1
|
Li W, An N, Cao F, Wang W, Wang C, Xu W, Gao Y, Ning X. Source Imaging Method Based on Spatial Smoothing and Edge Sparsity (SISSES) and Its Application to OPM-MEG. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:969-981. [PMID: 39321001 DOI: 10.1109/tmi.2024.3467377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Source estimation in magnetoencephalography (MEG) involves solving a highly ill-posed problem without a unique solution. Accurate estimation of the time course and spatial extent of the source is important for studying the mechanisms of brain activity and preoperative functional localization. Traditional methods tend to yield small-amplitude diffuse or large-amplitude focused source estimates. Recently, the structured sparsity-based source imaging algorithm has emerged as one of the most promising algorithms for improving source extent estimation. However, it suffers from a notable amplitude bias. To improve the spatiotemporal resolution of reconstructed sources, we propose a novel method called the source imaging method based on spatial smoothing and edge sparsity (SISSES). In this method, the temporal dynamics of sources are modeled using a set of temporal basis functions, and the spatial characteristics of the source are represented by a first-order Markov random field (MRF) model. In particular, sparse constraints are imposed on the MRF model residuals in the original and variation domains. Numerical simulations were conducted to validate the SISSES. The results demonstrate that SISSES outperforms benchmark methods for estimating the time course, location, and extent of patch sources. Additionally, auditory and median nerve stimulation experiments were performed using a 31-channel optically pumped magnetometer MEG system, and the SISSES was applied to the source imaging of these data. The results demonstrate that SISSES correctly identified the source regions in which brain responses occurred at different times, demonstrating its feasibility for various practical applications.
Collapse
|
2
|
Afnan J, Cai Z, Lina JM, Abdallah C, Delaire E, Avigdor T, Ros V, Hedrich T, von Ellenrieder N, Kobayashi E, Frauscher B, Gotman J, Grova C. EEG/MEG source imaging of deep brain activity within the maximum entropy on the mean framework: Simulations and validation in epilepsy. Hum Brain Mapp 2024; 45:e26720. [PMID: 38994740 PMCID: PMC11240147 DOI: 10.1002/hbm.26720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 07/13/2024] Open
Abstract
Electro/Magneto-EncephaloGraphy (EEG/MEG) source imaging (EMSI) of epileptic activity from deep generators is often challenging due to the higher sensitivity of EEG/MEG to superficial regions and to the spatial configuration of subcortical structures. We previously demonstrated the ability of the coherent Maximum Entropy on the Mean (cMEM) method to accurately localize the superficial cortical generators and their spatial extent. Here, we propose a depth-weighted adaptation of cMEM to localize deep generators more accurately. These methods were evaluated using realistic MEG/high-density EEG (HD-EEG) simulations of epileptic activity and actual MEG/HD-EEG recordings from patients with focal epilepsy. We incorporated depth-weighting within the MEM framework to compensate for its preference for superficial generators. We also included a mesh of both hippocampi, as an additional deep structure in the source model. We generated 5400 realistic simulations of interictal epileptic discharges for MEG and HD-EEG involving a wide range of spatial extents and signal-to-noise ratio (SNR) levels, before investigating EMSI on clinical HD-EEG in 16 patients and MEG in 14 patients. Clinical interictal epileptic discharges were marked by visual inspection. We applied three EMSI methods: cMEM, depth-weighted cMEM and depth-weighted minimum norm estimate (MNE). The ground truth was defined as the true simulated generator or as a drawn region based on clinical information available for patients. For deep sources, depth-weighted cMEM improved the localization when compared to cMEM and depth-weighted MNE, whereas depth-weighted cMEM did not deteriorate localization accuracy for superficial regions. For patients' data, we observed improvement in localization for deep sources, especially for the patients with mesial temporal epilepsy, for which cMEM failed to reconstruct the initial generator in the hippocampus. Depth weighting was more crucial for MEG (gradiometers) than for HD-EEG. Similar findings were found when considering depth weighting for the wavelet extension of MEM. In conclusion, depth-weighted cMEM improved the localization of deep sources without or with minimal deterioration of the localization of the superficial sources. This was demonstrated using extensive simulations with MEG and HD-EEG and clinical MEG and HD-EEG for epilepsy patients.
Collapse
Affiliation(s)
- Jawata Afnan
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Zhengchen Cai
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Jean-Marc Lina
- Physnum Team, Centre De Recherches Mathématiques, Montréal, Québec, Canada
- Electrical Engineering Department, École De Technologie Supérieure, Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, Sacré-Coeur Hospital, Montréal, Québec, Canada
| | - Chifaou Abdallah
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Edouard Delaire
- Multimodal Functional Imaging Lab, Department of Physics and Concordia School of Health, Concordia University, Montréal, Québec, Canada
| | - Tamir Avigdor
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Victoria Ros
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Tanguy Hedrich
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
| | - Nicolas von Ellenrieder
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Eliane Kobayashi
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jean Gotman
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
- Physnum Team, Centre De Recherches Mathématiques, Montréal, Québec, Canada
- Multimodal Functional Imaging Lab, Department of Physics and Concordia School of Health, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
3
|
Okamura A, Hashizume A, Kagawa K, Seyama G, Yoshino A, Yamawaki S, Horie N, Iida K. Magnetoencephalographic detection of synchronized epileptic activity between the hippocampus and insular cortex. Epilepsy Behav Rep 2024; 26:100669. [PMID: 38699062 PMCID: PMC11063376 DOI: 10.1016/j.ebr.2024.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Most magnetoencephalographic signals are derived from synchronized activity in the brain surface cortex. By contrast, the contribution of synchronized activity in the deep brain to magnetoencephalography (MEG) has remained unclear. We compared stereotactic electroencephalography (sEEG) with simultaneous MEG findings in a patient with temporal lobe epilepsy to determine the conditions under which MEG could also detect sEEG findings. The synchrony and similarity of the waves were evaluated using visual inspection and wavelet coherence. A 45-year-old woman with intractable temporal lobe epilepsy underwent sEEG and MEG simultaneously to determine the laterality and precise location of the epileptic focus. When spike-and-waves were seen in the right hippocampal head alone, no distinct spike-and-waves were observed visually in the right temporal MEG. The seizure then spread to the right insula on sEEG with a rhythmic theta frequency while synchronous activity was observed in the right temporal MEG channels. When polyspikes appeared in the right hippocampus, the right temporal MEG showed electrical activity with relatively high similarity to that of the right hippocampal head and insular cortex but less similarity to that of the right lateral temporal lobe cortex. MEG might detect epileptic activity synchronized between the hippocampus and insular cortex.
Collapse
Affiliation(s)
- Akitake Okamura
- Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akira Hashizume
- Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kota Kagawa
- Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Go Seyama
- Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsuo Yoshino
- Center for Brain, Mind and KANSEI Science Research, Hiroshima University, Hiroshima, Japan
| | - Shigeto Yamawaki
- Center for Brain, Mind and KANSEI Science Research, Hiroshima University, Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koji Iida
- Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
4
|
Geller AS, Teale P, Kronberg E, Ebersole JS. Magnetoencephalography for Epilepsy Presurgical Evaluation. Curr Neurol Neurosci Rep 2024; 24:35-46. [PMID: 38148387 DOI: 10.1007/s11910-023-01328-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE OF THE REVIEW Magnetoencephalography (MEG) is a functional neuroimaging technique that records neurophysiology data with millisecond temporal resolution and localizes it with subcentimeter accuracy. Its capability to provide high resolution in both of these domains makes it a powerful tool both in basic neuroscience as well as clinical applications. In neurology, it has proven useful in its ability to record and localize epileptiform activity. Epilepsy workup typically begins with scalp electroencephalography (EEG), but in many situations, EEG-based localization of the epileptogenic zone is inadequate. The complementary sensitivity of MEG can be crucial in such cases, and MEG has been adopted at many centers as an important resource in building a surgical hypothesis. In this paper, we review recent work evaluating the extent of MEG influence of presurgical evaluations, novel analyses of MEG data employed in surgical workup, and new MEG instrumentation that will likely affect the field of clinical MEG. RECENT FINDINGS MEG consistently contributes to presurgical evaluation and these contributions often change the plan for epilepsy surgery. Extensive work has been done to develop new analytic methods for localizing the source of epileptiform activity with MEG. Systems using optically pumped magnetometry (OPM) have been successfully deployed to record and localize epileptiform activity. MEG remains an important noninvasive tool for epilepsy presurgical evaluation. Continued improvements in analytic methodology will likely increase the diagnostic yield of the test. Novel instrumentation with OPM may contribute to this as well, and may increase accessibility of MEG by decreasing cost.
Collapse
Affiliation(s)
- Aaron S Geller
- Department of Neurology, CU Anschutz Medical School, Aurora, CO, USA.
| | - Peter Teale
- Department of Neurology, CU Anschutz Medical School, Aurora, CO, USA
| | - Eugene Kronberg
- Department of Neurology, CU Anschutz Medical School, Aurora, CO, USA
| | - John S Ebersole
- Department of Neurology, Atlantic Neuroscience Institute, Summit, NJ, USA
| |
Collapse
|
5
|
Ye H, Ye L, Hu L, Yang Y, Ge Y, Chen R, Wang S, Jin B, Ming W, Wang Z, Xu S, Xu C, Wang Y, Ding Y, Zhu J, Ding M, Chen Z, Wang S, Chen C. Widespread slow oscillations support interictal epileptiform discharge networks in focal epilepsy. Neurobiol Dis 2024; 191:106409. [PMID: 38218457 DOI: 10.1016/j.nbd.2024.106409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Interictal epileptiform discharges (IEDs) often co-occur across spatially-separated cortical regions, forming IED networks. However, the factors prompting IED propagation remain unelucidated. We hypothesized that slow oscillations (SOs) might facilitate IED propagation. Here, the amplitude and phase synchronization of SOs preceding propagating and non-propagating IEDs were compared in 22 patients with focal epilepsy undergoing intracranial electroencephalography (EEG) evaluation. Intracranial channels were categorized into the irritative zone (IZ) and normal zone (NOZ) regarding the presence of IEDs. During wakefulness, we found that pre-IED SOs within the IZ exhibited higher amplitudes for propagating IEDs than non-propagating IEDs (delta band: p = 0.001, theta band: p < 0.001). This increase in SOs was also concurrently observed in the NOZ (delta band: p = 0.04). Similarly, the inter-channel phase synchronization of SOs prior to propagating IEDs was higher than those preceding non-propagating IEDs in the IZ (delta band: p = 0.04). Through sliding window analysis, we observed that SOs preceding propagating IEDs progressively increased in amplitude and phase synchronization, while those preceding non-propagating IEDs remained relatively stable. Significant differences in amplitude occurred approximately 1150 ms before IEDs. During non-rapid eye movement (NREM) sleep, SOs on scalp recordings also showed higher amplitudes before intracranial propagating IEDs than before non-propagating IEDs (delta band: p = 0.006). Furthermore, the analysis of IED density around sleep SOs revealed that only high-amplitude sleep SOs demonstrated correlation with IED propagation. Overall, our study highlights that transient but widely distributed SOs are associated with IED propagation as well as generation in focal epilepsy during sleep and wakefulness, providing new insight into the EEG substrate supporting IED networks.
