1
|
Chandramowlishwaran P, Raja S, Maheshwari A, Srinivasan S. Enteric Nervous System in Neonatal Necrotizing Enterocolitis. Curr Pediatr Rev 2022; 18:9-24. [PMID: 34503418 DOI: 10.2174/1573396317666210908162745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/26/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The pathophysiology of necrotizing enterocolitis (NEC) is not clear, but increasing information suggests that the risk and severity of NEC may be influenced by abnormalities in the enteric nervous system (ENS). OBJECTIVE The purpose of this review was to scope and examine the research related to ENS-associated abnormalities that have either been identified in NEC or have been noted in other inflammatory bowel disorders (IBDs) with histopathological abnormalities similar to NEC. The aim was to summarize the research findings, identify research gaps in existing literature, and disseminate them to key knowledge end-users to collaborate and address the same in future studies. METHODS Articles that met the objectives of the study were identified through an extensive literature search in the databases PubMed, EMBASE, and Scopus. RESULTS The sources identified through the literature search revealed that: (1) ENS may be involved in NEC development and post-NEC complications, (2) NEC development is associated with changes in the ENS, and (3) NEC-associated changes could be modulated by the ENS. CONCLUSION The findings from this review identify the enteric nervous as a target in the development and progression of NEC. Thus, factors that can protect the ENS can potentially prevent and treat NEC and post-NEC complications. This review serves to summarize the existing literature and highlights a need for further research on the involvement of ENS in NEC.
Collapse
Affiliation(s)
- Pavithra Chandramowlishwaran
- Department of Medicine, Emory University School of Medicine, Decatur, GA, USA.,Gastroenterology Research, Atlanta VA Medical Center, Decatur, GA, USA
| | - Shreya Raja
- Department of Medicine, Emory University School of Medicine, Decatur, GA, USA.,Gastroenterology Research, Atlanta VA Medical Center, Decatur, GA, USA
| | - Akhil Maheshwari
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Shanthi Srinivasan
- Department of Medicine, Emory University School of Medicine, Decatur, GA, USA.,Gastroenterology Research, Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|
2
|
Turgeon PJ, Chan GC, Chen L, Jamal AN, Yan MS, Ho JJD, Yuan L, Ibeh N, Ku KH, Cybulsky MI, Aird WC, Marsden PA. Epigenetic Heterogeneity and Mitotic Heritability Prime Endothelial Cell Gene Induction. THE JOURNAL OF IMMUNOLOGY 2020; 204:1173-1187. [DOI: 10.4049/jimmunol.1900744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
|
3
|
Heparin-binding EGF-like growth factor promotes neuronal nitric oxide synthase expression and protects the enteric nervous system after necrotizing enterocolitis. Pediatr Res 2017; 82:490-500. [PMID: 28422949 DOI: 10.1038/pr.2017.68] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 02/08/2017] [Indexed: 12/23/2022]
Abstract
BackgroundNeonatal necrotizing enterocolitis (NEC) is associated with alterations of the enteric nervous system (ENS), with loss of neuronal nitric oxide synthase (nNOS)-expressing neurons in the intestine. The aim of this study was to investigate the roles of heparin-binding EGF-like growth factor (HB-EGF) in neural stem cell (NSC) differentiation, nNOS expression, and effects on ENS integrity during experimental NEC.MethodsThe effects of HB-EGF on NSC differentiation and nNOS production were determined using cultured enteric NSCs. Myenteric neuronal subpopulations were examined in HB-EGF knockout mice. Rat pups were exposed to experimental NEC, and the effects of HB-EGF treatment on nNOS production and intestinal neuronal apoptosis were determined.ResultsHB-EGF promotes NSC differentiation, with increased nNOS production in differentiated neurons and glial cells. Moreover, loss of nNOS-expressing neurons in the myenteric plexus and impaired neurite outgrowth were associated with absence of the HB-EGF gene. In addition, administration of HB-EGF preserves nNOS expression in the myenteric plexus and reduces enteric neuronal apoptosis during experimental NEC.ConclusionHB-EGF promotes the differentiation of enteric NSCs into neurons in a nitric oxide (NO)-dependent manner, and protects the ENS from NEC-induced injury, providing new insights into potential therapeutic strategies for the treatment of NEC in the future.
Collapse
|
4
|
Niño DF, Sodhi CP, Hackam DJ. Necrotizing enterocolitis: new insights into pathogenesis and mechanisms. Nat Rev Gastroenterol Hepatol 2016; 13:590-600. [PMID: 27534694 PMCID: PMC5124124 DOI: 10.1038/nrgastro.2016.119] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Necrotizing enterocolitis (NEC) is the most frequent and lethal disease of the gastrointestinal tract of preterm infants. At present, NEC is thought to develop in the premature host in the setting of bacterial colonization, often after administration of non-breast milk feeds, and disease onset is thought to be due in part to a baseline increased reactivity of the premature intestinal mucosa to microbial ligands as compared with the full-term intestinal mucosa. The increased reactivity leads to mucosal destruction and impaired mesenteric perfusion and partly reflects an increased expression of the bacterial receptor Toll-like receptor 4 (TLR4) in the premature gut, as well as other factors that predispose the intestine to a hyper-reactive state in response to colonizing microorganisms. The increased expression of TLR4 in the premature gut reflects a surprising role for this molecule in the regulation of normal intestinal development through its effects on the Notch signalling pathway. This Review will examine the current approach to the diagnosis and treatment of NEC, provide an overview of our current knowledge regarding its molecular underpinnings and highlight advances made within the past decade towards the development of specific preventive and treatment strategies for this devastating disease.
