1
|
Akgul G, Erturk A, Turkoz M, Turan T, Ichinose A, Nagatake T, Ahmed K. Role of Lipooligosaccharide in the Attachment ofMoraxella catarrhalisto Human Pharyngeal Epithelial Cells. Microbiol Immunol 2013; 49:931-5. [PMID: 16237271 DOI: 10.1111/j.1348-0421.2005.tb03685.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The goal of this study was to determine the role of lipooligosaccharide in the attachment of Moraxella catarrhalis to human pharyngeal epithelial cells. Strain 2951 and its P(k) mutant strain 2951 galE were used in this study. This study suggests that the P(k) epitope of LOS is not an adhesin for M. catarrhalis, but plays a crucial role by its surface charge in the initial stage of attachment.
Collapse
Affiliation(s)
- Gulcan Akgul
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
2
|
de Vries SPW, Eleveld MJ, Hermans PWM, Bootsma HJ. Characterization of the molecular interplay between Moraxella catarrhalis and human respiratory tract epithelial cells. PLoS One 2013; 8:e72193. [PMID: 23936538 PMCID: PMC3735583 DOI: 10.1371/journal.pone.0072193] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/05/2013] [Indexed: 12/31/2022] Open
Abstract
Moraxella catarrhalis is a mucosal pathogen that causes childhood otitis media and exacerbations of chronic obstructive pulmonary disease in adults. During the course of infection, M. catarrhalis needs to adhere to epithelial cells of different host niches such as the nasopharynx and lungs, and consequently, efficient adhesion to epithelial cells is considered an important virulence trait of M. catarrhalis. By using Tn-seq, a genome-wide negative selection screenings technology, we identified 15 genes potentially required for adherence of M. catarrhalis BBH18 to pharyngeal epithelial Detroit 562 and lung epithelial A549 cells. Validation with directed deletion mutants confirmed the importance of aroA (3-phosphoshikimate 1-carboxyvinyl-transferase), ecnAB (entericidin EcnAB), lgt1 (glucosyltransferase), and MCR_1483 (outer membrane lipoprotein) for cellular adherence, with ΔMCR_1483 being most severely attenuated in adherence to both cell lines. Expression profiling of M. catarrhalis BBH18 during adherence to Detroit 562 cells showed increased expression of 34 genes in cell-attached versus planktonic bacteria, among which ABC transporters for molybdate and sulfate, while reduced expression of 16 genes was observed. Notably, neither the newly identified genes affecting adhesion nor known adhesion genes were differentially expressed during adhesion, but appeared to be constitutively expressed at a high level. Profiling of the transcriptional response of Detroit 562 cells upon adherence of M. catarrhalis BBH18 showed induction of a panel of pro-inflammatory genes as well as genes involved in the prevention of damage of the epithelial barrier. In conclusion, this study provides new insight into the molecular interplay between M. catarrhalis and host epithelial cells during the process of adherence.
Collapse
Affiliation(s)
- Stefan P. W. de Vries
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marc J. Eleveld
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter W. M. Hermans
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hester J. Bootsma
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
3
|
Su YC, Singh B, Riesbeck K. Moraxella catarrhalis: from interactions with the host immune system to vaccine development. Future Microbiol 2013; 7:1073-100. [PMID: 22953708 DOI: 10.2217/fmb.12.80] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Moraxella catarrhalis is a human-restricted commensal that over the last two decades has developed into an emerging respiratory tract pathogen. The bacterial species is equipped with various adhesins to facilitate its colonization. Successful evasion of the human immune system is a prerequisite for Moraxella infection. This strategy involves induction of an excessive proinflammatory response, intervention of granulocyte recruitment to the infection site, activation of selected pattern recognition receptors and cellular adhesion molecules to counteract the host bacteriolytic attack, as well as, finally, reprogramming of antigen presenting cells. Host immunomodulator molecules are also exploited by Moraxella to aid in resistance against complement killing and host bactericidal molecules. Thus, breaking the basis of Moraxella immune evasion mechanisms is fundamental for future invention of effective therapy in controlling Moraxella infection.