Collapse
Affiliation(s)
- Hongyi Ye
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Lingqi Ye
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingli Hu
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyu Yang
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Ge
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruotong Chen
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shan Wang
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Jin
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjie Ming
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongjin Wang
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sha Xu
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yao Ding
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junming Zhu
- Department of Neurosurgery and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meiping Ding
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhong Chen
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuang Wang
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Nanhu Brain-computer Interface Institute, Hangzhou, China.
| | - Cong Chen
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Ohkubo M. The emergence of non-cryogenic quantum magnetic sensors: Synergistic advancement in magnetography together with SQUID. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:111501. [PMID: 38010159 DOI: 10.1063/5.0167372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Emerging non-superconductor quantum magnetic sensors, such as optically pumped magnetometer, fluxgate, magnetic tunnel junction, and diamond nitrogen-vacancy center, are approaching the performance of superconductor quantum interference devices (SQUIDs). These sensors are enabling magnetography for human bodies and brain-computer interface. Will they completely replace the SQUID magnetography in the near future?
Collapse
Affiliation(s)
- Masataka Ohkubo
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tenodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
7
|
Velmurugan J, Badier JM, Pizzo F, Medina Villalon S, Papageorgakis C, López-Madrona V, Jegou A, Carron R, Bartolomei F, Bénar CG. Virtual MEG sensors based on beamformer and independent component analysis can reconstruct epileptic activity as measured on simultaneous intracerebral recordings. Neuroimage 2022; 264:119681. [PMID: 36270623 DOI: 10.1016/j.neuroimage.2022.119681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
The prevailing gold standard for presurgical determination of epileptogenic brain networks is intracerebral EEG, a potent yet invasive approach. Magnetoencephalography (MEG) is a state-of-the art non-invasive method for investigating epileptiform discharges. However, it is not clear at what level the precision offered by MEG can reach that of SEEG. Here, we present a strategy for non-invasively retrieving the constituents of the interictal network, with high spatial and temporal precision. Our method is based on MEG and a combination of spatial filtering and independent component analysis (ICA). We validated this approach in twelve patients with drug-resistant focal epilepsy, thanks to the unprecedented ground truth provided by simultaneous recordings of MEG and SEEG. A minimum variance adaptive beamformer estimated the source time series and ICA was used to further decompose these time series into network constituents (MEG-ICs), each having a time series (virtual electrode) and a topography (spatial distribution of amplitudes in the brain). We show that MEG has a considerable sensitivity of 0.80 and 0.84 and a specificity of 0.93 and 0.91 for reconstructing deep and superficial sources, respectively, when compared to the ground truth (SEEG). For each epileptic MEG-IC (n = 131), we found at least one significantly correlating SEEG contact close to zero lag after correcting for multiple comparisons. All the patients except one had at least one epileptic component that was highly correlated (Spearman rho>0.3) with that of SEEG traces. MEG-ICs correlated well with SEEG traces. The strength of correlation coefficients did not depend on the depth of the SEEG contacts or the clinical outcome of the patient. A significant proportion of the MEG-ICs (n = 83/131) were localized in proximity with their maximally correlating SEEG, within a mean distance of 20±12.18mm. Our research is the first to validate the MEG-retrieved beamformer IC sources against SEEG-derived ground truth in a simultaneous MEG-SEEG framework. Observations from the present study suggest that non-invasive MEG source components may potentially provide additional information, comparable to SEEG in a number of instances.
Collapse
Affiliation(s)
- Jayabal Velmurugan
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, F-13005, France
| | - Jean-Michel Badier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, F-13005, France
| | - Francesca Pizzo
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, F-13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, F-13005, France
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, F-13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, F-13005, France
| | | | | | - Aude Jegou
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, F-13005, France
| | - Romain Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, F-13005, France; APHM, Timone Hospital, Functional and Stereotactic Neurosurgery, Marseille, F-13005, France
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, F-13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, F-13005, France
| | - Christian-G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, F-13005, France.
| |
Collapse
|
8
|
Ricci L, Matarrese M, Peters JM, Tamilia E, Madsen JR, Pearl PL, Papadelis C. Virtual implantation using conventional scalp EEG delineates seizure onset and predicts surgical outcome in children with epilepsy. Clin Neurophysiol 2022; 139:49-57. [PMID: 35526353 PMCID: PMC10026594 DOI: 10.1016/j.clinph.2022.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Delineation of the seizure onset zone (SOZ) is required in children with drug resistant epilepsy (DRE) undergoing neurosurgery. Intracranial EEG (icEEG) serves as gold standard but has limitations. Here, we examine the utility of virtual implantation with electrical source imaging (ESI) on ictal scalp EEG for mapping the SOZ and predict surgical outcome. METHODS We retrospectively analyzed EEG data from 35 children with DRE who underwent surgery and dichotomized into seizure-free (SF) and non-seizure-free (NSF). We estimated virtual sensors (VSs) at brain locations that matched icEEG implantation and compared ictal patterns at VSs vs icEEG. We calculated the agreement between VSs SOZ and clinically defined SOZ and built receiver operating characteristic (ROC) curves to test whether it predicted outcome. RESULTS Twenty-one patients were SF after surgery. Moderate agreement between virtual and icEEG patterns was observed (kappa = 0.45, p < 0.001). Virtual SOZ agreement with clinically defined SOZ was higher in SF vs NSF patients (66.6% vs 41.6%, p = 0.01). Anatomical concordance of virtual SOZ with clinically defined SOZ predicted outcome (AUC = 0.73; 95% CI: 0.57-0.89; sensitivity = 66.7%; specificity = 78.6%; accuracy = 71.4%). CONCLUSIONS Virtual implantation on ictal scalp EEG can approximate the SOZ and predict outcome. SIGNIFICANCE SOZ mapping with VSs may contribute to tailoring icEEG implantation and predict outcome.
Collapse
Affiliation(s)
- Lorenzo Ricci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Margherita Matarrese
- Unit of Non-Linear Physics and Mathematical Modelling, Engineering Department, University Campus Bio-Medico of Rome, Rome, Italy; Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Jurriaan M Peters
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eleonora Tamilia
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph R Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA; School of Medicine, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
9
|
Bruzzone MJ, Issa NP, Wu S, Rose S, Esengul YT, Towle VL, Nordli D, Warnke PC, Tao JX. Hippocampal spikes have heterogeneous scalp EEG correlates important for defining IEDs. Epilepsy Res 2022; 182:106914. [DOI: 10.1016/j.eplepsyres.2022.106914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/20/2022] [Accepted: 03/27/2022] [Indexed: 11/03/2022]
|
10
|
De Stefano P, Carboni M, Marquis R, Spinelli L, Seeck M, Vulliemoz S. Increased delta power as a scalp marker of epileptic activity: a simultaneous scalp and intracranial electroencephalography study. Eur J Neurol 2021; 29:26-35. [PMID: 34528320 PMCID: PMC9293335 DOI: 10.1111/ene.15106] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE The purpose was to evaluate whether intracranial interictal epileptiform discharges (IEDs) that are not visible on the scalp are associated with changes in the frequency spectrum on scalp electroencephalograms (EEGs). METHODS Simultaneous scalp high-density EEG and intracranial EEG recordings were recorded in nine patients undergoing pre-surgical invasive recordings for pharmaco-resistant temporal lobe epilepsy. Epochs with hippocampal IED visible on intracranial EEG (ic-IED) but not on scalp EEG were selected, as well as control epochs without ic-IED. Welch's power spectral density was computed for each scalp electrode and for each subject; the power spectral density was further averaged across the canonical frequency bands and compared between the two conditions with and without ic-IED. For each patient the peak frequency in the delta band (the significantly strongest frequency band in all patients) was determined during periods of ic-IED. The five electrodes showing strongest power at the peak frequency were also determined. RESULTS It was found that intracranial IEDs are associated with an increase in delta power on scalp EEGs, in particular at a frequency ≥1.4 Hz. Electrodes showing slow frequency power changes associated with IEDs were consistent with the hemispheric lateralization of IEDs. Electrodes with maximum power of slow activity were not limited to temporal regions but also involved frontal (bilateral or unilateral) regions. CONCLUSIONS In patients with a clinical picture suggestive of temporal lobe epilepsy, the presence of delta slowing ≥1.4 Hz in anterior temporal regions can represent a scalp marker of hippocampal IEDs. To our best knowledge this is the first study that demonstrates the co-occurrence of ic-IED and increased delta power.