Collapse
MESH Headings
- Animals
- Biological Factors/therapeutic use
- Biomarkers/metabolism
- Breast Feeding
- Disease Models, Animal
- Disease Susceptibility
- Enterocolitis, Necrotizing/diagnosis
- Enterocolitis, Necrotizing/etiology
- Enterocolitis, Necrotizing/prevention & control
- Gastrointestinal Microbiome/physiology
- Humans
- Infant, Newborn
- Infant, Premature
- Infant, Premature, Diseases/diagnosis
- Infant, Premature, Diseases/etiology
- Infant, Premature, Diseases/therapy
- Probiotics/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Diego F Niño
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
- The Bloomberg Children's Center, 1800 Orleans Street, Baltimore, Maryland 21287, USA
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
- The Bloomberg Children's Center, 1800 Orleans Street, Baltimore, Maryland 21287, USA
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
- The Bloomberg Children's Center, 1800 Orleans Street, Baltimore, Maryland 21287, USA
| |
Collapse
|
5
|
Yang J, Su Y, Zhou Y, Besner GE. Heparin-binding EGF-like growth factor (HB-EGF) therapy for intestinal injury: Application and future prospects. ACTA ACUST UNITED AC 2013; 21:95-104. [PMID: 24345808 DOI: 10.1016/j.pathophys.2013.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Throughout the past 20 years, we have been investigating the potential therapeutic roles of heparin-binding EGF-like growth factor (HB-EGF), a member of the epidermal growth factor family, in various models of intestinal injury including necrotizing enterocolitis (NEC), intestinal ischemia/reperfusion (I/R) injury, and hemorrhagic shock and resuscitation (HS/R). Our studies have demonstrated that HB-EGF acts as an effective mitogen, a restitution-inducing reagent, a cellular trophic factor, an anti-apoptotic protein and a vasodilator, via its effects on various cell types in the intestine. In the current paper, we have reviewed the application and therapeutic effects of HB-EGF in three classic animal models of intestinal injury, with particular emphasis on its protection of the intestines from NEC. Additionally, we have summarized the protective functions of HB-EGF on various target cells in the intestine. Lastly, we have provided a brief discussion focusing on the future development of HB-EGF clinical applications for the treatment of various forms of intestinal injury including NEC.
Collapse
Affiliation(s)
- Jixin Yang
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| | - Yanwei Su
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| | - Yu Zhou
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| | - Gail E Besner
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| |
Collapse
|
6
|
Heparin-binding epidermal growth factor-like growth factor attenuates acute lung injury and multiorgan dysfunction after scald burn. J Surg Res 2013; 185:329-37. [PMID: 23777985 DOI: 10.1016/j.jss.2013.05.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/09/2013] [Accepted: 05/15/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Impaired gut barrier function and acute lung injury (ALI) are significant components of the multiorgan dysfunction syndrome that accompanies severe burns. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been shown to reduce inflammation, preserve gut barrier function, and protect the lungs from acute injury in several models of intestinal injury; however, comparable effects of HB-EGF after burn injury have never been investigated. The present studies were based on the hypothesis that HB-EGF would reduce the severity of ALI and multiorgan dysfunction after scald burns in mice. MATERIALS AND METHODS Mice were randomized to sham, burn (25% of total body surface area with full thickness dorsal scald), and burn + HB-EGF groups. The HB-EGF group was pretreated with two enteral doses of HB-EGF (1200 μg/kg/dose). Mice were resuscitated after injury and sacrificed at 8 h later. Their lungs were harvested for determination of pulmonary myeloperoxidase activity, wet:dry ratios, and terminal deoxynucleotidyl transferase dUTP nick end label and cleaved caspase 3 immunohistochemistry. Lung function was assessed using the SCIREQ Flexivent. Splenic apoptosis was quantified by Western blot for cleaved caspase 3, and intestinal permeability was measured using the everted gut sac method. RESULTS Mice subjected to scald burn injury had increased lung myeloperoxidase levels, increased pulmonary and splenic apoptosis, elevated airway resistance and bronchial reactivity, and increased intestinal permeability compared with sham mice. These abnormalities were significantly attenuated in mice that were subjected to scald burn injury but treated with enteral HB-EGF. CONCLUSIONS These data suggest that HB-EGF protects mice from ALI after scald burn and attenuates the severity of postburn multiorgan dysfunction.
Collapse
|
7
|
Zhang HY, James I, Chen CL, Besner GE. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) preserves gut barrier function by blocking neutrophil-endothelial cell adhesion after hemorrhagic shock and resuscitation in mice. Surgery 2011; 151:594-605. [PMID: 22153812 DOI: 10.1016/j.surg.2011.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 10/07/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND We have shown that heparin-binding epidermal growth factor-like growth factor (HB-EGF) protects the intestines from injury in several different animal models, including hemorrhagic shock and resuscitation (HS/R). The current study was designed to explore the mechanisms underlying the anti-inflammatory role of HB-EGF in preservation of gut barrier function after injury. METHODS In vivo, HS/R was induced in wild-type and neutropenic mice, with or without administration of HB-EGF, and intestinal permeability determined by use of the everted gut sac method. In vitro, cultured human umbilical vein endothelial cells (HUVECs) and freshly isolated human peripheral blood mononuclear cells (PMNs) were used to determine the effects of HB-EGF on HUVEC-PMN adhesion, reactive oxygen species production in PMN, adhesion molecule expression in HUVEC and PMN, and the signaling pathways involved. RESULTS We found that administration of HB-EGF to healthy mice led to preservation of gut barrier function after HS/R. Likewise, induction of neutropenia in mice also led to preservation of gut barrier function after HS/R. Administration of HB-EGF to neutropenic mice did not lead to further improvement in gut barrier function. In vitro studies showed that HB-EGF decreased neutrophil-endothelial cell (PMN-EC) adherence by down-regulating adhesion molecule expression in EC via the phosphoinositide 3-kinase-Akt pathway, and by inhibiting adhesion molecule surface mobilization and reactive oxygen species production in PMN. CONCLUSION These results indicate that HB-EGF preserves gut barrier function by inhibiting PMN and EC activation, thereby blocking PMN-EC adherence after HS/R in mice, and support the future use of HB-EGF in disease states manifested by hypoperfusion injury.