Collapse
Affiliation(s)
- Yu-Ching Su
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | |
Collapse
|
4
|
Kawas LH, Benoist CC, Harding JW, Wayman GA, Abu-Lail NI. Nanoscale mapping of the Met receptor on hippocampal neurons by AFM and confocal microscopy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 9:428-38. [PMID: 22960190 DOI: 10.1016/j.nano.2012.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 10/27/2022]
Abstract
UNLABELLED Hepatocyte growth factor (HGF), a neurotrophic protein, acting through its tyrosine kinase receptor, Met, facilitates learning and synaptic plasticity. In concert with the role of the HGF/Met system in synaptic plasticity, we demonstrate that Met is localized to brain regions which undergo extensive synaptic remodeling. We demonstrate that Met activation results in an increase in dendritic spine density and functional synapses. Based on these observations, we hypothesized that Met should be associated with post-synaptic elements found on dendritic spines. Thus, the goal of this study was to determine the sub-cellular localization of Met on hippocampal neurons. Using an atomic force microscopy tip decorated with a specific Met antibody, the location of Met was mapped to different cellular compartments of hippocampal pyramidal neurons. Our results indicated that multimeric activated Met was found to be concentrated in the dendritic compartment while the inactivated monomeric form of Met was prominent on the soma. FROM THE CLINICAL EDITOR The goal of this study was to determine the sub-cellular localization of Met on hippocampal neurons using nanotechnology-based techniques, using an atomic force microscopy tip decorated with a specific Met antibody. The authors demonstrate that multimeric activated Met was found to be concentrated in the dendritic compartment while the inactivated monomeric form of Met was prominent in the soma of hippocampal pyramidal neurons.
Collapse
Affiliation(s)
- Leen H Kawas
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, Washington, USA
| | | | | | | | | |
Collapse
|
5
|
Ishibashi Y, Inouye Y, Taniguchi A. Expression and Role of Sugar Chains on Airway Mucus in Induction and Exacerbation of Airway Inflammation. YAKUGAKU ZASSHI 2012; 132:699-704. [DOI: 10.1248/yakushi.132.699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuji Ishibashi
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd
- School of Pharmaceutical Sciences Toho University
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
| | | | - Akiyoshi Taniguchi
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
| |
Collapse
|
6
|
Park BJ, Abu-Lail NI. Atomic force microscopy investigations of heterogeneities in the adhesion energies measured between pathogenic and non-pathogenic Listeria species and silicon nitride as they correlate to virulence and adherence. BIOFOULING 2011; 27:543-59. [PMID: 21623482 PMCID: PMC3172993 DOI: 10.1080/08927014.2011.584129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Atomic force microscopy (AFM) was used to probe heterogeneities in adhesion energies measured between pathogenic and non-pathogenic species of Listeria and silicon nitride in water at four levels. Adhesion energies were quantified on individual bacterial cells (cell level), bacterial cells that belonged to an individual Listeria strain but varied in their cultures (strain level), bacterial cells that belonged to an individual Listeria species but varied in their strain type (species level) and on bacterial cells that belonged to the Listeria genus but varied in their species type (genus level). To quantify heterogeneities in the adhesion energies, a heterogeneity index (HI) was defined based on quantified standard errors of mean. At the cell level, spatial variations in the adhesion energies were not observed. For the strain, species, and genus levels, the HI increased with increased adhesion energies. At the species level, the HI increased with strain virulence.
Collapse
Affiliation(s)
- Bong-Jae Park
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-2710, USA
| | - Nehal I. Abu-Lail
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-2710, USA
| |
Collapse
|
7
|
Matsumoto K. [Expectations on otorhinolaryngology by other medical specialties--expectations by clinical researchers of internal medicine]. NIHON JIBIINKOKA GAKKAI KAIHO 2011; 114:60-65. [PMID: 21598754 DOI: 10.3950/jibiinkoka.114.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
8
|
Ukuku DO, Geveke DJ, Cooke P, Zhang HQ. Membrane damage and viability loss of Escherichia coli K-12 in apple juice treated with radio frequency electric field. J Food Prot 2008; 71:684-90. [PMID: 18468020 DOI: 10.4315/0362-028x-71.4.684] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The need for a nonthermal intervention technology that can achieve microbial safety without altering nutritional quality of liquid foods led to the development of a radio frequency electric fields (RFEF) process. In order to understand the mechanism of inactivation of bacteria by RFEF, apple juice purchased from a wholesale distributor was inoculated with Escherichia coli K-12 at 7.8 log CFU/ml and then treated with RFEF. The inoculated apple juice was passed through an RFEF chamber operated at 20 kHz, 15 kV/cm for 170 micros at a flow rate of 540 ml/min. Treatment condition was periodically adjusted to achieve outlet temperatures of 40, 45, 50, 55, and 60 degrees C. Samples at each outlet temperature were plated (0.1 ml) and the number of CFU per milliliter determined on nonselective and selective agar media was used to calculate the viability loss. Bacterial inactivation and viability loss occurred at all temperatures tested with 55 degrees C treatment, leading to 4-log reductions. No significant effect was observed on bacterial population in control samples treated at 55 degrees C with a low-RFEF (0.15 kV/cm) field strength. These observations suggest that the 4-log reduction in samples treated at 15 kV/cm was entirely due to nonthermal effect. RFEF treatment resulted in membrane damage of the bacteria, leading to the efflux of intracellular ATP and UV-absorbing materials. Populations of injured bacteria recovered immediately (<30 min) from the treated apple juice averaged 0.43 log and were below detection after 1 h of RFEF treatment and determination using selective plates (tryptic soy agar containing 5% sodium chloride). The results of this study suggest that mechanism of inactivation of RFEF is by disruption of the bacterial surface structure leading to the damage and leakage of intracellular biological active compounds.