Collapse
Affiliation(s)
- Pia De Stefano
- EEG and Epilepsy Unit, Neurology Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Margherita Carboni
- EEG and Epilepsy Unit, Neurology Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Renaud Marquis
- EEG and Epilepsy Unit, Neurology Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Laurent Spinelli
- EEG and Epilepsy Unit, Neurology Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, Neurology Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Neurology Department, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Alberto GE, Stapleton-Kotloski JR, Klorig DC, Rogers ER, Constantinidis C, Daunais JB, Godwin DW. MEG source imaging detects optogenetically-induced activity in cortical and subcortical networks. Nat Commun 2021; 12:5259. [PMID: 34489452 PMCID: PMC8421372 DOI: 10.1038/s41467-021-25481-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Magnetoencephalography measures neuromagnetic activity with high temporal, and theoretically, high spatial resolution. We developed an experimental platform combining MEG-compatible optogenetic techniques in nonhuman primates for use as a functional brain-mapping platform. Here we show localization of optogenetically evoked signals to known sources in the superficial arcuate sulcus of cortex and in CA3 of hippocampus at a resolution of 750 µm3. We detect activation in subcortical, thalamic, and extended temporal structures, conforming to known anatomical and functional brain networks associated with the respective sites of stimulation. This demonstrates that high-resolution localization of experimentally produced deep sources is possible within an intact brain. This approach is suitable for exploring causal relationships between discrete brain regions through precise optogenetic control and simultaneous whole brain MEG recording with high-resolution magnetic source imaging (MSI).
Collapse
Affiliation(s)
- Gregory E. Alberto
- grid.241167.70000 0001 2185 3318Wake Forest School of Medicine; Department of Neurobiology and Anatomy, Winston-Salem, NC USA
| | - Jennifer R. Stapleton-Kotloski
- grid.241167.70000 0001 2185 3318Wake Forest School of Medicine Department of Neurology, Winston-Salem, NC USA ,grid.509341.aResearch and Education Department, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, NC USA
| | - David C. Klorig
- grid.241167.70000 0001 2185 3318Wake Forest School of Medicine; Department of Neurobiology and Anatomy, Winston-Salem, NC USA
| | - Emily R. Rogers
- grid.241167.70000 0001 2185 3318Wake Forest School of Medicine; Department of Neurobiology and Anatomy, Winston-Salem, NC USA
| | - Christos Constantinidis
- grid.241167.70000 0001 2185 3318Wake Forest School of Medicine; Department of Neurobiology and Anatomy, Winston-Salem, NC USA
| | - James B. Daunais
- grid.241167.70000 0001 2185 3318Wake Forest School of Medicine Department of Physiology and Pharmacology, Winston-Salem, NC USA
| | - Dwayne W. Godwin
- grid.241167.70000 0001 2185 3318Wake Forest School of Medicine; Department of Neurobiology and Anatomy, Winston-Salem, NC USA ,grid.241167.70000 0001 2185 3318Wake Forest School of Medicine Department of Neurology, Winston-Salem, NC USA ,grid.509341.aResearch and Education Department, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, NC USA ,grid.241167.70000 0001 2185 3318Wake Forest School of Medicine Department of Physiology and Pharmacology, Winston-Salem, NC USA
| |
Collapse
|
12
|
Watching Movies Unfold, a Frame-by-Frame Analysis of the Associated Neural Dynamics. eNeuro 2021; 8:ENEURO.0099-21.2021. [PMID: 34193513 PMCID: PMC8272404 DOI: 10.1523/eneuro.0099-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/21/2021] [Accepted: 06/02/2021] [Indexed: 12/02/2022] Open
Abstract
Our lives unfold as sequences of events. We experience these events as seamless, although they are composed of individual images captured in between the interruptions imposed by eye blinks and saccades. Events typically involve visual imagery from the real world (scenes), and the hippocampus is frequently engaged in this context. It is unclear, however, whether the hippocampus would be similarly responsive to unfolding events that involve abstract imagery. Addressing this issue could provide insights into the nature of its contribution to event processing, with relevance for theories of hippocampal function. Consequently, during magnetoencephalography (MEG), we had female and male humans watch highly matched unfolding movie events composed of either scene image frames that reflected the real world, or frames depicting abstract patterns. We examined the evoked neuronal responses to each image frame along the time course of the movie events. Only one difference between the two conditions was evident, and that was during the viewing of the first image frame of events, detectable across frontotemporal sensors. Further probing of this difference using source reconstruction revealed greater engagement of a set of brain regions across parietal, frontal, premotor, and cerebellar cortices, with the largest change in broadband (1–30 Hz) power in the hippocampus during scene-based movie events. Hippocampal engagement during the first image frame of scene-based events could reflect its role in registering a recognizable context perhaps based on templates or schemas. The hippocampus, therefore, may help to set the scene for events very early on.
Collapse
|
13
|
Bénar CG, Velmurugan J, López-Madrona VJ, Pizzo F, Badier JM. Detection and localization of deep sources in magnetoencephalography: A review. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Otsubo H, Ogawa H, Pang E, Wong SM, Ibrahim GM, Widjaja E. A review of magnetoencephalography use in pediatric epilepsy: an update on best practice. Expert Rev Neurother 2021; 21:1225-1240. [PMID: 33780318 DOI: 10.1080/14737175.2021.1910024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Magnetoencephalography (MEG) is a noninvasive technique that is used for presurgical evaluation of children with drug-resistant epilepsy (DRE).Areas covered: The contributions of MEG for localizing the epileptogenic zone are discussed, in particular in extra-temporal lobe epilepsy and focal cortical dysplasia, which are common in children, as well as in difficult to localize epilepsy such as operculo-insular epilepsy. Further, the authors review current evidence on MEG for mapping eloquent cortex, its performance, application in clinical practice, and potential challenges.Expert opinion: MEG could change the clinical management of children with DRE by directing placement of intracranial electrodes thereby enhancing their yield. With improved identification of a circumscribed epileptogenic zone, MEG could render more patients as suitable candidates for epilepsy surgery and increase utilization of surgery.
Collapse
Affiliation(s)
- Hiroshi Otsubo
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Hiroshi Ogawa
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Elizabeth Pang
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada.,Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Simeon M Wong
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Elysa Widjaja
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada.,Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
15
|
Bagić AI, Funke ME, Kirsch HE, Tenney JR, Zillgitt AJ, Burgess RC. The 10 Common Evidence-Supported Indications for MEG in Epilepsy Surgery: An Illustrated Compendium. J Clin Neurophysiol 2021; 37:483-497. [PMID: 33165222 DOI: 10.1097/wnp.0000000000000726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Unfamiliarity with the indications for and benefits of magnetoencephalography (MEG) persists, even in the epilepsy community, and hinders its acceptance to clinical practice, despite the evidence. The wide treatment gap for patients with drug-resistant epilepsy and immense underutilization of epilepsy surgery had similar effects. Thus, educating referring physicians (epileptologists, neurologists, and neurosurgeons) both about the value of epilepsy surgery and about the potential benefits of MEG can achieve synergy and greatly improve the process of selecting surgical candidates. As a practical step toward a comprehensive educational process to benefit potential MEG users, current MEG referrers, and newcomers to MEG, the authors have elected to provide an illustrated guide to 10 everyday situations where MEG can help in the evaluation of people with drug-resistant epilepsy. They are as follows: (1) lacking or imprecise hypothesis regarding a seizure onset; (2) negative MRI with a mesial temporal onset suspected; (3) multiple lesions on MRI; (4) large lesion on MRI; (5) diagnostic or therapeutic reoperation; (6) ambiguous EEG findings suggestive of "bilateral" or "generalized" pattern; (7) intrasylvian onset suspected; (8) interhemispheric onset suspected; (9) insular onset suspected; and (10) negative (i.e., spikeless) EEG. Only their practical implementation and furtherance of personal and collective education will lead to the potentially impactful synergy of the two-MEG and epilepsy surgery. Thus, while fulfilling our mission as physicians, we must not forget that ignoring the wealth of evidence about the vast underutilization of epilepsy surgery - and about the usefulness and value of MEG in selecting surgical candidates - is far from benign neglect.
Collapse
Affiliation(s)
- Anto I Bagić
- University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), Department of Neurology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, U.S.A
| | - Michael E Funke
- MEG Center, McGovern Medical School, UT Houston, Houston, Texas, U.S.A
| | - Heidi E Kirsch
- UCSF Biomagnetic Imaging Laboratory, UCSF, San Francisco, California, U.S.A
| | - Jeffrey R Tenney
- MEG Center, Cincinnati Children's Hospital Medical Center , Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Andrew J Zillgitt
- Department of Neurology, Beaumont Health Adult Comprehensive Epilepsy Center, Neurosicence Center, Royal Oak, Michigan, U.S.A.; and
| | - Richard C Burgess
- Magnetoencephalography Laboratory, Cleveland Clinic Epilepsy Center, Cleveland, Ohio, U.S.A
| |
Collapse
|
16
|
Abstract
Noise sources in magnetoencephalography (MEG) include: (1) interference from outside the shielded room, (2) other people and devices inside the shielded room, (3) physiologic or nonphysiologic sources inside the patient, (4) activity from inside the head that is unrelated to the signal of interest, (5) intrinsic sensor and recording electronics noise, and (6) artifacts from other apparatus used during recording such as evoked response stimulators. There are other factors which corrupt MEG recording and interpretation and should also be considered "artifacts": (7) inadequate positioning of the patient, (8) changes in the head position during the recording, (9) incorrect co-registration, (10) spurious signals introduced during postprocessing, and (11) errors in fitting. The major means whereby magnetic interference can be reduced or eliminated are by recording inside a magnetically shielded room, using gradiometers that measure differential magnetic fields, real-time active compensation using reference sensors, and postprocessing with advanced spatio-temporal filters. Many of the artifacts that plague MEG are also seen in EEG, so an experienced electroencephalographer will have the advantage of being able to transfer his knowledge about artifacts to MEG. However, many of the procedures and software used during acquisition and analysis may themselves contribute artifact or distortion that must be recognized or prevented. In summary, MEG artifacts are not worse than EEG artifacts, but many are different, and-as with EEG-must be attended to.