Collapse
Affiliation(s)
- Hong-yi Zhang
- Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | | | | | |
Collapse
|
8
|
Zhang HY, Radulescu A, Chen Y, Besner GE. HB-EGF improves intestinal microcirculation after hemorrhagic shock. J Surg Res 2011; 171:218-25. [PMID: 20421109 PMCID: PMC2911522 DOI: 10.1016/j.jss.2010.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 12/24/2009] [Accepted: 01/14/2010] [Indexed: 02/08/2023]
Abstract
BACKGROUND The goal of this study was to determine the role of heparin-binding epidermal growth factor-like growth factor (HB-EGF) as a mediator of gut microcirculation after hemorrhagic shock and resuscitation (HS/R) in mice. MATERIALS AND METHODS HS/R was induced in HB-EGF knockout (KO) and wild type (WT) mice. Ink-gelatin injection and vascular corrosion casting were performed to visualize the gut microvasculature. The degree of gut microcirculatory injury was graded using five patterns of injury (1-5) according to the severity of microvascular hypoperfusion. Statistical analyses were performed using linear mixed models with P < 0.05 considered statistically significant. RESULTS HB-EGF KO mice subjected to HS/R had significantly decreased perfusion of the gut microvasculature compared with WT mice subjected to HS/R (P = 0.0001). HB-EGF KO mice subjected to HS/R and treated with exogenous HB-EGF had significantly increased gut microvascular perfusion compared with non-HB-EGF treated KO mice (P = 0.01). Lastly, WT mice subjected to HS/R and treated with HB-EGF had significantly increased gut microvascular perfusion compared with non-HB-EGF-treated WT mice (P = 0.04). CONCLUSIONS HB-EGF improves gut microcirculation after HS/R. These findings support the clinical use of HB-EGF in protection of the intestines from disease states associated with intestinal hypoperfusion injury.
Collapse
Affiliation(s)
- Hong-yi Zhang
- Department of Pediatric Surgery, Nationwide Children's Hospital, The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, The Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| | | | | | | |
Collapse
|
9
|
Astrocytic transactivation by α2A-adrenergic and 5-HT2B serotonergic signaling. Neurochem Int 2010; 57:421-31. [DOI: 10.1016/j.neuint.2010.04.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/24/2010] [Accepted: 04/28/2010] [Indexed: 12/11/2022]
|
10
|
Zhang HY, Radulescu A, Chen CL, Olson JK, Darbyshire AK, Besner GE. Mice overexpressing the gene for heparin-binding epidermal growth factor-like growth factor (HB-EGF) have increased resistance to hemorrhagic shock and resuscitation. Surgery 2010; 149:276-83. [PMID: 20965535 DOI: 10.1016/j.surg.2010.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 08/05/2010] [Indexed: 12/28/2022]
Abstract
BACKGROUND The aim of the current study was to determine whether overexpression of heparin-binding epidermal growth factor-like growth factor (HB-EGF) could protect the intestines from injury after hemorrhagic shock and resuscitation in mice. METHODS Hemorrhagic shock and resuscitation was induced in HB-EGF transgenic and wild type mice. Cross-reacting material 197 (5 mg/kg) was administered to a subset of HB-EGF transgenic mice to block the overexpressed HB-EGF. Intestinal histologic injury scores, intestinal epithelial cell apoptosis indices, and gut barrier function were determined. The Student t test and 1-way analysis of variance were employed to compare the differences between groups. RESULTS All mice subjected to hemorrhagic shock and resuscitation had significantly increased intestinal histologic injury scores, apoptosis indices, and intestinal permeability compared with sham-operated mice. Compared with wild type mice, HB-EGF transgenic mice had significantly decreased histologic injury (mean injury grade 2.79 ± 0.84 vs 3.88 ± 1.43, P = .02), apoptosis indices (mean apoptosis index 8.77 ± 5.23 vs 17.91 ± 13.23, P = .03), and mucosal permeability (FITC-dextran 4 clearance 13.06 ± 5.67 vs 20.03 ± 7.81 nL/min/ m(2), P = .02) at 3 hours of reperfusion. HB-EGF transgenic mice subjected to hemorrhagic shock and resuscitation and treated with cross-reacting material 197 had a significantly increased histologic injury (mean injury grade 3.63 ± 1.00 vs 2.79 ± 0.84, P = .04) and mucosal permeability (FITC-dextran 4 clearance 22.87 ± 9.69 vs 13.06 ± 5.67 nL/min/cm2, P = .01) at 3 hours of reperfusion compared with non-cross-reacting material 197 treated transgenic mice, with no significant changes in apoptosis indices. Cross-reacting material 197 did not reverse the decreased apoptosis observed in HB-EGF transgenic mice subjected to hemorrhagic shock and resuscitation, which suggests that mechanisms in addition to decreased apoptosis may be responsible for the intestinal cytoprotective effects of endogenous HB-EGF overexpression. CONCLUSION Overexpression of HB-EGF increases resistance to hemorrhagic shock and resuscitation in mice.
Collapse
Affiliation(s)
- Hong-yi Zhang
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
11
|
James IAO, Chen CL, Huang G, Zhang HY, Velten M, Besner GE. HB-EGF protects the lungs after intestinal ischemia/reperfusion injury. J Surg Res 2010; 163:86-95. [PMID: 20599214 DOI: 10.1016/j.jss.2010.03.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/11/2010] [Accepted: 03/29/2010] [Indexed: 01/09/2023]
Abstract
BACKGROUND Acute respiratory distress syndrome continues to be a major source of morbidity and mortality in critically-ill patients. Heparin binding EGF-like growth factor (HB-EGF) is a biologically active protein that acts as an intestinal cytoprotective agent. We have previously demonstrated that HB-EGF protects the intestines from injury in several different animal models of intestinal injury. In the current study, we investigated the ability of HB-EGF to protect the lungs from remote organ injury after intestinal ischemia/reperfusion (I/R). METHODS Mice were randomly assigned to one of the following groups: (1) sham-operated; (2) sham+HB-EGF (1200 microg/kg in 0.6 mL administered by intra-luminal injection at the jejuno-ileal junction immediately after identification of the superior mesenteric artery); (3) superior mesenteric artery occlusion for 45 min followed by reperfusion for 6 h (I/R); or (4) I/R+HB-EGF (1200 microg/kg in 0.6 mL) administered 15 min after vascular occlusion. The severity of acute lung injury was determined by histology, morphometric analysis and invasive pulmonary function testing. Animal survival was evaluated using Kaplan-Meier analysis. RESULTS Mice subjected to intestinal I/R injury showed histologic and functional evidence of acute lung injury and decreased survival compared with sham-operated animals. Compared with mice treated with HB-EGF (I/R+HB-EGF), the I/R group had more severe acute lung injury, and decreased survival. CONCLUSION Our results demonstrate that HB-EGF reduces the severity of acute lung injury after intestinal I/R in mice. These data demonstrate that HB-EGF may be a potential novel systemic anti-inflammatory agent for the prevention of the systemic inflammatory response syndrome (SIRS) after intestinal injury.
