1
|
Matsuo Y. The Adenine/Thymine Deleterious Selection Model for GC Content Evolution at the Third Codon Position of the Histone Genes in Drosophila. Genes (Basel) 2021; 12:721. [PMID: 34065869 PMCID: PMC8150595 DOI: 10.3390/genes12050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/02/2022] Open
Abstract
The evolution of the GC (guanine cytosine) content at the third codon position of the histone genes (H1, H2A, H2B, H3, H4, H2AvD, H3.3A, H3.3B, and H4r) in 12 or more Drosophila species is reviewed. For explaining the evolution of the GC content at the third codon position of the genes, a model assuming selection with a deleterious effect for adenine/thymine and a size effect is presented. The applicability of the model to whole-genome genes is also discussed.
Collapse
Affiliation(s)
- Yoshinori Matsuo
- Division of Science and Technology, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| |
Collapse
|
2
|
Nakashima Y, Higashiyama A, Ushimaru A, Nagoda N, Matsuo Y. Evolution of GC content in the histone gene repeating units from Drosophila lutescens, D. takahashii and D. pseudoobscura. Genes Genet Syst 2016; 91:27-36. [PMID: 27021916 DOI: 10.1266/ggs.15-00018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A subset of histone genes (H1, H2A, H2B and H4), which are encoded along with H3 within repeating units, were analyzed in Drosophila lutescens, D. takahashii and D. pseudoobscura to investigate the evolutionary mechanisms influencing this multigene family and its GC content. Nucleotide divergence among species was more marked in the less functional regions. A strong inverse relationship was observed between the extent of evolutionary divergence and GC content within the repeating units; this finding indicated that the functional constraint on a region must be associated with both divergence and GC content. The GC content at 3(rd) codon positions in the histone genes from D. lutescens and D. takahashii was higher than that from D. melanogaster, while that from D. pseudoobscura was similar. These evolutionary patterns were similar to those of H3 gene regions. Based on these findings, we propose that the evolutionary mechanisms governing nucleotide content at 3(rd) codon positions tend to eliminate A and T nucleotides more frequently than G and C nucleotides. These changes might be the consequence of negative selection and would result in GC-rich 3(rd) codon positions. In addition, interspecific differences in GC content, which exhibited the same pattern for all histone genes, could be explained by different selection efficiencies that result from changes in population size.
Collapse
Affiliation(s)
- Yuko Nakashima
- Laboratory of Adaptive Evolution, Institute of Socio-Arts and Sciences, Tokushima University
| | | | | | | | | |
Collapse
|
3
|
Seetharam A, Stuart GW. Whole genome phylogenies for multiple Drosophila species. BMC Res Notes 2012; 5:670. [PMID: 23210901 PMCID: PMC3531268 DOI: 10.1186/1756-0500-5-670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/27/2012] [Indexed: 11/23/2022] Open
Abstract
Background Reconstructing the evolutionary history of organisms using traditional phylogenetic methods may suffer from inaccurate sequence alignment. An alternative approach, particularly effective when whole genome sequences are available, is to employ methods that don’t use explicit sequence alignments. We extend a novel phylogenetic method based on Singular Value Decomposition (SVD) to reconstruct the phylogeny of 12 sequenced Drosophila species. SVD analysis provides accurate comparisons for a high fraction of sequences within whole genomes without the prior identification of orthologs or homologous sites. With this method all protein sequences are converted to peptide frequency vectors within a matrix that is decomposed to provide simplified vector representations for each protein of the genome in a reduced dimensional space. These vectors are summed together to provide a vector representation for each species, and the angle between these vectors provides distance measures that are used to construct species trees. Results An unfiltered whole genome analysis (193,622 predicted proteins) strongly supports the currently accepted phylogeny for 12 Drosophila species at higher dimensions except for the generally accepted but difficult to discern sister relationship between D. erecta and D. yakuba. Also, in accordance with previous studies, many sequences appear to support alternative phylogenies. In this case, we observed grouping of D. erecta with D. sechellia when approximately 55% to 95% of the proteins were removed using a filter based on projection values or by reducing resolution by using fewer dimensions. Similar results were obtained when just the melanogaster subgroup was analyzed. Conclusions These results indicate that using our novel phylogenetic method, it is possible to consult and interpret all predicted protein sequences within multiple whole genomes to produce accurate phylogenetic estimations of relatedness between Drosophila species. Furthermore, protein filtering can be effectively applied to reduce incongruence in the dataset as well as to generate alternative phylogenies.