Collapse
|
17
|
Wennberg R, Tarazi A, Zumsteg D, Garcia Dominguez L. Electromagnetic evidence that benign epileptiform transients of sleep are traveling, rotating hippocampal spikes. Clin Neurophysiol 2020; 131:2915-2925. [DOI: 10.1016/j.clinph.2020.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/05/2020] [Accepted: 07/23/2020] [Indexed: 12/01/2022]
|
18
|
Abstract
Concise history of fascinating magnetoencephalography (MEG) technology and catalog of very selected milestone preclinical and clinical MEG studies are provided as the background. The focus is the societal context defining a journey of MEG to and through clinical practice and formation of the American Clinical MEG Society (ACMEGS). We aspired to provide an objective historic perspective and document contributions of many professionals while focusing on the role of ACMEGS in the growth and maturation of clinical MEG field. The ACMEGS was born (2006) out of inevitability to address two vital issues-fair reimbursement and proper clinical acceptance. A beacon of accountable MEG practice and utilization is now an expanding professional organization with the highest level of competence in practice of clinical MEG and clinical credibility. The ACMEGS facilitated a favorable disposition of insurances toward MEG in the United States by combining the national replication of the grassroots efforts and teaming up with the strategic partners-particularly the American Academy of Neurology (AAN), published two Position Statements (2009 and 2017), the world's only set of MEG Clinical Practice Guidelines (CPGs; 2011) and surveys of clinical MEG practice (2011 and 2020) and use (2020). In addition to the annual ACMEGS Course (2012), we directly engaged MEG practitioners through an Invitational Summit (2019). The Society remains focused on the improvements and expansion of clinical practice, education, clinical training, and constructive engagement of vendors in these issues and pivotal studies toward additional MEG indications. The ACMEGS not only had the critical role in the progress of Clinical MEG in the United States and beyond since 2006 but positioned itself as the field leader in the future.
Collapse
|
19
|
Barry DN, Tierney TM, Holmes N, Boto E, Roberts G, Leggett J, Bowtell R, Brookes MJ, Barnes GR, Maguire EA. Imaging the human hippocampus with optically-pumped magnetoencephalography. Neuroimage 2019; 203:116192. [PMID: 31521823 PMCID: PMC6854457 DOI: 10.1016/j.neuroimage.2019.116192] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 09/07/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022] Open
Abstract
Optically-pumped (OP) magnetometers allow magnetoencephalography (MEG) to be performed while a participant's head is unconstrained. To fully leverage this new technology, and in particular its capacity for mobility, the activity of deep brain structures which facilitate explorative behaviours such as navigation, must be detectable using OP-MEG. One such crucial brain region is the hippocampus. Here we had three healthy adult participants perform a hippocampal-dependent task - the imagination of novel scene imagery - while being scanned using OP-MEG. A conjunction analysis across these three participants revealed a significant change in theta power in the medial temporal lobe. The peak of this activated cluster was located in the anterior hippocampus. We repeated the experiment with the same participants in a conventional SQUID-MEG scanner and found similar engagement of the medial temporal lobe, also with a peak in the anterior hippocampus. These OP-MEG findings indicate exciting new opportunities for investigating the neural correlates of a range of crucial cognitive functions in naturalistic contexts including spatial navigation, episodic memory and social interactions.
Collapse
Affiliation(s)
- Daniel N Barry
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Gillian Roberts
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK.
| |
Collapse
|
20
|
Carrette E, Stefan H. Evidence for the Role of Magnetic Source Imaging in the Presurgical Evaluation of Refractory Epilepsy Patients. Front Neurol 2019; 10:933. [PMID: 31551904 PMCID: PMC6746885 DOI: 10.3389/fneur.2019.00933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/12/2019] [Indexed: 12/03/2022] Open
Abstract
Magnetoencephalography (MEG) in the field of epilepsy has multiple advantages; just like electroencephalography (EEG), MEG is able to measure the epilepsy specific information (i.e., the brain activity reflecting seizures and/or interictal epileptiform discharges) directly, non-invasively and with a very high temporal resolution (millisecond-range). In addition MEG has a unique sensitivity for tangential sources, resulting in a full picture of the brain activity when combined with EEG. It accurately allows to perform source imaging of focal epileptic activity and functional cortex and shows a specific high sensitivity for a source in the neocortex. In this paper the current evidence and practice for using magnetic source imaging of focal interictal and ictal epileptic activity during the presurgical evaluation of drug resistant patients is being reviewed.
Collapse
Affiliation(s)
- Evelien Carrette
- Reference Centre for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - Hermann Stefan
- Department of Neurology-Biomagnetism, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
21
|
Kreidenhuber R, De Tiège X, Rampp S. Presurgical Functional Cortical Mapping Using Electromagnetic Source Imaging. Front Neurol 2019; 10:628. [PMID: 31249552 PMCID: PMC6584755 DOI: 10.3389/fneur.2019.00628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/28/2019] [Indexed: 02/03/2023] Open
Abstract
Preoperative localization of functionally eloquent cortex (functional cortical mapping) is common clinical practice in order to avoid or reduce postoperative morbidity. This review aims at providing a general overview of magnetoencephalography (MEG) and high-density electroencephalography (hdEEG) based methods and their clinical role as compared to common alternatives for functional cortical mapping of (1) verbal language function, (2) sensorimotor cortex, (3) memory, (4) visual, and (5) auditory cortex. We highlight strengths, weaknesses and limitations of these functional cortical mapping modalities based on findings in the recent literature. We also compare their performance relative to other non-invasive functional cortical mapping methods, such as functional Magnetic Resonance Imaging (fMRI), Transcranial Magnetic Stimulation (TMS), and to invasive methods like the intracarotid Amobarbital Test (WADA-Test) or intracranial investigations.
Collapse
Affiliation(s)
- Rudolf Kreidenhuber
- Department of Neurology, Christian-Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria.,Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Xavier De Tiège
- Laboratoire de Cartographie Fonctionelle du Cerveau, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany.,Department of Neurosurgery, University Hospital Halle, Halle, Germany
| |
Collapse
|
22
|
Pizzo F, Roehri N, Medina Villalon S, Trébuchon A, Chen S, Lagarde S, Carron R, Gavaret M, Giusiano B, McGonigal A, Bartolomei F, Badier JM, Bénar CG. Deep brain activities can be detected with magnetoencephalography. Nat Commun 2019; 10:971. [PMID: 30814498 PMCID: PMC6393515 DOI: 10.1038/s41467-019-08665-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 01/12/2019] [Indexed: 12/22/2022] Open
Abstract
The hippocampus and amygdala are key brain structures of the medial temporal lobe, involved in cognitive and emotional processes as well as pathological states such as epilepsy. Despite their importance, it is still unclear whether their neural activity can be recorded non-invasively. Here, using simultaneous intracerebral and magnetoencephalography (MEG) recordings in patients with focal drug-resistant epilepsy, we demonstrate a direct contribution of amygdala and hippocampal activity to surface MEG recordings. In particular, a method of blind source separation, independent component analysis, enabled activity arising from large neocortical networks to be disentangled from that of deeper structures, whose amplitude at the surface was small but significant. This finding is highly relevant for our understanding of hippocampal and amygdala brain activity as it implies that their activity could potentially be measured non-invasively.
Collapse
Affiliation(s)
- F Pizzo
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France.
- APHM, Timone Hospital, Epileptology and cerebral rhythmology, Marseille, 13005, France.
| | - N Roehri
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
| | - S Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
- APHM, Timone Hospital, Epileptology and cerebral rhythmology, Marseille, 13005, France
| | - A Trébuchon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
- APHM, Timone Hospital, Epileptology and cerebral rhythmology, Marseille, 13005, France
| | - S Chen
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
| | - S Lagarde
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
- APHM, Timone Hospital, Epileptology and cerebral rhythmology, Marseille, 13005, France
| | - R Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
- APHM, Timone Hospital, Functional and Stereotactic Neurosurgery, Marseille, 13005, France
| | - M Gavaret
- INSERM UMR894, Paris Descartes university, GHU Paris Psychiatrie Neurosciences, 75013, Paris, France
| | - B Giusiano
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
| | - A McGonigal
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
- APHM, Timone Hospital, Epileptology and cerebral rhythmology, Marseille, 13005, France
| | - F Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
- APHM, Timone Hospital, Epileptology and cerebral rhythmology, Marseille, 13005, France
| | - J M Badier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
| | - C G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France.
| |
Collapse
|
23
|
Continuous ictal discharges with high frequency oscillations confined to the non-sclerotic hippocampus in an epileptic patient with radiation-induced cavernoma in the lateral temporal lobe. EPILEPSY & BEHAVIOR CASE REPORTS 2019; 11:87-91. [PMID: 30792954 PMCID: PMC6370593 DOI: 10.1016/j.ebcr.2019.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 11/20/2022]
Abstract
Background Intraoperative electrocorticography (iECoG) recording is recommended for treating cavernoma related epilepsy. However, "interictal" paroxysmal activities are generally recordable but are not always identical to the epileptogenic zone. Case description We surgically treated a 15-year-old girl with drug-resistant epilepsy associated with radiation-induced cavernoma in the right lateral temporal lobe. iECoG revealed paroxysmal activities in the cortex around the cavernoma. Additionally, continuous subclinical "ictal" discharges with high-frequency oscillations (HFO), confined to the histologically non-sclerotic hippocampus, were recorded. Following additional hippocampectomy, a good seizure outcome was obtained. Conclusion iECoG and HFO analysis revealed high epileptogenicity in the non-sclerotic hippocampus of this patient.
Collapse
|
24
|
Abstract
PURPOSE Most clinical magnetoencephalography (MEG) centers record both MEG and EEG, but model only MEG sources. This may be related to the belief that MEG spikes are more prevalent, MEG is more sensitive, or to proprietary software limitations. Biophysics would contend, however, that EEG, being sensitive to radial and tangential source orientations, would provide complementary data for analysis. METHODS We recorded 306 channels of MEG and 25 channels of EEG simultaneously in 297 consecutive patients over 3 years. We inspected the MEG and EEG recordings separately, identified spikes in both, determined whether their voltage and/or magnetometer magnetic fields were dipolar and thus model-worthy, and segregated them into types based on similar and distinct field topography. We placed for each patient their spike types into categories, including those with both a recognizable MEG and EEG signal and those with only an MEG and only an EEG signal. RESULTS Eighty-three percent of patients had spikes recorded, and these patients had an average of 2.7 spike types each. Fifty-six percent of spike types were present in both MEG and EEG. However, 36% of spike types were only evident in EEG, whereas 8% were noted in MEG alone. In 49% of patients with spikes, MEG review missed at least one spike type, whereas in 17% of patients, EEG review missed at least one spike type. CONCLUSIONS To obtain an optimal yield of diagnostic information, EEG should also be subjected to source analysis in any clinical MEG study. EEG and MEG data are indeed complementary.