Collapse
Affiliation(s)
- Iyore A O James
- Department of Pediatric Surgery, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | | | | | | | | |
Collapse
|
12
|
Zhou Y, Brigstock D, Besner GE. Heparin-binding EGF-like growth factor is a potent dilator of terminal mesenteric arterioles. Microvasc Res 2009; 78:78-85. [PMID: 19389413 DOI: 10.1016/j.mvr.2009.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 01/24/2009] [Accepted: 04/14/2009] [Indexed: 12/19/2022]
Abstract
OBJECTIVE We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) protects the intestines from multiple forms of injury via direct cytoprotective effects on the intestinal mucosa. In this study, we examined the effects of HB-EGF on the hemodynamics of intestinal arterioles, the major resistance vessels that regulate blood flow to the intestines, as an additional mechanism of HB-EGF-mediated intestinal protection. METHODS The hemodynamic effects of HB-EGF in rodent terminal mesenteric arterioles and human submucosal arterioles were examined ex vivo using a video dimension analyzer. Cultured human intestinal microvascular endothelial cells (HIMEC) were used to elucidate the mechanisms of HB-EGF-induced vasodilation. RESULTS HB-EGF significantly increased vessel diameter under conditions of increasing intraluminal pressure and increased flow rate. These HB-EGF-mediated vasodilatory effects were observed in terminal mesenteric arterioles from adult rats and 3 day old rat pups. These effects were confirmed in submucosal arterioles from human intestine. Furthermore, HB-EGF significantly reduced endothelin-1-induced mesenteric arteriolar vasoconstriction. The vasodilatory effects of HB-EGF were blocked by ET(B) receptor antagonism in adult rat arterioles, and also by nitric oxide synthase inhibition in rat pup and human infant arterioles. In HIMEC, HB-EGF significantly increased endothelin B (ET(B)) receptor protein expression and provoked intracellular calcium mobilization. CONCLUSIONS HB-EGF is a potent vasodilator of the intestinal microvasculature, further supporting its use in diseases manifested by decreased intestinal blood flow, including necrotizing enterocolitis.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pediatric Surgery, The Ohio State University College of Medicine, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | | | | |
Collapse
|
13
|
Zeng J, Du S, Zhou J, Huang K. Role of SelS in lipopolysaccharide-induced inflammatory response in hepatoma HepG2 cells. Arch Biochem Biophys 2008; 478:1-6. [PMID: 18675776 DOI: 10.1016/j.abb.2008.07.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/15/2008] [Accepted: 07/17/2008] [Indexed: 11/26/2022]
Abstract
To investigate the role of SelS in bacterial lipopolysaccharide (LPS) induced inflammatory response, some parameters in LPS-stimulated HepG2 cells were comparatively studied fore-and-aft SelS silence. LPS induced the decreases of cytoplasmic glutathione peroxidase (GPx-1) mRNA expression and activity, and the increases of reactive oxygen species (ROS) level, intracellular and extracellular nitric oxide (NO) levels, inducible nitric oxide synthase (iNOS) mRNA expression and activity, and serum amyloid A1 (SAA1) mRNA expression and secreted protein level in hepatoma HepG2 cells. When SelS was suppressed by small interfering RNA (siRNA), those decreases and increases were further aggravated under LPS stimulation, respectively. In conclusion, the negative association between SelS and the LPS-induced production of ROS, NO and SAA1 demonstrated that SelS had an important role in influencing inflammatory response, and that role may be related with SelS as a central component of retro-translocation channel in endoplasmic reticulum-associated protein degradation (ERAD) and its anti-oxidative property.
Collapse
Affiliation(s)
- Jinhong Zeng
- Department of Chemistry, Huazhong University of Science and Technology, 1037 Luoyu Lu, Hongshan, Wuhan, Hubei 430074, People's Republic of China
| | | | | | | |
Collapse
|
14
|
Keay S. Cell signaling in interstitial cystitis/painful bladder syndrome. Cell Signal 2008; 20:2174-9. [PMID: 18602988 DOI: 10.1016/j.cellsig.2008.06.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Accepted: 06/13/2008] [Indexed: 01/08/2023]
Abstract
Evidence for several types of cell signaling abnormalities has been presented for patients with interstitial cystitis/painful bladder syndrome (IC/PBS), a poorly understood chronic painful bladder disorder for which currently there is no reliable effective therapy. Increases or decreases in various urine cytokines and growth factors have been found in patient specimens, along with abnormal expression of epithelial differentiation markers, growth factors, cell membrane proteins, neurotransmitters, and other cytokines in tissue biopsies and/or explanted bladder cells from IC/PBS patients. Some of the abnormalities found in bladder epithelial cells from IC/PBS patients have been shown to be induced in normal cells by an antiproliferative factor from IC/PBS bladder epithelial cells that binds to a functional cell membrane receptor (CKAP4/p63). Greater understanding of cell signaling events associated with this debilitating disorder may lead to the development of more effective therapies.
Collapse
Affiliation(s)
- Susan Keay
- Department of Medicine, University of Maryland School of Medicine and Veterans Administration Maryland Health Care System, Baltimore, Maryland, United States.
| |
Collapse
|
15
|
Keklikoglu N, Koray M, Kocaelli H, Akinci S. iNOS expression in oral and gastrointestinal tract mucosa. Dig Dis Sci 2008; 53:1437-42. [PMID: 17987386 DOI: 10.1007/s10620-007-0061-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Accepted: 09/27/2007] [Indexed: 12/16/2022]
Abstract
It is known that the overproduction of nitric oxide (NO) by nitric oxide synthase (NOS) occurs during the progression of various inflammatory diseases in intestinal tract. NOS inhibitors or inducible nitric oxide synthase (iNOS) gene expression inhibitors should be considered as potential anti-inflammatory agents, as NO synthesized by iNOS is related to various pathophysiological processes including inflammation. In order to understand the relationship between iNOS and pathological reactions such as the inflammatory process and malign transformation clearly, the existence and amount of constitutive expression should be determined. It is crucial to comprehend the harmful and protective amounts of iNOS expressions in order to clarify the relationship between iNOS and pathological processes. Evidently, only after this inspection is it possible to utilize iNOS as a marker and treatment instrument during the diagnosis and treatment of malign transformation and the inflammatory process.