Collapse
Affiliation(s)
- Arun Seetharam
- Department of Biology, Indiana State University, Terre Haute, Indiana 47809, USA
| | | |
Collapse
|
4
|
Roehrdanz R, Heilmann L, Senechal P, Sears S, Evenson P. Histone and ribosomal RNA repetitive gene clusters of the boll weevil are linked in a tandem array. INSECT MOLECULAR BIOLOGY 2010; 19:463-471. [PMID: 20456508 DOI: 10.1111/j.1365-2583.2010.01006.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Histones are the major protein component of chromatin structure. The histone family is made up of a quintet of proteins, four core histones (H2A, H2B, H3 & H4) and the linker histones (H1). Spacers are found between the coding regions. Among insects this quintet of genes is usually clustered and the clusters are tandemly repeated. Ribosomal DNA contains a cluster of the rRNA sequences 18S, 5.8S and 28S. The rRNA genes are separated by the spacers ITS1, ITS2 and IGS. This cluster is also tandemly repeated. We found that the ribosomal RNA repeat unit of at least two species of Anthonomine weevils, Anthonomus grandis and Anthonomus texanus (Coleoptera: Curculionidae), is interspersed with a block containing the histone gene quintet. The histone genes are situated between the rRNA 18S and 28S genes in what is known as the intergenic spacer region (IGS). The complete reiterated Anthonomus grandis histone-ribosomal sequence is 16,248 bp.
Collapse
Affiliation(s)
- R Roehrdanz
- Biosciences Research Laboratory, Red River Valley Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Fargo, ND 58105, USA.
| | | | | | | | | |
Collapse
|
5
|
Klingenberg CP, Gidaszewski NA. Testing and Quantifying Phylogenetic Signals and Homoplasy in Morphometric Data. Syst Biol 2010; 59:245-61. [DOI: 10.1093/sysbio/syp106] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christian Peter Klingenberg
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Nelly A. Gidaszewski
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
- Present address: Département Systématique et Evolution, Muséum National d'Histoire Naturelle, UMR CNRS 7205, 45 rue Buffon, 75005 Paris, France; E-mail:
| |
Collapse
|
6
|
GLOVER RH, COLLINS DW, WALSH K, BOONHAM N. Assessment of loci for DNA barcoding in the genus
Thrips
(Thysanoptera:Thripidae). Mol Ecol Resour 2009; 10:51-9. [DOI: 10.1111/j.1755-0998.2009.02723.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- R. H. GLOVER
- Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK
| | - D. W. COLLINS
- Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK
| | - K. WALSH
- Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK
| | - N. BOONHAM
- Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK
| |
Collapse
|
7
|
Pollard DA, Iyer VN, Moses AM, Eisen MB. Widespread discordance of gene trees with species tree in Drosophila: evidence for incomplete lineage sorting. PLoS Genet 2006; 2:e173. [PMID: 17132051 PMCID: PMC1626107 DOI: 10.1371/journal.pgen.0020173] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 08/28/2006] [Indexed: 11/19/2022] Open
Abstract
The phylogenetic relationship of the now fully sequenced species Drosophila erecta and D. yakuba with respect to the D. melanogaster species complex has been a subject of controversy. All three possible groupings of the species have been reported in the past, though recent multi-gene studies suggest that D. erecta and D. yakuba are sister species. Using the whole genomes of each of these species as well as the four other fully sequenced species in the subgenus Sophophora, we set out to investigate the placement of D. erecta and D. yakuba in the D. melanogaster species group and to understand the cause of the past incongruence. Though we find that the phylogeny grouping D. erecta and D. yakuba together is the best supported, we also find widespread incongruence in nucleotide and amino acid substitutions, insertions and deletions, and gene trees. The time inferred to span the two key speciation events is short enough that under the coalescent model, the incongruence could be the result of incomplete lineage sorting. Consistent with the lineage-sorting hypothesis, substitutions supporting the same tree were spatially clustered. Support for the different trees was found to be linked to recombination such that adjacent genes support the same tree most often in regions of low recombination and substitutions supporting the same tree are most enriched roughly on the same scale as linkage disequilibrium, also consistent with lineage sorting. The incongruence was found to be statistically significant and robust to model and species choice. No systematic biases were found. We conclude that phylogenetic incongruence in the D. melanogaster species complex is the result, at least in part, of incomplete lineage sorting. Incomplete lineage sorting will likely cause phylogenetic incongruence in many comparative genomics datasets. Methods to infer the correct species tree, the history of every base in the genome, and comparative methods that control for and/or utilize this information will be valuable advancements for the field of comparative genomics. To take full advantage of the growing number of genome sequences from different organisms, it is necessary to understand the evolutionary relationships (phylogeny) between organisms. Unfortunately, phylogenies inferred from individual genes often conflict, reflecting either poor inferences or real variation in the history of genes. In this study, the authors examine relationships within the Drosophila melanogaster species subgroup, a group of flies with three fully sequenced species in which phylogeny has been a source of controversy. Although the bulk of the data support a phylogeny with Drosophila melanogaster as an outgroup to sister species Drosophila erecta and Drosophila yakuba, large portions of their genes support alternative phylogenies. According to the authors, the most plausible explanation for these observations is that polymorphisms in the ancestral population were maintained during the two rapid speciation events that led to these species. Subsequent to speciation, polymorphisms were randomly fixed in each species, and in some cases non-sister species fixed the same ancestral polymorphisms, while sister species did not. In these cases the genes are correctly inferred to have conflicting phylogenies. The authors note that rapid speciation events will often lead to such conflict, which needs to be accounted for in evolutionary analyses.