Collapse
|
25
|
Variation sparse source imaging based on conditional mean for electromagnetic extended sources. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Magnetoencephalographic Mapping of Epileptic Spike Population Using Distributed Source Analysis: Comparison With Intracranial Electroencephalographic Spikes. J Clin Neurophysiol 2018; 35:339-345. [PMID: 29746391 DOI: 10.1097/wnp.0000000000000476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION This study evaluates magnetoencephalographic (MEG) spike population as compared with intracranial electroencephalographic (IEEG) spikes using a quantitative method based on distributed source analysis. METHODS We retrospectively studied eight patients with medically intractable epilepsy who had an MEG and subsequent IEEG monitoring. Fifty MEG spikes were analyzed in each patient using minimum norm estimate. For individual spikes, each vertex in the source space was considered activated when its source amplitude at the peak latency was higher than a threshold, which was set at 50% of the maximum amplitude over all vertices. We mapped the total count of activation at each vertex. We also analyzed 50 IEEG spikes in the same manner over the intracranial electrodes and created the activation count map. The location of the electrodes was obtained in the MEG source space by coregistering postimplantation computed tomography to MRI. We estimated the MEG- and IEEG-active regions associated with the spike populations using the vertices/electrodes with a count over 25. RESULTS The activation count maps of MEG spikes demonstrated the localization associated with the spike population by variable count values at each vertex. The MEG-active region overlapped with 65 to 85% of the IEEG-active region in our patient group. CONCLUSIONS Mapping the MEG spike population is valid for demonstrating the trend of spikes clustering in patients with epilepsy. In addition, comparison of MEG and IEEG spikes quantitatively may be informative for understanding their relationship.
Collapse
|
27
|
Schneider TR, Hipp JF, Domnick C, Carl C, Büchel C, Engel AK. Modulation of neuronal oscillatory activity in the beta- and gamma-band is associated with current individual anxiety levels. Neuroimage 2018; 178:423-434. [DOI: 10.1016/j.neuroimage.2018.05.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/17/2018] [Accepted: 05/25/2018] [Indexed: 01/23/2023] Open
|
28
|
Pu Y, Cheyne DO, Cornwell BR, Johnson BW. Non-invasive Investigation of Human Hippocampal Rhythms Using Magnetoencephalography: A Review. Front Neurosci 2018; 12:273. [PMID: 29755314 PMCID: PMC5932174 DOI: 10.3389/fnins.2018.00273] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Hippocampal rhythms are believed to support crucial cognitive processes including memory, navigation, and language. Due to the location of the hippocampus deep in the brain, studying hippocampal rhythms using non-invasive magnetoencephalography (MEG) recordings has generally been assumed to be methodologically challenging. However, with the advent of whole-head MEG systems in the 1990s and development of advanced source localization techniques, simulation and empirical studies have provided evidence that human hippocampal signals can be sensed by MEG and reliably reconstructed by source localization algorithms. This paper systematically reviews simulation studies and empirical evidence of the current capacities and limitations of MEG “deep source imaging” of the human hippocampus. Overall, these studies confirm that MEG provides a unique avenue to investigate human hippocampal rhythms in cognition, and can bridge the gap between animal studies and human hippocampal research, as well as elucidate the functional role and the behavioral correlates of human hippocampal oscillations.
Collapse
Affiliation(s)
- Yi Pu
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, NSW, Australia.,Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - Douglas O Cheyne
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Brian R Cornwell
- Brain and Psychological Sciences Research Centre, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Blake W Johnson
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, NSW, Australia.,Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
29
|
Chowdhury RA, Pellegrino G, Aydin Ü, Lina JM, Dubeau F, Kobayashi E, Grova C. Reproducibility of EEG-MEG fusion source analysis of interictal spikes: Relevance in presurgical evaluation of epilepsy. Hum Brain Mapp 2017; 39:880-901. [PMID: 29164737 DOI: 10.1002/hbm.23889] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/06/2022] Open
Abstract
Fusion of electroencephalography (EEG) and magnetoencephalography (MEG) data using maximum entropy on the mean method (MEM-fusion) takes advantage of the complementarities between EEG and MEG to improve localization accuracy. Simulation studies demonstrated MEM-fusion to be robust especially in noisy conditions such as single spike source localizations (SSSL). Our objective was to assess the reliability of SSSL using MEM-fusion on clinical data. We proposed to cluster SSSL results to find the most reliable and consistent source map from the reconstructed sources, the so-called consensus map. Thirty-four types of interictal epileptic discharges (IEDs) were analyzed from 26 patients with well-defined epileptogenic focus. SSSLs were performed on EEG, MEG, and fusion data and consensus maps were estimated using hierarchical clustering. Qualitative (spike-to-spike reproducibility rate, SSR) and quantitative (localization error and spatial dispersion) assessments were performed using the epileptogenic focus as clinical reference. Fusion SSSL provided significantly better results than EEG or MEG alone. Fusion found at least one cluster concordant with the clinical reference in all cases. This concordant cluster was always the one involving the highest number of spikes. Fusion yielded highest reproducibility (SSR EEG = 55%, MEG = 71%, fusion = 90%) and lowest localization error. Also, using only few channels from either modality (21EEG + 272MEG or 54EEG + 25MEG) was sufficient to reach accurate fusion. MEM-fusion with consensus map approach provides an objective way of finding the most reliable and concordant generators of IEDs. We, therefore, suggest the pertinence of SSSL using MEM-fusion as a valuable clinical tool for presurgical evaluation of epilepsy.
Collapse
Affiliation(s)
- Rasheda Arman Chowdhury
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada
| | | | - Ümit Aydin
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Québec, Canada
| | - Jean-Marc Lina
- Ecole de Technologie Supérieure, Montréal, Québec, Canada.,Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada
| | - François Dubeau
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Eliane Kobayashi
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada.,Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada.,Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.,Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Québec, Canada
| |
Collapse
|
30
|
Badier JM, Dubarry AS, Gavaret M, Chen S, Trébuchon AS, Marquis P, Régis J, Bartolomei F, Bénar CG, Carron R. Technical solutions for simultaneous MEG and SEEG recordings: towards routine clinical use. Physiol Meas 2017; 38:N118-N127. [PMID: 28933353 DOI: 10.1088/1361-6579/aa7655] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The simultaneous recording of intracerebral EEG (stereotaxic EEG, SEEG) and magnetoencephalography (MEG) is a promising strategy that provides both local and global views on brain pathological activity. Yet, acquiring simultaneous signals poses difficult technical issues that hamper their use in clinical routine. Our objective was thus to develop a set of solutions for recording a high number of SEEG channels while preserving signal quality. APPROACH We recorded data in a patient with drug resistant epilepsy during presurgical evaluation. We used dedicated insertion screws and optically insulated amplifiers. We recorded 137 SEEG contacts on 10 depth electrodes (5-15 contacts each) and 248 MEG channels (magnetometers). Signal quality was assessed by comparing the distribution of RMS values in different frequency bands to a reference set of MEG acquisitions. MAIN RESULTS The quality of signals was excellent for both MEG and SEEG; for MEG, it was comparable to that of MEG signals without concurrent SEEG. Discharges involving several structures on SEEG were visible on MEG, whereas discharges limited in space were not seen at the surface. SIGNIFICANCE SEEG can now be recorded simultaneously with whole-head MEG in routine. This opens new avenues, both methodologically for understanding signals and improving signal processing methods, and clinically for future combined analyses.
Collapse
Affiliation(s)
- J M Badier
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang Q, Teng P, Luan G. Magnetoencephalography in Preoperative Epileptic Foci Localization: Enlightenment from Cognitive Studies. Front Comput Neurosci 2017; 11:58. [PMID: 28701945 PMCID: PMC5487414 DOI: 10.3389/fncom.2017.00058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/12/2017] [Indexed: 02/02/2023] Open
Abstract
Over 30% epileptic patients are refractory to medication, who are amenable to neurosurgical treatment. Non-invasive brain imaging technologies including video-electroencephalogram (EEG), magnetic resonance imaging (MRI), and magnetoencephalography (MEG) are widely used in presurgical assessment of epileptic patients. This review mainly discussed the current development of clinical MEG imaging as a diagnose approach, and its correlations with the golden standard intracranial electroencephalogram (iEEG). More importantly, this review discussed the possible applications of functional networks in preoperative epileptic foci localization in future studies.
Collapse
Affiliation(s)
- Qian Wang
- Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical UniversityBeijing, China.,Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical UniversityBeijing, China
| | - Pengfei Teng
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical UniversityBeijing, China
| | - Guoming Luan
- Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical UniversityBeijing, China.,Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical UniversityBeijing, China.,Beijing Institute for Brain Disorders, Capital Medical UniversityBeijing, China
| |
Collapse
|
32
|
Zerouali Y, Ghaziri J, Nguyen DK. Multimodal investigation of epileptic networks: The case of insular cortex epilepsy. PROGRESS IN BRAIN RESEARCH 2017; 226:1-33. [PMID: 27323937 DOI: 10.1016/bs.pbr.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The insula is a deep cortical structure sharing extensive synaptic connections with a variety of brain regions, including several frontal, temporal, and parietal structures. The identification of the insular connectivity network is obviously valuable for understanding a number of cognitive processes, but also for understanding epilepsy since insular seizures involve a number of remote brain regions. Ultimately, knowledge of the structure and causal relationships within the epileptic networks associated with insular cortex epilepsy can offer deeper insights into this relatively neglected type of epilepsy enabling the refining of the clinical approach in managing patients affected by it. In the present chapter, we first review the multimodal noninvasive tests performed during the presurgical evaluation of epileptic patients with drug refractory focal epilepsy, with particular emphasis on their value for the detection of insular cortex epilepsy. Second, we review the emerging multimodal investigation techniques in the field of epilepsy, that aim to (1) enhance the detection of insular cortex epilepsy and (2) unveil the architecture and causal relationships within epileptic networks. We summarize the results of these approaches with emphasis on the specific case of insular cortex epilepsy.