Collapse
Affiliation(s)
- Nurullah Keklikoglu
- Faculty of Dentistry, Department of Histology and Embryology, Istanbul University, Capa, Istanbul, Turkey.
| | | | | | | |
Collapse
|
16
|
Malarial pigment haemozoin, IFN-gamma, TNF-alpha, IL-1beta and LPS do not stimulate expression of inducible nitric oxide synthase and production of nitric oxide in immuno-purified human monocytes. Malar J 2007; 6:73. [PMID: 17543124 PMCID: PMC1904226 DOI: 10.1186/1475-2875-6-73] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 06/02/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Enhanced production of nitric oxide (NO) following upmodulation of the inducible isoform of NO synthase (iNOS) by haemozoin (HZ), inflammatory cytokines and LPS may provide protection against Plasmodium falciparum malaria by killing hepatic and blood forms of parasites and inhibiting the cytoadherence of parasitized erythrocytes (RBC) to endothelial cells. Monocytes and macrophages are considered to contribute importantly to protective upregulation of iNOS and production of NO. Data obtained with murine phagocytes fed with human HZ and synthetic HZ (sHZ) indicate that supplemental treatment of those cells with IFN-gamma elicited significant increases in protein and mRNA expression of iNOS and NO production, providing a potential mechanism linking HZ phagocytosis and increased production of NO. Purpose of this study was to analyse the effect of P. falciparum HZ and sHZ supplemental to treatment with IFN-gamma and/or a stimulatory cytokine-LPS mix on iNOS protein and mRNA expression in immuno-purified human monocytes. METHODS Adherent immunopurified human monocytes (purity >85%), and murine phagocytic cell lines RAW 264.7, N11 and ANA1 were fed or not with P. falciparum HZ or sHZ and treated or not with IFN-gamma or a stimulatory cytokine-LPS mix. Production of NO was quantified in supernatants, iNOS protein and mRNA expression were measured after immunoprecipitation and Western blotting and quantitative RT-PCT, respectively. RESULTS Phagocytosis of HZ/sHZ by human monocytes did not increase iNOS protein and mRNA expression and NO production either after stimulation by IFN-gamma or the cytokine-LPS mix. By contrast, in HZ/sHZ-laden murine macrophages, identical treatment with IFN-gamma and the cytokine-LPS mix elicited significant increases in protein and mRNA expression of iNOS and NOS metabolites production, in agreement with literature data. CONCLUSION Results indicate that human monocytes fed or not with HZ/sHZ were constantly unable to express iNOS and generate NOS metabolites even after stimulation with IFN-gamma or a cytokine-LSP mix that were very active on HZ-fed murine phagocytic lines. Present data do not support the hypothesis that monocytes are mediators of anti-parasitic defence in clinical malaria via activation of iNOS and production of NO, and suggest caution in extrapolating data obtained with murine or hybrid systems to human malaria.
Collapse
|
17
|
Rocourt DV, Mehta VB, Besner GE. Heparin-binding EGF-like growth factor decreases inflammatory cytokine expression after intestinal ischemia/reperfusion injury. J Surg Res 2007; 139:269-73. [PMID: 17291530 PMCID: PMC1905844 DOI: 10.1016/j.jss.2006.10.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 10/11/2006] [Accepted: 10/30/2006] [Indexed: 01/23/2023]
Abstract
BACKGROUND Intestinal ischemia/reperfusion (I/R) injury is believed to be the major initiator of the systemic inflammatory response syndrome. As a result of intestinal I/R, the gut becomes a major source of inflammatory cytokine production. We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) is cytoprotective after intestinal I/R and down-regulates pro-inflammatory cytokine production in vitro. We now examine the effects of HB-EGF on pro-inflammatory cytokine expression in vivo. MATERIALS AND METHODS Rats were randomized into three groups: sham-operated, superior mesenteric artery occlusion (SMAO) for 90 min followed by 8 h of reperfusion (I/R), and I/R with intraluminal administration of HB-EGF 25 min after the initiation of ischemia (I/R + HB-EGF). Serum was drawn at 2, 4, 6, and 8 h post reperfusion for determination of cytokine protein levels using a bioplex suspension array system. Additional animals underwent the same ischemic protocol followed by 30 and 60 min of reperfusion with harvesting of ileal mucosa. Ileal pro-inflammatory cytokine gene expression was determined using reverse transcriptase polymerase chain reaction (RT-PCR) with primers specific for TNF-alpha, IL-6, and IL-1beta. RESULTS HB-EGF decreased TNF-alpha, IL-6, and IL-1beta serum protein levels at 4, 6, and 8 h after intestinal I/R injury. In addition, HB-EGF decreased local intestinal mucosal mRNA expression of TNF-alpha, IL-6, and IL-1beta 30 and 60 min after intestinal injury. CONCLUSIONS We conclude that pro-inflammatory cytokine expression is increased both locally and in the systemic circulation after intestinal I/R and that the administration of HB-EGF significantly reduces intestinal I/R-induced pro-inflammatory cytokine expression in vivo.