Collapse
Affiliation(s)
- Dike O Ukuku
- Food Safety Intervention Technologies Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA.
| | | | | | | |
Collapse
|
9
|
Cortez C, Tomaskovic-Crook E, Johnston APR, Scott AM, Nice EC, Heath JK, Caruso F. Influence of size, surface, cell line, and kinetic properties on the specific binding of A33 antigen-targeted multilayered particles and capsules to colorectal cancer cells. ACS NANO 2007; 1:93-102. [PMID: 19206525 DOI: 10.1021/nn700060m] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
There has been increased interest in the use of polymer capsules formed by the layer-by-layer (LbL) technique as therapeutic carriers to cancer cells due to their versatility and ease of surface modification. We have investigated the influence of size, surface properties, cell line, and kinetic parameters such as dosage (particle concentration) and incubation time on the specific binding of humanized A33 monoclonal antibody (huA33 mAb)-coated LbL particles and capsules to colorectal cancer cells. HuA33 mAb binds to the A33 antigen present on almost all colorectal cancer cells and has demonstrated great promise in clinical trials as an immunotherapeutic agent for cancer therapy. Flow cytometry experiments showed the cell binding specificity of huA33 mAb-coated particles to be size-dependent, with the optimal size for enhanced selectivity at approximately 500 nm. The specific binding was improved by increasing the dosage of particles incubated with the cells. The level of specific versus nonspecific binding was compared for particles terminated with various polyelectrolytes to examine the surface dependency of antibody attachment and subsequent cell binding ability. The specific binding of huA33 mAb-coated particles is also reported for two colorectal cancer cell lines, with an enhanced binding ratio between 4 and 10 obtained for the huA33 mAb-functionalized particles. This investigation aims to improve the level of specific targeting of LbL particles, which is important in targeted drug and gene delivery applications.
Collapse
Affiliation(s)
- Christina Cortez
- Centre for Nanoscience and Nanotechnology, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
10
|
Verduin CM, Hol C, Fleer A, van Dijk H, van Belkum A. Moraxella catarrhalis: from emerging to established pathogen. Clin Microbiol Rev 2002; 15:125-44. [PMID: 11781271 PMCID: PMC118065 DOI: 10.1128/cmr.15.1.125-144.2002] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis (formerly known as Branhamella catarrhalis) has emerged as a significant bacterial pathogen of humans over the past two decades. During this period, microbiological and molecular diagnostic techniques have been developed and improved for M. catarrhalis, allowing the adequate determination and taxonomic positioning of this pathogen. Over the same period, studies have revealed its involvement in respiratory (e.g., sinusitis, otitis media, bronchitis, and pneumonia) and ocular infections in children and in laryngitis, bronchitis, and pneumonia in adults. The development of (molecular) epidemiological tools has enabled the national and international distribution of M. catarrhalis strains to be established, and has allowed the monitoring of nosocomial infections and the dynamics of carriage. Indeed, such monitoring has revealed an increasing number of B-lactamase-positive M. catarrhalis isolates (now well above 90%), underscoring the pathogenic potential of this organism. Although a number of putative M. catarrhalis virulence factors have been identified and described in detail, their relationship to actual bacterial adhesion, invasion, complement resistance, etc. (and ultimately their role in infection and immunity), has been established in a only few cases. In the past 10 years, various animal models for the study of M. catarrhalis pathogenicity have been described, although not all of these models are equally suitable for the study of human infection. Techniques involving the molecular manipulation of M. catarrhalis genes and antigens are also advancing our knowledge of the host response to and pathogenesis of this bacterial species in humans, as well as providing insights into possible vaccine candidates. This review aims to outline our current knowledge of M. catarrhalis, an organism that has evolved from an emerging to a well-established human pathogen.