Collapse
Affiliation(s)
- Y Zerouali
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada; Ecole Polytechnique de Montréal, Montreal, QC, Canada
| | - J Ghaziri
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - D K Nguyen
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada; CHUM-Hôpital Notre-Dame, Montreal, QC, Canada.
| |
Collapse
|
33
|
Ioannides AA, Liu L, Poghosyan V, Kostopoulos GK. Using MEG to Understand the Progression of Light Sleep and the Emergence and Functional Roles of Spindles and K-Complexes. Front Hum Neurosci 2017; 11:313. [PMID: 28670270 PMCID: PMC5472839 DOI: 10.3389/fnhum.2017.00313] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/31/2017] [Indexed: 12/20/2022] Open
Abstract
We used tomographic analysis of MEG signals to characterize regional spectral changes in the brain at sleep onset and during light sleep. We identified two key processes that may causally link to loss of consciousness during the quiet or "core" periods of NREM1. First, active inhibition in the frontal lobe leads to delta and theta spectral power increases. Second, activation suppression leads to sharp drop of spectral power in alpha and higher frequencies in posterior parietal cortex. During NREM2 core periods, the changes identified in NREM1 become more widespread, but focal increases also emerge in alpha and low sigma band power in frontal midline cortical structures, suggesting reemergence of some monitoring of internal and external environment. Just before spindles and K-complexes (KCs), the hallmarks of NREM2, we identified focal spectral power changes in pre-frontal cortex, mid cingulate, and areas involved in environmental and internal monitoring, i.e., the rostral and sub-genual anterior cingulate. During both spindles and KCs, alpha and low sigma bands increases. Spindles emerge after further active inhibition (increase in delta power) of the frontal areas responsible for environmental monitoring, while in posterior parietal cortex, power increases in low and high sigma bands. KCs are correlated with increase in alpha power in the monitoring areas. These specific regional changes suggest strong and varied vigilance changes for KCs, but vigilance suppression and sharpening of cognitive processing for spindles. This is consistent with processes designed to ensure accurate and uncorrupted memory consolidation. The changes during KCs suggest a sentinel role: evaluation of the salience of provoking events to decide whether to increase processing and possibly wake up, or to actively inhibit further processing of intruding influences. The regional spectral patterns of NREM1, NREM2, and their dynamic changes just before spindles and KCs reveal an edge effect facilitating the emergence of spindles and KCs and defining the precise loci where they might emerge. In the time domain, the spindles are seen in widespread areas of the cortex just as reported from analysis of intracranial data, consistent with the emerging consensus of a differential topography that depends on the kind of memory stored.
Collapse
Affiliation(s)
- Andreas A. Ioannides
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd.Nicosia, Cyprus
| | - Lichan Liu
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd.Nicosia, Cyprus
| | - Vahe Poghosyan
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd.Nicosia, Cyprus
- MEG Unit, Department of Neurophysiology, King Fahad Medical CityRiyadh, Saudi Arabia
| | - George K. Kostopoulos
- Neurophysiology Unit, Department of Physiology, Medical School, University of PatrasRion, Greece
| |
Collapse
|
34
|
SISSY: An efficient and automatic algorithm for the analysis of EEG sources based on structured sparsity. Neuroimage 2017; 157:157-172. [PMID: 28576413 DOI: 10.1016/j.neuroimage.2017.05.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/26/2017] [Accepted: 05/20/2017] [Indexed: 11/20/2022] Open
Abstract
Over the past decades, a multitude of different brain source imaging algorithms have been developed to identify the neural generators underlying the surface electroencephalography measurements. While most of these techniques focus on determining the source positions, only a small number of recently developed algorithms provides an indication of the spatial extent of the distributed sources. In a recent comparison of brain source imaging approaches, the VB-SCCD algorithm has been shown to be one of the most promising algorithms among these methods. However, this technique suffers from several problems: it leads to amplitude-biased source estimates, it has difficulties in separating close sources, and it has a high computational complexity due to its implementation using second order cone programming. To overcome these problems, we propose to include an additional regularization term that imposes sparsity in the original source domain and to solve the resulting optimization problem using the alternating direction method of multipliers. Furthermore, we show that the algorithm yields more robust solutions by taking into account the temporal structure of the data. We also propose a new method to automatically threshold the estimated source distribution, which permits to delineate the active brain regions. The new algorithm, called Source Imaging based on Structured Sparsity (SISSY), is analyzed by means of realistic computer simulations and is validated on the clinical data of four patients.
Collapse
|
35
|
Meyer SS, Rossiter H, Brookes MJ, Woolrich MW, Bestmann S, Barnes GR. Using generative models to make probabilistic statements about hippocampal engagement in MEG. Neuroimage 2017; 149:468-482. [PMID: 28131892 PMCID: PMC5387160 DOI: 10.1016/j.neuroimage.2017.01.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
Magnetoencephalography (MEG) enables non-invasive real time characterization of brain activity. However, convincing demonstrations of signal contributions from deeper sources such as the hippocampus remain controversial and are made difficult by its depth, structural complexity and proximity to neocortex. Here, we demonstrate a method for quantifying hippocampal engagement probabilistically using simulated hippocampal activity and realistic anatomical and electromagnetic source modelling. We construct two generative models, one which supports neuronal current flow on the cortical surface, and one which supports neuronal current flow on both the cortical and hippocampal surface. Using Bayesian model comparison, we then infer which of the two models provides a more likely explanation of the dataset at hand. We also carry out a set of control experiments to rule out bias, including simulating medial temporal lobe sources to assess the risk of falsely positive results, and adding different types of displacements to the hippocampal portion of the mesh to test for anatomical specificity of the results. In addition, we test the robustness of this inference by adding co-registration error and sensor level noise. We find that the model comparison framework is sensitive to hippocampal activity when co-registration error is <3 mm and the sensor-level signal-to-noise ratio (SNR) is >-20 dB. These levels of co-registration error and SNR can now be achieved empirically using recently developed subject-specific head-casts.
Collapse
Affiliation(s)
- Sofie S Meyer
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N3BG, UK.
| | - Holly Rossiter
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N3BG, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, University of Oxford, Warneford Hospital, Oxford, UK
| | - Sven Bestmann
- Sobell Department for Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Gareth R Barnes
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N3BG, UK
| |
Collapse
|
36
|
Fuchs M, Kastner J, Tech R, Wagner M, Gasca F. MEG and EEG dipole clusters from extended cortical sources. Biomed Eng Lett 2017; 7:185-191. [PMID: 30603165 DOI: 10.1007/s13534-017-0019-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/06/2017] [Accepted: 02/11/2017] [Indexed: 11/26/2022] Open
Abstract
Data from magnetoencephalography (MEG) and electroencephalography (EEG) suffer from a rather limited signal-to-noise-ratio (SNR) due to cortical background activities and other artifacts. In order to study the effect of the SNR on the size and distribution of dipole clusters reconstructed from interictal epileptic spikes, we performed simulations using realistically shaped volume conductor models and extended cortical sources with different sensor configurations. Head models and cortical surfaces were derived from an averaged magnetic resonance image dataset (Montreal Neurological Institute). Extended sources were simulated by spherical patches with Gaussian current distributions on the folded cortical surface. Different patch sizes were used to investigate cancellation effects from opposing walls of sulcal foldings and to estimate corresponding changes in MEG and EEG sensitivity distributions. Finally, white noise was added to the simulated fields and equivalent current dipole reconstructions were performed to determine size and shape of the resulting dipole clusters. Neuronal currents are oriented perpendicular to the local cortical surface and show cancellation effects of source components on opposing sulcal walls. Since these mostly tangential aspects from large cortical patches cancel out, large extended sources exhibit more radial components in the head geometry. This effect has a larger impact on MEG data as compared to EEG, because in a spherical head model radial currents do not yield any magnetic field. Confidence volumes of single reconstructed dipoles from simulated data at different SNRs show a good correlation with the extension of clusters from repeated dipole reconstructions. Size and shape of dipole clusters reconstructed from extended cortical sources do not only depend on spike and timepoint selection, but also strongly on the SNR of the measured interictal MEG or EEG data. In a linear approximation the size of the clusters is proportional to the inverse SNR.
Collapse
Affiliation(s)
- Manfred Fuchs
- Compumedics Neuroscan GmbH, Heussweg 25, 20255 Hamburg, Germany
| | - Jörn Kastner
- Compumedics Neuroscan GmbH, Heussweg 25, 20255 Hamburg, Germany
| | - Reyko Tech
- Compumedics Neuroscan GmbH, Heussweg 25, 20255 Hamburg, Germany
| | - Michael Wagner
- Compumedics Neuroscan GmbH, Heussweg 25, 20255 Hamburg, Germany
| | - Fernando Gasca
- Compumedics Neuroscan GmbH, Heussweg 25, 20255 Hamburg, Germany
| |
Collapse
|
37
|
Tamilia E, Madsen JR, Grant PE, Pearl PL, Papadelis C. Current and Emerging Potential of Magnetoencephalography in the Detection and Localization of High-Frequency Oscillations in Epilepsy. Front Neurol 2017; 8:14. [PMID: 28194133 PMCID: PMC5276819 DOI: 10.3389/fneur.2017.00014] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/11/2017] [Indexed: 01/19/2023] Open
Abstract
Up to one-third of patients with epilepsy are medically intractable and need resective surgery. To be successful, epilepsy surgery requires a comprehensive preoperative evaluation to define the epileptogenic zone (EZ), the brain area that should be resected to achieve seizure freedom. Due to lack of tools and methods that measure the EZ directly, this area is defined indirectly based on concordant data from a multitude of presurgical non-invasive tests and intracranial recordings. However, the results of these tests are often insufficiently concordant or inconclusive. Thus, the presurgical evaluation of surgical candidates is frequently challenging or unsuccessful. To improve the efficacy of the surgical treatment, there is an overriding need for reliable biomarkers that can delineate the EZ. High-frequency oscillations (HFOs) have emerged over the last decade as new potential biomarkers for the delineation of the EZ. Multiple studies have shown that HFOs are spatially associated with the EZ. Despite the encouraging findings, there are still significant challenges for the translation of HFOs as epileptogenic biomarkers to the clinical practice. One of the major barriers is the difficulty to detect and localize them with non-invasive techniques, such as magnetoencephalography (MEG) or scalp electroencephalography (EEG). Although most literature has studied HFOs using invasive recordings, recent studies have reported the detection and localization of HFOs using MEG or scalp EEG. MEG seems to be particularly advantageous compared to scalp EEG due to its inherent advantages of being less affected by skull conductivity and less susceptible to contamination from muscular activity. The detection and localization of HFOs with MEG would largely expand the clinical utility of these new promising biomarkers to an earlier stage in the diagnostic process and to a wider range of patients with epilepsy. Here, we conduct a thorough critical review of the recent MEG literature that investigates HFOs in patients with epilepsy, summarizing the different methodological approaches and the main findings. Our goal is to highlight the emerging potential of MEG in the non-invasive detection and localization of HFOs for the presurgical evaluation of patients with medically refractory epilepsy (MRE).