Collapse
Affiliation(s)
- Dorothy V. Rocourt
- Department of Pediatric Surgery, Children’s Hospital and The Ohio State University College of Medicine and Public Health
| | - Veela B. Mehta
- The Center for Perinatal Research, Children’s Research Institute, Columbus, OH
| | - Gail E. Besner
- Department of Pediatric Surgery, Children’s Hospital and The Ohio State University College of Medicine and Public Health
- The Center for Perinatal Research, Children’s Research Institute, Columbus, OH
| |
Collapse
|
18
|
Feng J, El-Assal ON, Besner GE. Heparin-binding epidermal growth factor-like growth factor reduces intestinal apoptosis in neonatal rats with necrotizing enterocolitis. J Pediatr Surg 2006; 41:742-7; discussion 742-7. [PMID: 16567187 DOI: 10.1016/j.jpedsurg.2005.12.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE We have previously demonstrated that enterally administered heparin-binding epidermal growth factor-like growth factor (HB-EGF) decreases the incidence and severity of necrotizing enterocolitis (NEC) in a neonatal rat model. Because apoptosis contributes to gut barrier failure in this model, the aim of this study was to investigate the effect of HB-EGF on apoptosis during the development of NEC. METHODS NEC was induced in neonatal rats by exposure to hypoxia, hypothermia, hypertonic formula feeding (HHHTF) plus enteral administration of lipopolysaccharide (LPS). Fifty-one neonatal rats were randomly divided into the following groups: (1) breast-fed (BF), (2) HHHTF + LPS, and (3) HHHTF + LPS with HB-EGF (600 microg/kg) added to the formula. NEC was evaluated using a standard histological scoring system. Apoptotic cells in intestinal tissues were detected by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) and by active caspase 3 immunohistochemical staining. RESULTS The incidence of NEC in the HHHTF + LPS group was higher than that in the BF group (65% vs 0%, P < .05). With administration of HB-EGF, the incidence of NEC significantly decreased to 23.8% (P < .05). The median TUNEL and active caspase 3 scores in the HHHTF + LPS group were higher than those in the BF group (1.9 vs 0.9 and 1.75 vs 0.6, respectively, P < .05). The median TUNEL and active caspase 3 scores were significantly decreased in the HHHTF + LPS + HB-EGF group compared with the HHHTF + LPS group (1.24 vs 1.9 and 1.0 vs 1.75, respectively, P < .05). CONCLUSION HB-EGF reduces the incidence of NEC in a neonatal rat model in part by decreasing apoptosis. These results support the use of HB-EGF-based clinical regimens for the treatment of NEC.
Collapse
Affiliation(s)
- Jiexiong Feng
- Department of Pediatric Surgery, Center for Cell and Vascular Biology, Children's Research Institute, Columbus, OH 43205, USA
| | | | | |
Collapse
|
19
|
Chan GC, Fish JE, Mawji IA, Leung DD, Rachlis AC, Marsden PA. Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:3846-61. [PMID: 16148131 DOI: 10.4049/jimmunol.175.6.3846] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A marked difference exists in the inducibility of inducible NO synthase (iNOS) between humans and rodents. Although important cis and trans factors in the murine and human iNOS promoters have been characterized using episomal-based approaches, a compelling molecular explanation for why human iNOS is resistant to induction has not been reported. In this study we present evidence that the hyporesponsiveness of the human iNOS promoter is based in part on epigenetic silencing, specifically hypermethylation of CpG dinucleotides and histone H3 lysine 9 methylation. Using bisulfite sequencing, we demonstrated that the iNOS promoter was heavily methylated at CpG dinucleotides in a variety of primary human endothelial cells and vascular smooth muscle cells, all of which are notoriously resistant to iNOS induction. In contrast, in human cell types capable of iNOS induction (e.g., A549 pulmonary adenocarcinoma, DLD-1 colon adenocarcinoma, and primary hepatocytes), the iNOS promoter was relatively hypomethylated. Treatment of human cells, such as DLD-1, with a DNA methyltransferase inhibitor (5-azacytidine) induced global and iNOS promoter DNA hypomethylation. Importantly, 5-azacytidine enhanced the cytokine inducibility of iNOS. Using chromatin immunoprecipitation, we found that the human iNOS promoter was basally enriched with di- and trimethylation of H3 lysine 9 in endothelial cells, and this did not change with cytokine addition. This contrasted with the absence of lysine 9 methylation in inducible cell types. Importantly, chromatin immunoprecipitation demonstrated the selective presence of the methyl-CpG-binding transcriptional repressor MeCP2 at the iNOS promoter in endothelial cells. Collectively, our work defines a role for chromatin-based mechanisms in the control of human iNOS gene expression.
Collapse
MESH Headings
- Cell Line, Tumor
- Cells, Cultured
- Chromatin
- CpG Islands
- DNA Methylation
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Epigenesis, Genetic
- Gene Silencing
- Histones
- Humans
- Lysine
- Methyl-CpG-Binding Protein 2/analysis
- Methyl-CpG-Binding Protein 2/physiology
- Methylation
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Promoter Regions, Genetic
- Species Specificity
- Transcription, Genetic
Collapse
Affiliation(s)
- Gary C Chan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Martin AE, Luquette MH, Besner GE. Timing, route, and dose of administration of heparin-binding epidermal growth factor-like growth factor in protection against intestinal ischemia-reperfusion injury. J Pediatr Surg 2005; 40:1741-7. [PMID: 16291163 DOI: 10.1016/j.jpedsurg.2005.07.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE We have previously demonstrated that heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an intestinal cytoprotective agent. The current study examined whether HB-EGF is effective as salvage therapy as well as prophylactic therapy for intestinal ischemia-reperfusion (I/R) injury, whether intravenous administration is as effective as intraluminal administration, and whether increased benefits are seen with increasing dose. METHODS Total midgut I/R injury in rats was achieved by occlusion of a first-order branch of the superior mesenteric artery for 60 minutes, followed by reperfusion for 6 hours. Rats were treated with HB-EGF 5 minutes before ischemia, halfway through the ischemic event, or 5 minutes after ischemia. Route of administration was tested by administering HB-EGF either intraluminally or intravenously. Seven different doses of HB-EGF were tested. RESULTS Heparin-binding, EGF-like growth factor protected the intestine from injury when administered before injury and was also effective when administered during ischemia or even after injury. Intraluminal administration of HB-EGF was superior to intravenous administration. Increasing doses of HB-EGF resulted in a greater cytoprotective effect. CONCLUSION These data demonstrate that HB-EGF acts as an effective intestinal cytoprotective agent when administered intraluminally not only before injury, but also during injury and, most importantly, even after intestinal injury has already occurred. These findings support a basis for the prophylactic use of intraluminal HB-EGF in high-risk patients, as well as for the administration of HB-EGF to salvage patients in whom an intestinal insult has already occurred.