Collapse
Affiliation(s)
- Daniel A Pollard
- Graduate Group in Biophysics, University of California Berkeley, Berkeley, California, United States of America
| | - Venky N Iyer
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Alan M Moses
- Graduate Group in Biophysics, University of California Berkeley, Berkeley, California, United States of America
| | - Michael B Eisen
- Graduate Group in Biophysics, University of California Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Department of Genome Sciences, Genomics Division, Ernest Orlando Lawrence Berkeley National Lab, Berkeley, California, United States of America
- Center for Integrative Genomics, University of California Berkeley, Berkeley, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Nagoda N, Fukuda A, Nakashima Y, Matsuo Y. Molecular characterization and evolution of the repeating units of histone genes in Drosophila americana: coexistence of quartet and quintet units in a genome. INSECT MOLECULAR BIOLOGY 2005; 14:713-7. [PMID: 16313572 DOI: 10.1111/j.1365-2583.2005.00603.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Quintet and quartet repeating units of the histone genes in Drosophila americana were cloned and characterized. Nucleotide sequence analysis of the units showed that a 3175 bp unit contained the core histone genes but lacked the H1 gene ('quartet unit') while a 5025 bp unit contained all five histone genes ('quintet unit'). Comparative analysis suggested that these repeating units diverged before the separation of D. americana and D. virilis. Multiple forms of H1 genes, differing by 5.8% of amino acids, were found in D. americana. The genomic organization of the histone gene family in D. americana was found to be very similar to that of D. virilis.
Collapse
Affiliation(s)
- N Nagoda
- Laboratory of Adaptive Evolution, Faculty of Integrated Arts and Sciences, The University of Tokushima, Tokushima, Japan
| | | | | | | |
Collapse
|
9
|
Kakita M, Shimizu T, Emoto M, Nagai M, Takeguchi M, Hosono Y, Kume N, Ozawa T, Ueda M, Bhuiyan MSI, Matsuo Y. Divergence and heterogeneity of the histone gene repeating units in the Drosophila melanogaster species subgroup. Genes Genet Syst 2004; 78:383-9. [PMID: 14676429 DOI: 10.1266/ggs.78.383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The repeating units of the histone gene cluster containing the H1, H2A, H2B and H4 genes were amplified by PCR from the Drosophila melanogaster species subgroup, i.e., D. yakuba, D. erecta, D. sechellia, D. mauritiana, D. teissieri and D. orena. The PCR products were cloned and their nucleotide sequences of about 4.6-4.8kbp were determined to elucidate the mechanism of molecular evolution of the histone gene family. The heterogeneity among the histone gene repeating units was 0.6% and 0.7% for D. yakuba and D. sechellia, respectively, indicating the same level of heterogeneity as in the H3 gene region of D. melanogaster. Divergence of the genes among species even in the most closely related ones was much greater than the heterogeneity among family members, indicating a concerted mode of evolution for the histone gene repeating units. Among the species in the D. melanogaster species subgroup, the histone gene regions as well as 3rd codon position of the coding region showed nearly the same GC contents. These results suggested that the previous conclusion on analysis of the H3 gene regions, the gene family evolution in a concerted fashion, holds true for the whole histone gene repeating unit.