Collapse
Affiliation(s)
- Eleonora Tamilia
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph R. Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Patricia Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Phillip L. Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Christos Papadelis
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Complex patterns of spatially extended generators of epileptic activity: Comparison of source localization methods cMEM and 4-ExSo-MUSIC on high resolution EEG and MEG data. Neuroimage 2016; 143:175-195. [DOI: 10.1016/j.neuroimage.2016.08.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 11/23/2022] Open
|
39
|
Shirozu H, Hashizume A, Masuda H, Fukuda M, Ito Y, Nakayama Y, Higashijima T, Kameyama S. Spatiotemporal Accuracy of Gradient Magnetic-Field Topography (GMFT) Confirmed by Simultaneous Magnetoencephalography and Intracranial Electroencephalography Recordings in Patients with Intractable Epilepsy. Front Neural Circuits 2016; 10:65. [PMID: 27594827 PMCID: PMC4990550 DOI: 10.3389/fncir.2016.00065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/03/2016] [Indexed: 11/13/2022] Open
Abstract
Gradient magnetic-field topography (GMFT) is one method for analyzing magnetoencephalography (MEG) and representing the spatiotemporal dynamics of activity on the brain surface. In contrast to spatial filters, GMFT does not include a process reconstructing sources by mixing sensor signals with adequate weighting. Consequently, noisy sensors have localized and limited effects on the results, and GMFT can handle MEG recordings with low signal-to-noise ratio. This property is derived from the principle of the planar-type gradiometer, which obtains maximum gradient magnetic-field signals just above the electrical current source. We assumed that this characteristic allows GMFT to represent even faint changes in brain activities that cannot be achieved with conventional equivalent current dipole analysis or spatial filters. GMFT is thus hypothesized to represent brain surface activities from onset to propagation of epileptic discharges. This study aimed to validate the spatiotemporal accuracy of GMFT by analyzing epileptic activities using simultaneous MEG and intracranial electroencephalography (iEEG) recordings. Participants in this study comprised 12 patients with intractable epilepsy. Epileptic spikes simultaneously detected on both MEG and iEEG were analyzed by GMFT and voltage topography (VT), respectively. Discrepancies in spatial distribution between GMFT and VT were evaluated for each epileptic spike. On the lateral cortices, areas of GMFT activity onset were almost concordant with VT activities arising at the gyral unit level (concordance rate, 66.7-100%). Median time lag between GMFT and VT at onset in each patient was 11.0-42.0 ms. On the temporal base, VT represented basal activities, whereas GMFT failed but instead represented propagated activities of the lateral temporal cortices. Activities limited to within the basal temporal or deep brain region were not reflected on GMFT. In conclusion, GMFT appears to accurately represent brain activities of the lateral cortices at the gyral unit level. The slight time lag between GMFT and VT is likely attributable to differences in the detection principles underlying MEG and iEEG. GMFT has great potential for investigating the spatiotemporal dynamics of lateral brain surface activities.
Collapse
Affiliation(s)
- Hiroshi Shirozu
- Department of Functional Neurosurgery, Nishi-Niigata Chuo National Hospital Niigata, Japan
| | - Akira Hashizume
- Department of Neurosurgery, Takanobashi Central Hospital Hiroshima, Japan
| | - Hiroshi Masuda
- Department of Functional Neurosurgery, Nishi-Niigata Chuo National Hospital Niigata, Japan
| | - Masafumi Fukuda
- Department of Functional Neurosurgery, Nishi-Niigata Chuo National Hospital Niigata, Japan
| | - Yosuke Ito
- Department of Functional Neurosurgery, Nishi-Niigata Chuo National Hospital Niigata, Japan
| | - Yoko Nakayama
- Department of Functional Neurosurgery, Nishi-Niigata Chuo National Hospital Niigata, Japan
| | - Takefumi Higashijima
- Department of Functional Neurosurgery, Nishi-Niigata Chuo National Hospital Niigata, Japan
| | - Shigeki Kameyama
- Department of Functional Neurosurgery, Nishi-Niigata Chuo National Hospital Niigata, Japan
| |
Collapse
|
40
|
Kim D, Joo EY, Seo DW, Kim MY, Lee YH, Kwon HC, Kim JM, Hong SB. Accuracy of MEG in localizing irritative zone and seizure onset zone: Quantitative comparison between MEG and intracranial EEG. Epilepsy Res 2016; 127:291-301. [PMID: 27693985 DOI: 10.1016/j.eplepsyres.2016.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/25/2016] [Accepted: 08/14/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND We conducted the study to examine accuracy of the magnetoencephalography (MEG) spike source localization in presurgical evaluation of patients with medically refractory focal epilepsy. METHODS Ten consecutive patients with refractory focal epilepsy who were candidates for two-stage surgery with long-term intracranial electroencephalography (ICEEG) monitoring were enrolled. Interictal MEG recordings with simultaneous scalp EEG were obtained within 7days before the ICEEG electrode implantation. The location of each MEG spike source was quantitatively compared with ICEEG spike foci (focal area of interictal spikes) and ICEEG ictal foci (earliest cortical origin of seizures). Gyral-width concordance and sublobar concordance were also determined for all MEG spike sources. Gyral-width concordance was defined by distance of 15mm or less between MEG spike sources and ICEEG spike foci or ICEEG ictal foci. RESULTS Visual analyses of the MEG traces of all 10 patients revealed 292 spikes (29.2±24.0 per patient). Spike yield of the MEG was similar to the simultaneously recorded scalp EEG. MEG spike sources were closely located with ICEEG spike foci (distance: 9.3±10.8mm). Clustered MEG spike sources were even closer to ICEEG spike foci (distance: 7.3±6.4mm). MEG spike sources, even clustered ones, were less concordant with ICEEG ictal foci and had significant longer distance from ICEEG ictal foci (distance: 21.5±15.6mm for all sources, 19.7±13.7mm for clustered sources). Gyral-width concordance rate and sublobar concordance rate were also higher with ICEEG interictal spike foci than with ICEEG ictal foci. On the other hand, 53.4% of interictal spike foci from ICEEG were not detected by interictal MEG recordings. CONCLUSIONS MEG spike sources, especially clustered ones, from interictal recording could localize the irritative zone of ICEEG with a high accuracy. However, MEG spike sources have relatively poor correlation with seizure onset zone and lower sensitivity in identifying all irritative zones of ICEEG. This limitation should be considered in the interpretation of MEG results.
Collapse
Affiliation(s)
- Daeyoung Kim
- Department of Neurology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Eun Yeon Joo
- Department of Neurology, Samsung Medical Center, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dae-Won Seo
- Department of Neurology, Samsung Medical Center, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Min-Young Kim
- Center for Biosignals, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Yong-Ho Lee
- Center for Biosignals, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Hyuk Chan Kwon
- Center for Biosignals, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Jae-Moon Kim
- Department of Neurology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
| | - Seung Bong Hong
- Department of Neurology, Samsung Medical Center, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Samsung Biomedical Research Institute, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Abstract
Ever since the implementation of invasive EEG recordings in the clinical setting, it has been perceived that a considerable proportion of epileptic discharges present at a cortical level are missed by routine scalp EEG recordings. Several in vitro, in vivo, and simulation studies have been performed in the past decades aiming to clarify the interrelations of cortical sources with their scalp and invasive EEG correlates. The amplitude ratio of cortical potentials to their scalp EEG correlates, the extent of the cortical area involved in the discharge, as well as the localization of the cortical source and its geometry have been each independently linked to the recording of the cortical discharge with scalp electrodes. The need to elucidate these interrelations has been particularly imperative in the field of epilepsy surgery with its rapidly growing EEG-based localization technologies. Simultaneous multiscale EEG recordings with scalp, subdural and/or depth electrodes, applied in presurgical epilepsy workup, offer an excellent opportunity to shed some light to this fundamental issue. Whereas past studies have considered predominantly neocortical sources in the context of temporal lobe epilepsy, current investigations have included deep sources, as in mesial temporal epilepsy, as well as extratemporal sources. Novel computational tools may serve to provide surrogates for the shortcomings of EEG recording methodology and facilitate further developments in modern electrophysiology.