Collapse
Affiliation(s)
- Abigail E Martin
- Department of Pediatric Surgery, Children's Hospital and The Ohio State University College of Medicine and Public Health, Columbus, Ohio 43205, USA
| | | | | |
Collapse
|
21
|
Mehta VB, Besner GE. Heparin-binding epidermal growth factor-like growth factor inhibits cytokine-induced NF-kappa B activation and nitric oxide production via activation of the phosphatidylinositol 3-kinase pathway. THE JOURNAL OF IMMUNOLOGY 2005; 175:1911-8. [PMID: 16034135 DOI: 10.4049/jimmunol.175.3.1911] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
NO produced by inducible NO synthase (iNOS) has been implicated in various pathophysiological processes including inflammation. Therefore, inhibitors of NO synthesis or iNOS gene expression have been considered as potential anti-inflammatory agents. We have previously demonstrated that heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) decreases proinflammatory cytokine IL-8 and NO production in cytokine-stimulated intestinal epithelial cells by interfering with the NF-kappaB signaling pathway. However, the upstream signaling mechanisms involved in these responses have not yet been defined. In this report, we show that in intestinal epithelial cells, HB-EGF triggered PI3K-dependent phosphorylation of Akt. Inhibition of PI3K reversed the ability of HB-EGF to block NF-kappaB activation, expression of iNOS, and NO production. Small interfering RNA of PI3K also reversed the inhibitory effect of HB-EGF on iNOS expression. Alternatively, transient expression of constitutively active PI3K decreased NO production by approximately 2-fold more than treatment with HB-EGF alone. This PI3K effect was HB-EGF dependent. Thus, activation of PI3K is essential but not sufficient for decreased NO synthesis. PI3K and HB-EGF act synergistically to decrease NO synthesis. Neither overexpression or inhibition of MEK, Ras, or Akt affected HB-EGF-mediated inhibition of NF-kappaB activation. These data demonstrate that HB-EGF decreases proinflammatory cytokine-stimulated NF-kappaB activation and NO production via activation of the PI3K signaling pathway. These results also suggest that inhibition of NF-kappaB and activation of the PI3K-dependent signaling cascade by HB-EGF may represent key signals responsible for the anti-inflammatory effects of HB-EGF.
Collapse
Affiliation(s)
- Veela B Mehta
- Department of Pediatric Surgery, Children's Hospital, and Children's Research Institute, Center for Cellular and Vascular Biology, Columbus, OH 43205, USA
| | | |
Collapse
|
22
|
Feng J, El-Assal ON, Besner GE. Heparin-binding EGF-like growth factor (HB-EGF) and necrotizing enterocolitis. Semin Pediatr Surg 2005; 14:167-74. [PMID: 16084404 DOI: 10.1053/j.sempedsurg.2005.05.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Necrotizing enterocolitis (NEC) is a common and devastating gastrointestinal disease that occurs predominantly in premature infants. Despite various advances in management, the mortality of this disease remains high. During the last decade, studies from our laboratory have shown that heparin-binding epidermal growth factor-like growth factor (HB-EGF), a member of the epidermal growth factor (EGF) family, can protect intestinal epithelial cells (IEC) from various forms of injury in vitro. Furthermore, we have used both an intestinal I/R injury model in adult rats, and a neonatal rat pup model of NEC, to show that HB-EGF can protect the intestines from injury. On administration of HB-EGF in the neonatal rat model, the incidence of NEC is reduced from 65% to 27.3% (P < 0.05), and the histological injury score is decreased from 2 to 1.1 (P < 0.05). In addition, the survival rate is increased from 25% to 63.6% and the survival time extended from 59 hours to 73 hours (P < 0.05). In addition, using human specimens from newborns undergoing bowel resection for NEC, we found that the expression of endogenous HB-EGF mRNA in normal areas of the intestine at the resection margins was higher than that of the intestine afflicted with acute NEC. Endogenous HB-EGF may be involved in epithelial cell repair, proliferation, and regeneration during recovery from injury. Exogenous administration of HB-EGF potentiates recovery from intestinal injury in vitro and in vivo. Taken together, these results support a potential therapeutic role for HB-EGF in the treatment of NEC in the future.
Collapse
Affiliation(s)
- Jiexiong Feng
- Department of Surgery, Children's Hospital and The Ohio State University College of Medicine and Public Health, Columbus, Ohio 43205, USA
| | | | | |
Collapse
|
23
|
Mehta VB, Besner GE. Inhibition of NF-kappa B activation and its target genes by heparin-binding epidermal growth factor-like growth factor. THE JOURNAL OF IMMUNOLOGY 2004; 171:6014-22. [PMID: 14634113 DOI: 10.4049/jimmunol.171.11.6014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many cells upon injury mount extensive, compensatory responses that increase cell survival; however, the intracellular signals that regulate these responses are not completely understood. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been implicated as a cytoprotective agent. We have previously demonstrated that pretreatment of human intestinal epithelial cells with HB-EGF significantly decreased cytokine-induced activation of inducible NO synthase mRNA expression and NO production and protected the cells from apoptosis and necrosis. However, the mechanisms by which HB-EGF exerts these effects are not known. Here we show that cytokine exposure (IL-1beta and IFN-gamma) induced NF-kappaB activation and IL-8 and NO production in DLD-1 cells. Transient expression of a dominant negative form of IkappaBalpha decreased NO production, suggesting that the cytokines stimulated NO production in part through activation of NF-kappaB. HB-EGF dramatically suppressed NF-kappaB activity and IL-8 release and decreased NO production in cells pretreated with HB-EGF. HB-EGF blocked NF-kappaB activation by inhibiting IkappaB kinase activation and IkappaB phosphorylation and degradation, thus interfering with NF-kappaB nuclear translocation, DNA-binding activity, and NF-kappaB-dependent transcriptional activity. The data demonstrate that HB-EGF decreases inflammatory cytokine and NO production by interfering with the NF-kappaB signaling pathway. Inhibition of NF-kappaB may represent one of the mechanisms by which HB-EGF exerts its potent anti-inflammatory and cytoprotective effects.