Collapse
Affiliation(s)
- Cees M Verduin
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center Rotterdam EMCR, 3015 GD Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
11
|
Alegría AE, Santiago G, Lópes M, Rosario BI, Cordones E. Role of membrane charge and semiquinone structure on naphthosemiquinone derivatives and 1,4-benzosemiquinone disproportionation and membrane-buffer distribution coefficients. Free Radic Res 2001; 35:529-41. [PMID: 11767411 DOI: 10.1080/10715760100301541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Semiquinone membrane/buffer partition coefficients have been determined for 1,2-naphthosemiquinone (ONQ.-), 1,4-naphthosemiquinone (NQ.-) and two of its hydroxylated derivatives, 5,8-dihydroxy-1,4-naphthosemiquinone (NZQ.-) and 5-hydroxy-1,4-naphthosemiquinone (JQ.-) as a function of membrane charge in multilamellar vesicles of phosphatidylcholine (PC) and equimolar mixtures of this lipid and phosphatidic acid (PC:PA) and cetyltrimethylammonium bromide (PC:CTAB) at physiological pH with the exception of values corresponding to PC:PA mixtures which were obtained at pH 9. These coefficients follow the order PC:PA < PC < PC:CTAB in agreement with the negative charge of the semiquinones. The disproportionation equilibria of the naphthosemiquinone derivatives are shifted to the semiquinone in the presence of neutral and positive membranes, being more pronounced in the latter. However, very low partition coefficients as well as small shifts in the semiquinone disproportionation equilibrium were observed for ONQ.- as compared to the other semiquinones. No partition of 1,4-benzosemiquinone (BQ.-) into the lipid phase was detected for either charged or neutral lipid membranes. The presence of lipid membranes decreases the BQ.- equilibrium concentration in the presence of all the types of membranes considered here.
Collapse
Affiliation(s)
- A E Alegría
- Department of Chemistry, University of Puerto Rico at Humacao, CUH Station, Humacao, PR 00791, Puerto Rico.
| | | | | | | | | |
Collapse
|
12
|
Tiller JC, Bonner G, Pan LC, Klibanov AM. Improving biomaterial properties of collagen films by chemical modification. Biotechnol Bioeng 2001; 73:246-52. [PMID: 11257607 DOI: 10.1002/bit.1057] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Films of bovine collagen were chemically modified with the goal of improving their biomaterial properties. The modified films were investigated with respect to their affinity to fibroblast and endothelial cells, as well as their antibacterial properties tested by adhesion of Staphylococcus aureus. Modifications that only change the net charge of collagen, such as acetylation, succinylation, and treatment with glutaraldehyde (all increase the negative charge), and amination with ethylenediamine (EDA), N,N-dimethyl-EDA (DMEDA), or butylamine (all increase the positive charge), did not dramatically alter the mammalian cell attachment to the film. In contrast, derivatization of collagen using methoxypoly(ethylene glycol) (PEG) diminished the attachment of fibroblasts by 98 +/- 1% and of endothelial cells by more than 99% compared to unmodified collagen. Moreover, the rate of growth of fibroblasts dropped by 97 +/- 1% and that of endothelial cells by 88 +/- 3% as a result of PEGylation of collagen. Adhesion of S. aureus cells also plummeted by 93 +/- 2% as a result of this PEGylation. With these antifouling properties, PEG-collagen may be a promising coating material for coronary stents. Subsequent derivatization of PEG-collagen with EDA or DMEDA abolished its mammalian cell-repelling ability, whereas bacterial cell repulsion was partially retained: for example, DMEDA-modified PEG-collagen exhibits up to a 5-fold lower bacterial adhesion than collagen. It is worth noting that a material that allows mammalian cell attachment but reduces bacterial adhesion could be useful as an implant or coating.