Collapse
|
42
|
Zerouali Y, Pouliot P, Robert M, Mohamed I, Bouthillier A, Lesage F, Nguyen DK. Magnetoencephalographic signatures of insular epileptic spikes based on functional connectivity. Hum Brain Mapp 2016; 37:3250-61. [PMID: 27220112 DOI: 10.1002/hbm.23238] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 11/10/2022] Open
Abstract
Failure to recognize insular cortex seizures has recently been identified as a cause of epilepsy surgeries targeting the temporal, parietal, or frontal lobe. Such failures are partly due to the fact that current noninvasive localization techniques fare poorly in recognizing insular epileptic foci. Our group recently demonstrated that magnetoencephalography (MEG) is sensitive to epileptiform spikes generated by the insula. In this study, we assessed the potential of distributed source imaging and functional connectivity analyses to distinguish insular networks underlying the generation of spikes. Nineteen patients with operculo-insular epilepsy were investigated. Each patient underwent MEG as well as T1-weighted magnetic resonance imaging (MRI) as part of their standard presurgical evaluation. Cortical sources of MEG spikes were reconstructed with the maximum entropy on the mean algorithm, and their time courses served to analyze source functional connectivity. The results indicate that the anterior and posterior subregions of the insula have specific patterns of functional connectivity mainly involving frontal and parietal regions, respectively. In addition, while their connectivity patterns are qualitatively similar during rest and during spikes, couplings within these networks are much stronger during spikes. These results show that MEG can establish functional connectivity-based signatures that could help in the diagnosis of different subtypes of insular cortex epilepsy. Hum Brain Mapp 37:3250-3261, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Younes Zerouali
- Département De Génie Électrique, École Polytechnique De Montréal, Montreal, Quebec, Canada.,Research Centre, Centre Hospitalier De L'Université De Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Philippe Pouliot
- Département De Génie Électrique, École Polytechnique De Montréal, Montreal, Quebec, Canada.,Institut De Cardiologie De Montréal, Montreal, Quebec, Canada
| | - Manon Robert
- Research Centre, Centre Hospitalier De L'Université De Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Ismail Mohamed
- Division of Neurology, Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Alain Bouthillier
- Research Centre, Centre Hospitalier De L'Université De Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Frédéric Lesage
- Département De Génie Électrique, École Polytechnique De Montréal, Montreal, Quebec, Canada.,Institut De Cardiologie De Montréal, Montreal, Quebec, Canada
| | - Dang K Nguyen
- Research Centre, Centre Hospitalier De L'Université De Montréal (CRCHUM), Montreal, Quebec, Canada.,Division of Neurology, Department of Medicine, CHUM - Hôpital Notre-Dame, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Convergent evidence for hierarchical prediction networks from human electrocorticography and magnetoencephalography. Cortex 2016; 82:192-205. [PMID: 27389803 PMCID: PMC4981429 DOI: 10.1016/j.cortex.2016.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/08/2016] [Accepted: 05/02/2016] [Indexed: 11/20/2022]
Abstract
We propose that sensory inputs are processed in terms of optimised predictions and prediction error signals within hierarchical neurocognitive models. The combination of non-invasive brain imaging and generative network models has provided support for hierarchical frontotemporal interactions in oddball tasks, including recent identification of a temporal expectancy signal acting on prefrontal cortex. However, these studies are limited by the need to invert magnetoencephalographic or electroencephalographic sensor signals to localise activity from cortical 'nodes' in the network, or to infer neural responses from indirect measures such as the fMRI BOLD signal. To overcome this limitation, we examined frontotemporal interactions estimated from direct cortical recordings from two human participants with cortical electrode grids (electrocorticography - ECoG). Their frontotemporal network dynamics were compared to those identified by magnetoencephalography (MEG) in forty healthy adults. All participants performed the same auditory oddball task with standard tones interspersed with five deviant tone types. We normalised post-operative electrode locations to standardised anatomic space, to compare across modalities, and inverted the MEG to cortical sources using the estimated lead field from subject-specific head models. A mismatch negativity signal in frontal and temporal cortex was identified in all subjects. Generative models of the electrocorticographic and magnetoencephalographic data were separately compared using the free-energy estimate of the model evidence. Model comparison confirmed the same critical features of hierarchical frontotemporal networks in each patient as in the group-wise MEG analysis. These features included bilateral, feedforward and feedback frontotemporal modulated connectivity, in addition to an asymmetric expectancy driving input on left frontal cortex. The invasive ECoG provides an important step in construct validation of the use of neural generative models of MEG, which in turn enables generalisation to larger populations. Together, they give convergent evidence for the hierarchical interactions in frontotemporal networks for expectation and processing of sensory inputs.
Collapse
|
44
|
Grova C, Aiguabella M, Zelmann R, Lina JM, Hall JA, Kobayashi E. Intracranial EEG potentials estimated from MEG sources: A new approach to correlate MEG and iEEG data in epilepsy. Hum Brain Mapp 2016; 37:1661-83. [PMID: 26931511 DOI: 10.1002/hbm.23127] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/18/2015] [Accepted: 01/17/2016] [Indexed: 01/19/2023] Open
Abstract
Detection of epileptic spikes in MagnetoEncephaloGraphy (MEG) requires synchronized neuronal activity over a minimum of 4cm2. We previously validated the Maximum Entropy on the Mean (MEM) as a source localization able to recover the spatial extent of the epileptic spike generators. The purpose of this study was to evaluate quantitatively, using intracranial EEG (iEEG), the spatial extent recovered from MEG sources by estimating iEEG potentials generated by these MEG sources. We evaluated five patients with focal epilepsy who had a pre-operative MEG acquisition and iEEG with MRI-compatible electrodes. Individual MEG epileptic spikes were localized along the cortical surface segmented from a pre-operative MRI, which was co-registered with the MRI obtained with iEEG electrodes in place for identification of iEEG contacts. An iEEG forward model estimated the influence of every dipolar source of the cortical surface on each iEEG contact. This iEEG forward model was applied to MEG sources to estimate iEEG potentials that would have been generated by these sources. MEG-estimated iEEG potentials were compared with measured iEEG potentials using four source localization methods: two variants of MEM and two standard methods equivalent to minimum norm and LORETA estimates. Our results demonstrated an excellent MEG/iEEG correspondence in the presumed focus for four out of five patients. In one patient, the deep generator identified in iEEG could not be localized in MEG. MEG-estimated iEEG potentials is a promising method to evaluate which MEG sources could be retrieved and validated with iEEG data, providing accurate results especially when applied to MEM localizations. Hum Brain Mapp 37:1661-1683, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christophe Grova
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada.,Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada.,Physics Department and PERFORM Centre, Concordia University, Montreal, Québec, Canada.,Centre De Recherches En Mathématiques, Montreal, Québec, Canada
| | - Maria Aiguabella
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | - Rina Zelmann
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | - Jean-Marc Lina
- Centre De Recherches En Mathématiques, Montreal, Québec, Canada.,Electrical Engineering Department, Ecole De Technologie Supérieure, Montreal, Québec, Canada.,Centre D'etudes Avancées En Médecine Du Sommeil, Centre De Recherche De L'hôpital Sacré-Coeur De Montréal, Montreal, Québec, Canada
| | - Jeffery A Hall
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | - Eliane Kobayashi
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| |
Collapse
|
45
|
Ueda Y, Egawa K, Ito T, Takeuchi F, Nakajima M, Otsuka K, Asahina N, Takahashi K, Nakane S, Kohsaka S, Shiraishi H. The presence of short and sharp MEG spikes implies focal cortical dysplasia. Epilepsy Res 2015; 114:141-6. [DOI: 10.1016/j.eplepsyres.2015.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 03/10/2015] [Accepted: 04/24/2015] [Indexed: 11/30/2022]
|
46
|
MEG-EEG Information Fusion and Electromagnetic Source Imaging: From Theory to Clinical Application in Epilepsy. Brain Topogr 2015; 28:785-812. [PMID: 26016950 PMCID: PMC4600479 DOI: 10.1007/s10548-015-0437-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 05/04/2015] [Indexed: 11/26/2022]
Abstract
The purpose of this study is to develop and quantitatively assess whether fusion of EEG and MEG (MEEG) data within the maximum entropy on the mean (MEM) framework increases the spatial accuracy of source localization, by yielding better recovery of the spatial extent and propagation pathway of the underlying generators of inter-ictal epileptic discharges (IEDs). The key element in this study is the integration of the complementary information from EEG and MEG data within the MEM framework. MEEG was compared with EEG and MEG when localizing single transient IEDs. The fusion approach was evaluated using realistic simulation models involving one or two spatially extended sources mimicking propagation patterns of IEDs. We also assessed the impact of the number of EEG electrodes required for an efficient EEG–MEG fusion. MEM was compared with minimum norm estimate, dynamic statistical parametric mapping, and standardized low-resolution electromagnetic tomography. The fusion approach was finally assessed on real epileptic data recorded from two patients showing IEDs simultaneously in EEG and MEG. Overall the localization of MEEG data using MEM provided better recovery of the source spatial extent, more sensitivity to the source depth and more accurate detection of the onset and propagation of IEDs than EEG or MEG alone. MEM was more accurate than the other methods. MEEG proved more robust than EEG and MEG for single IED localization in low signal-to-noise ratio conditions. We also showed that only few EEG electrodes are required to bring additional relevant information to MEG during MEM fusion.
Collapse
|
47
|
O'Donovan CA. To do or not to do? Magnetoencephalography in the presurgical evaluation of epilepsy. Epilepsy Behav 2015; 46:8-9. [PMID: 25864993 DOI: 10.1016/j.yebeh.2015.02.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 02/16/2015] [Accepted: 02/20/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Cormac A O'Donovan
- Department of Neurology, Wake Forest University, Winston-Salem, NC 27157, USA.
| |
Collapse
|
48
|
Kharkar S, Knowlton R. Magnetoencephalography in the presurgical evaluation of epilepsy. Epilepsy Behav 2015; 46:19-26. [PMID: 25555504 DOI: 10.1016/j.yebeh.2014.11.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 11/27/2022]
Abstract
Magnetoencephalography (MEG) is an important tool in the presurgical evaluation of patients with medically refractory epilepsy. The appropriate utilization and interpretation of MEG studies can increase the proportion of patients who may be able to further pursue surgical evaluation, refine surgical planning, and potentially increase the probability of seizure freedom after surgery. The aim of this paper is to provide the reader with a comprehensive but accessible guide to MEG, with particular emphasis on acquiring a working knowledge of MEG analysis, identifying patient groups that are most likely to benefit, and clarifying the limitations of this technology.
Collapse
Affiliation(s)
| | - Robert Knowlton
- Department of Neurology, University of California at San Francisco, USA; Department of Radiology, University of California at San Francisco, USA; Department of Neurological Surgery, University of California at San Francisco, USA
| |
Collapse
|
49
|
Localization Accuracy of Distributed Inverse Solutions for Electric and Magnetic Source Imaging of Interictal Epileptic Discharges in Patients with Focal Epilepsy. Brain Topogr 2015; 29:162-81. [DOI: 10.1007/s10548-014-0423-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
|
50
|
Bagić A, Ebersole JS. Does MEG/MSI dipole variability mean unreliability? Clin Neurophysiol 2015; 126:209-11. [DOI: 10.1016/j.clinph.2014.01.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 11/28/2022]
|