Collapse
Affiliation(s)
- Veela B Mehta
- Department of Pediatric Surgery, Children's Research Institute, and Ohio State University, Columbus, OH 43205, USA
| | | |
Collapse
|
24
|
El-Assal ON, Besner GE. Heparin-binding epidermal growth factor-like growth factor and intestinal ischemia-reperfusion injury. Semin Pediatr Surg 2004; 13:2-10. [PMID: 14765365 DOI: 10.1053/j.sempedsurg.2003.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intestinal ischemia/reperfusion (I/R) injury affects patients of different ages, especially premature babies and the elderly. The outcome after intestinal I/R is often dismal, which may be attributed to loss of the barrier and immune functions of the intestines, as well as development of secondary injury in remote organs. The available treatment for advanced gut ischemia mandates extensive resection, which may cause growth retardation in infants and nutritional problems in the elderly. Throughout the past decade we have been investigating the potential therapeutic role of heparin-binding epidermal growth factor-like factor (HB-EGF) in intestinal I/R. The mitogenic and chemoattractant functions of HB-EGF formed the initial rationale for our investigations. In addition, HB-EGF is a potent antiapoptotic protein that enables cells and tissues exposed to different apoptotic stimuli to survive hypoxic, oxidative, and nutritional stresses. HB-EGF is known to have a vital role in wound healing and postischemic regeneration in different organs. In the current review, we summarize the results of our findings of the beneficial effects of HB-EGF in intestinal I/R, supported by additional evidence from the literature and an explanation of different possible mechanisms of its actions. Collectively, the data strongly suggest a potential therapeutic role for the use of HB-EGF to treat intestinal ischemic diseases such as I/R and necrotizing enterocolitis.
Collapse
Affiliation(s)
- Osama N El-Assal
- Department of Surgery, Children's Hospital and The Ohio State University College of Medicine and Public Health, Columbus, OH 43205, USA
| | | |
Collapse
|
25
|
Aldieri E, Atragene D, Bergandi L, Riganti C, Costamagna C, Bosia A, Ghigo D. Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-kB activation. FEBS Lett 2003; 552:141-4. [PMID: 14527676 DOI: 10.1016/s0014-5793(03)00905-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Artemisinin is a natural product used as an alternative drug in the treatment of severe and multidrug-resistant malaria. In the present work we show that artemisinin shares with other sesquiterpene lactones the ability to inhibit the activation of the nuclear factor NF-kB: by this mechanism, artemisinin, as well as parthenolide, inhibits nitric oxide synthesis in cytokine-stimulated human astrocytoma T67 cells. These results suggest that artemisinin, in addition to its antiparasitic properties, could also exert a therapeutic effect on neurological complications of malaria.
Collapse
Affiliation(s)
- Elisabetta Aldieri
- Department of Genetics, Biology and Biochemistry, University of Torino, Via Santena 5/bis, 10126 Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Xia G, Martin AE, Besner GE. Heparin-binding EGF-like growth factor downregulates expression of adhesion molecules and infiltration of inflammatory cells after intestinal ischemia/reperfusion injury. J Pediatr Surg 2003; 38:434-9. [PMID: 12632363 DOI: 10.1053/jpsu.2003.50075] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND/PURPOSE This study examined whether heparin-binding epidermal growth factor (EGF) like growth factor (HB-EGF), a proven intestinal cytoprotective molecule, exerts its protective effects through modulation of adhesion molecule expression and inflammatory cell infiltration, important pathogenic mediators of ischemia/reperfusion (I/R) injury. METHODS Total midgut I/R injury in rats was achieved by occlusion of the superior mesenteric artery for 90 minutes followed by reperfusion. Rats were treated intraluminally with 600 microg/kg HB-EGF or with PBS 45 minutes after the onset of ischemia. Four- or 24-hours post-I/R, ileum was harvested and processed for immunhistochemical detection of P-/E-selectins, intercellular adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1 (VCAM-1), and polymorphonuclear cells (PMN)/macrophages (MPhi). RESULTS P-/E-selectins were significantly induced in vascular endothelia 4 hours after I/R injury compared with normal intestine. HB-EGF treatment significantly down-regulated the expression of P-/E-selectins. I/R-injured intestine displayed overexpression of ICAM-1 and VCAM-1, which were significantly down-regulated by HB-EGF treatment. Lastly, I/R injury caused significant infiltration of PMN and MPhi into wounded tissue 24 hours after I/R compared with normal intestine. HB-EGF treatment significantly decreased PMN and MPhi infiltration into the injured tissue. CONCLUSIONS HB-EGF intestinal cytoprotection is mediated, in part, by down-regulation of expression of adhesion molecules and infiltration of PMN and MPhi after intestinal I/R injury.
Collapse
Affiliation(s)
- Guliang Xia
- Department of Pediatric Surgery, Children's Hospital and The Ohio State University College of Medicine and Public Health, Columbus, Ohio 43205, USA
| | | | | |
Collapse
|
27
|
Kuhn MA, Xia G, Mehta VB, Glenn S, Michalsky MP, Besner GE. Heparin-binding EGF-like growth factor (HB-EGF) decreases oxygen free radical production in vitro and in vivo. Antioxid Redox Signal 2002; 4:639-46. [PMID: 12230876 DOI: 10.1089/15230860260220148] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been shown to protect intestinal epithelial cells from anoxia/reoxygenation in vitro, and to protect the intestines from ischemia/reperfusion (I/R) injury in vivo. The goal of the present study was to determine whether the cytoprotective effects of HB-EGF were due, in part, to its ability to decrease reactive oxygen species (ROS) production. Human whole blood, polymorphonuclear leukocytes, and monocytes, as well as rat intestinal epithelial cells, were exposed to stimuli designed to produce an oxidative burst in these cells. Treatment of the cells with HB-EGF led to a significant decrease in oxidative burst production. In vivo, total midgut I/R injury in rats led to increased ROS production, which was markedly decreased by HB-EGF treatment. Histochemically, I/R injury led to increased ROS production, which was significantly decreased with HB-EGF treatment. HB-EGF cytoprotection is due, in part, to its ability to decrease ROS production. Future studies will determine the mechanisms by which HB-EGF exerts these effects.
Collapse
Affiliation(s)
- M Ann Kuhn
- Department of Pediatric Surgery, Children's Hospital and The Ohio State University, Columbus, OH 43205, USA
| | | | | | | | | | | |
Collapse
|