Collapse
Affiliation(s)
- Mitsuru Kakita
- Laboratory of Adaptive Evolution, Faculty of Integrated Arts and Sciences, The University of Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ko WY, David RM, Akashi H. Molecular phylogeny of the Drosophila melanogaster species subgroup. J Mol Evol 2004; 57:562-73. [PMID: 14738315 DOI: 10.1007/s00239-003-2510-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2002] [Accepted: 06/02/2003] [Indexed: 11/30/2022]
Abstract
Although molecular and phenotypic evolution have been studied extensively in Drosophila melanogaster and its close relatives, phylogenetic relationships within the D. melanogaster species subgroup remain unresolved. In particular, recent molecular studies have not converged on the branching orders of the D. yakuba-D. teissieri and D. erecta-D. orena species pairs relative to the D. melanogaster-D. simulans-D. mauritiana-D. sechellia species complex. Here, we reconstruct the phylogeny of the melanogaster species subgroup using DNA sequence data from four nuclear genes. We have employed "vectorette PCR" to obtain sequence data for orthologous regions of the Alcohol dehydrogenase (Adh), Alcohol dehydrogenase related (Adhr), Glucose dehydrogenase (Gld), and rosy (ry) genes (totaling 7164 bp) from six melanogaster subgroup species (D. melanogaster, D. simulans, D. teissieri, D. yakuba, D. erecta, and D. orena) and three species from subgroups outside the melanogaster species subgroup [D. eugracilis (eugracilis subgroup), D. mimetica (suzukii subgroup), and D. lutescens (takahashii subgroup)]. Relationships within the D. simulans complex are not addressed. Phylogenetic analyses employing maximum parsimony, neighbor-joining, and maximum likelihood methods strongly support a D. yakuba-D. teissieri and D. erecta-D. orena clade within the melanogaster species subgroup. D. eugracilis is grouped closer to the melanogaster subgroup than a D. mimetica-D. lutescens clade. This tree topology is supported by reconstructions employing simple (single parameter) and more complex (nonreversible) substitution models.
Collapse
Affiliation(s)
- Wen-Ya Ko
- Institute of Molecular Evolutionary Genetics and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
11
|
Matsuo Y. Evolution of the GC content of the histone 3 gene in seven Drosophila species. Genes Genet Syst 2003; 78:309-18. [PMID: 14532710 DOI: 10.1266/ggs.78.309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The molecular evolution of the histone multigene family was studied by cloning and determining the nucleotide sequences of the histone 3 genes in seven Drosophila species, D. takahashii, D. lutescens, D. ficusphila, D. persimilis, D.pseudoobscura, D. americana and D. immigrans. CT repeats, a TATA box and an AGTG motif in the 5' region, and a hairpin loop and purine-rich motifs (CAA(T/G)GAGA) in the 3' region were conserved even in distantly related species. In D. hydei and D.americana, the GC content at the third codon position in the protein coding region was relatively low (49% and 45%), while in D. takahashii and D. lutescens it was relatively high (64% and 65%). The non- significant correlation between the GC contents in the 3' region and at the third codon position as well as the evidence of less constraint in the 3' region suggested that mutational bias may not be the major mechanism responsible for the biased nucleotide change at the third codon position or for codon usage bias.
Collapse
Affiliation(s)
- Yoshinori Matsuo
- Laboratory of Adaptive Evolution, Faculty of Integrated Arts and Sciences, The University of Tokushima, Tokushima, Japan.
| |
Collapse
|
12
|
Tsunemoto K, Matsuo Y. Molecular evolutionary analysis of a histone gene repeating unit from Drosophila simulans. Genes Genet Syst 2001; 76:355-61. [PMID: 11922104 DOI: 10.1266/ggs.76.355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A repeating unit of the histone gene cluster from Drosophila simulans containing the H1, H2A, H2B and H4 genes (the H3 gene region has already been analyzed) was cloned and analyzed. A nucleotide sequence of about 4.6 kbp was determined to study the nucleotide divergence and molecular evolution of the histone gene cluster. Comparison of the structure and nucleotide sequence with those of Drosophila melanogaster showed that the four histone genes were located at identical positions and in the same directions. The proportion of different nucleotide sites was 6.3% in total. The amino acid sequence of H1 was divergent, with a 5.1% difference. However, no amino acid change has been observed for the other three histone proteins. Analysis of the GC contents and the base substitution patterns in the two lineages, D. melanogaster and D. simulans, with a common ancestor showed the following. 1) A strong negative correlation was found between the GC content and the nucleotide divergence in the whole repeating unit. 2) The mode of molecular evolution previously found for the H3 gene was also observed for the whole repeating unit of histone genes; the nucleotide substitutions were stationary in the 3' and spacer regions, and there was a directional change of the codon usage to the AT-rich codons. 3) No distinct difference in the mode or pattern of molecular evolution was detected for the histone gene repeating unit in the D. melanogaster and D. simulans lineages. These results suggest that selectional pressure for the coding regions of histones, which eliminate A and T, is less effective in the D. melanogaster and D. simulans lineages than in the other GC-rich species.
Collapse
Affiliation(s)
- K Tsunemoto
- Laboratory of Adaptive Evolution, Faculty of Integrated Arts and Sciences, The University of Tokushima, Japan
| | | |
Collapse
|