Collapse
Affiliation(s)
- J C Tiller
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
13
|
Ndour CT, Ahmed K, Nakagawa T, Nakano Y, Ichinose A, Tarhan G, Aikawa M, Nagatake T. Modulating effects of mucoregulating drugs on the attachment of Haemophilus influenzae. Microb Pathog 2001; 30:121-7. [PMID: 11273737 DOI: 10.1006/mpat.2000.0417] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Non-typable Haemophilus influenzae (NTHI) is one of the three major pathogens implicated in human respiratory infections. The ability to attach with pharyngeal epithelial cells is an important factor for infection and virulence. In the present study we describe the effects of two mucoregulating drugs, S-carboxymethylcysteine (S-CMC) and ambroxol, on the attachment of NTHI to pharyngeal epithelial cells. There was a significant (P < 0.0001, < 0.001 and <0.01) decrease of attachment (8.8 +/ 2.4, 9.2+/-2.5 and 15.4 +/- 5.7 bactreria/cell) compared with the control (17.5 +/- 2.9, 15.5 +/- 3.1 and 18.8 +/- 6.8 bacteria/cell) after cells were treated wth S-CMC at a dose of 100, 10 and 1 microg/ml. After attachment assay, cells treated with S-CMC (100 microg/ml) showed a significant decrease (P < 0.01) of attached bacteria (3.1 +/- 0.8 bacteria/cell) compared with the control (5.9 +/- 1.8 bacteria/cell). Treatment of cells with ambroxol did not influence bacterial attachment. By scanning electron microscopic observation it was found that NTHI attaches to the surface elevations (microplicae) of human pharyngeal epithelial cells. Atomic force microscopic observation revealed that the surface potential of microplicae decreased significantly in cells treated with S-CMC compared with the untreated control cells. As bacteria with negative surface charge attach to the positively charged domain, i.e. microplicae of human pharyngeal epithelial cells, this study suggests that the decrease of attachment of NTHI with epithelial cells after treatment with S-CMC was possibly due to the decrease of surface charge. This study suggests that S-CMC decreases the episodes of respiratory infections in patients with respiratory diseases both by inhibiting the attachment of bacteria to the upper respiratory tract, and by detaching the adherent one.
Collapse
Affiliation(s)
- C T Ndour
- Department of Internal Medicine, Nagasaki University, Nagasaki, 852-8102, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hu WG, Chen J, McMichael JC, Gu XX. Functional characteristics of a protective monoclonal antibody against serotype A and C lipooligosaccharides from Moraxella catarrhalis. Infect Immun 2001; 69:1358-63. [PMID: 11179299 PMCID: PMC98028 DOI: 10.1128/iai.69.3.1358-1363.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A monoclonal antibody (MAb), designated MAb 8E7 (immunoglobulin G3), specific for Moraxella catarrhalis lipooligosaccharide (LOS) was evaluated for its functional activity in vitro and in a mouse model of colonization. Enzyme-linked immunosorbent assay (ELISA) demonstrated that the MAb 8E7 could be prepared to a high titer against LOS of the homologous strain 035E, and that it had bactericidal activity. MAb 8E7 reacted with M. catarrhalis serotype A and C LOSs but not serotype B LOS, as measured by ELISA and Western blotting. On the basis of published structures of LOSs, this suggests that the epitope recognized by MAb 8E7 is directed to a common sequence of either alpha-GlcNAc-(1-->2)-beta-Glc-(1--> at the branch substituting position 4 of the trisubstituted Glc residue or a terminal tetrasaccharide alpha-Gal-(1-->4)-beta-Gal-(1-->4)-alpha-Glc-(1-->2)-beta-Glc-(1--> at the branch substituting position 6 of the trisubstituted Glc residue. In a whole-cell ELISA, MAb 8E7 reacted with 70% of the 30 wild-type strains and clinical isolates tested. Immuno-electron microscopy demonstrated that MAb 8E7 reacted with a cell surface-exposed epitope of LOS on strain O35E. MAb 8E7 inhibited the adherence of strain O35E to Chang conjunctival epithelial cells by 90%. Passive immunization with MAb 8E7 could significantly enhance the clearance of strain O35E from mouse lungs in an aerosol challenge mouse model. This enhanced bacterial clearance was inhibited when MAb 8E7 was absorbed by M. catarrhalis serotype A LOS, indicating that the M. catarrhalis LOS-directed antibody may play a major role in the enhancement of M. catarrhalis clearance from lungs. These data suggest that MAb 8E7, which recognizes surface-exposed LOS of M. catarrhalis, is a protective antibody against M. catarrhalis.
Collapse
Affiliation(s)
- W G Hu
- Laboratory of Immunology, National Institute on Deafness and Other Communication Disorders, Rockville, Maryland 20850, USA
| | | | | | | |
Collapse
|