was demonstrated zymographically and by specific enzymatic activity assays, with whole cells or cell membrane preparations as enzyme sources. LppC acid phosphatase showed optimum activity at pH 5, and the enzyme activity was unaffected by Triton X-100, L-(+)-tartaric acid, or EDTA. Database searches revealed significant structural homology of LppC to the Streptococcus pyogenes LppA, Flavobacterium meningosepticum OplA, Helicobacter pylori HP1285, and Haemophilus influenzae Hel [e (P4)] proteins. These results suggest a possible function for these proteins and establish a novel function of streptococcal cell membrane lipoproteins.
Collapse
Affiliation(s)
- H Malke
- Institute for Molecular Biology, Jena University, Germany.
| |
Collapse
|
17
|
Forde CB, Parton R, Coote JG. Bioluminescence as a reporter of intracellular survival of Bordetella bronchiseptica in murine phagocytes. Infect Immun 1998; 66:3198-207. [PMID: 9632586 PMCID: PMC108333 DOI: 10.1128/iai.66.7.3198-3207.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The uptake and persistence of Bordetella bronchiseptica was characterized in murine phagocytes by using a novel bioluminescence-based reporter system. A mini-Tn5 promoter probe carrying the intact lux operon from the terrestrial bacterium Photorhabdus luminescens which allowed measurement of light output without the addition of exogenous substrate was constructed. It was used to create a pool of bioluminescent fusion strains of B. bronchiseptica. The internalization and persistence in murine macrophages of a constitutive bioluminescent strain of B. bronchiseptica was monitored by luminometry and by fluorescence and electron microscopy. The number of bacteria internalized, in a microfilament-dependent process, by a mouse macrophage-like cell line after 2 h was approximately 1% of the inoculum for several different multiplicities of infection (MOI). At an MOI of <500:1 (bacteria to macrophages), viable numbers of intracellular bacteria declined over a 4-day period. However, at an MOI of >/=500:1, long-term survival was enhanced, with viable bacteria recovered up to 4 days postinfection with little decline in numbers, indicating that a critical population size may have been essential for intracellular persistence. No evidence of macrophage killing by intracellular bacteria was detected over the 4-day period. Intracellular bioluminescent B. bronchiseptica organisms in mouse peritoneal cells were detected at 24 and 48 h after intraperitoneal injection of mice. Bioluminescence is shown to act as a convenient real-time technique for monitoring of intracellular survival of B. bronchiseptica in vitro and may provide a suitable means for examining the role of long-term intracellular survival of the bacterium in the host.
Collapse
Affiliation(s)
- C B Forde
- Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8QQ, Scotland
| | | | | |
Collapse
|