1
|
Belova AM, Basmanov DV, Babenko VV, Podgorny OV, Mitko TV, Prusakov KA, Klinov DV, Lazarev VN. Two novel transcriptional reporter systems for monitoring Helicobacter pylori stress responses. Plasmid 2019; 106:102442. [PMID: 31669286 DOI: 10.1016/j.plasmid.2019.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 11/27/2022]
Abstract
Helicobacter pylori, a human pathogen linked to many stomach diseases, is well adapted to colonize aggressive gastric environments, and its virulence factors contribute this adaptation. Here, we report the construction of two novel H. pylori vectors, pSv2 and pSv4, carrying a reporter gene fused to the promoters of virulence factor genes for monitoring the response of single H. pylori cells to various stresses. H. pylori cryptic plasmids were modified by the introduction of the Escherichia coli origin of replication, chloramphenicol resistance cassette, and promoterless gfp gene to produce E. coli/H. pylori shuttle vectors. The promoter regions of vacA and ureA genes encoding well-characterized H. pylori virulence factors were fused to the promoterless gfp gene. Recording the GFP fluorescence signal from the genetically modified H. pylori cells immobilized in specifically designed microfluidic devices revealed the response of transcriptional reporter systems to osmotic stress, acidic stress, elevated Ni2+ concentration or iron chelation. Our observations validate the utility of the pSv2 and pSv4 vectors to monitor the regulation of virulence factor genes in diverse strains and clinical isolates of H. pylori.
Collapse
Affiliation(s)
- A M Belova
- Federal Research Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency of Russia, Moscow 119435, Russia.
| | - D V Basmanov
- Federal Research Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency of Russia, Moscow 119435, Russia
| | - V V Babenko
- Federal Research Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency of Russia, Moscow 119435, Russia
| | - O V Podgorny
- Federal Research Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency of Russia, Moscow 119435, Russia; Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia
| | - T V Mitko
- Federal Research Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency of Russia, Moscow 119435, Russia
| | - K A Prusakov
- Federal Research Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency of Russia, Moscow 119435, Russia
| | - D V Klinov
- Federal Research Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency of Russia, Moscow 119435, Russia
| | - V N Lazarev
- Federal Research Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency of Russia, Moscow 119435, Russia
| |
Collapse
|
2
|
Draper JL, Hansen LM, Bernick DL, Abedrabbo S, Underwood JG, Kong N, Huang BC, Weis AM, Weimer BC, van Vliet AHM, Pourmand N, Solnick JV, Karplus K, Ottemann KM. Fallacy of the Unique Genome: Sequence Diversity within Single Helicobacter pylori Strains. mBio 2017; 8:e02321-16. [PMID: 28223462 PMCID: PMC5358919 DOI: 10.1128/mbio.02321-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/30/2017] [Indexed: 12/30/2022] Open
Abstract
Many bacterial genomes are highly variable but nonetheless are typically published as a single assembled genome. Experiments tracking bacterial genome evolution have not looked at the variation present at a given point in time. Here, we analyzed the mouse-passaged Helicobacter pylori strain SS1 and its parent PMSS1 to assess intra- and intergenomic variability. Using high sequence coverage depth and experimental validation, we detected extensive genome plasticity within these H. pylori isolates, including movement of the transposable element IS607, large and small inversions, multiple single nucleotide polymorphisms, and variation in cagA copy number. The cagA gene was found as 1 to 4 tandem copies located off the cag island in both SS1 and PMSS1; this copy number variation correlated with protein expression. To gain insight into the changes that occurred during mouse adaptation, we also compared SS1 and PMSS1 and observed 46 differences that were distinct from the within-genome variation. The most substantial was an insertion in cagY, which encodes a protein required for a type IV secretion system function. We detected modifications in genes coding for two proteins known to affect mouse colonization, the HpaA neuraminyllactose-binding protein and the FutB α-1,3 lipopolysaccharide (LPS) fucosyltransferase, as well as genes predicted to modulate diverse properties. In sum, our work suggests that data from consensus genome assemblies from single colonies may be misleading by failing to represent the variability present. Furthermore, we show that high-depth genomic sequencing data of a population can be analyzed to gain insight into the normal variation within bacterial strains.IMPORTANCE Although it is well known that many bacterial genomes are highly variable, it is nonetheless traditional to refer to, analyze, and publish "the genome" of a bacterial strain. Variability is usually reduced ("only sequence from a single colony"), ignored ("just publish the consensus"), or placed in the "too-hard" basket ("analysis of raw read data is more robust"). Now that whole-genome sequences are regularly used to assess virulence and track outbreaks, a better understanding of the baseline genomic variation present within single strains is needed. Here, we describe the variability seen in typical working stocks and colonies of pathogen Helicobacter pylori model strains SS1 and PMSS1 as revealed by use of high-coverage mate pair next-generation sequencing (NGS) and confirmed by traditional laboratory techniques. This work demonstrates that reliance on a consensus assembly as "the genome" of a bacterial strain may be misleading.
Collapse
Affiliation(s)
- Jenny L Draper
- Institute of Environmental Science and Research, Porirua, New Zealand
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, USA
- Department of Microbiology & Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, USA
| | - Lori M Hansen
- Departments of Medicine and Microbiology & Immunology, Center for Comparative Medicine, UC Davis, California, USA
| | - David L Bernick
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, USA
| | - Samar Abedrabbo
- Department of Microbiology & Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, USA
| | | | - Nguyet Kong
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, UC Davis, Davis, California, USA
| | - Bihua C Huang
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, UC Davis, Davis, California, USA
| | - Allison M Weis
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, UC Davis, Davis, California, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, UC Davis, Davis, California, USA
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Nader Pourmand
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, USA
| | - Jay V Solnick
- Departments of Medicine and Microbiology & Immunology, Center for Comparative Medicine, UC Davis, California, USA
| | - Kevin Karplus
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, USA
| | - Karen M Ottemann
- Department of Microbiology & Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
3
|
Zawilak-Pawlik A, Zakrzewska-Czerwińska J. Recent Advances in Helicobacter pylori Replication: Possible Implications in Adaptation to a Pathogenic Lifestyle and Perspectives for Drug Design. Curr Top Microbiol Immunol 2017; 400:73-103. [PMID: 28124150 DOI: 10.1007/978-3-319-50520-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA replication is an important step in the life cycle of every cell that ensures the continuous flow of genetic information from one generation to the next. In all organisms, chromosome replication must be coordinated with overall cell growth. Helicobacter pylori growth strongly depends on its interaction with the host, particularly with the gastric epithelium. Moreover, H. pylori actively searches for an optimal microniche within a stomach, and it has been shown that not every microniche equally supports growth of this bacterium. We postulate that besides nutrients, H. pylori senses different, unknown signals, which presumably also affect chromosome replication to maintain H. pylori propagation at optimal ratio allowing H. pylori to establish a chronic, lifelong infection. Thus, H. pylori chromosome replication and particularly the regulation of this process might be considered important for bacterial pathogenesis. Here, we summarize our current knowledge of chromosome and plasmid replication in H. pylori and discuss the mechanisms responsible for regulating this key cellular process. The results of extensive studies conducted thus far allow us to propose common and unique traits in H. pylori chromosome replication. Interestingly, the repertoire of proteins involved in replication in H. pylori is significantly different to that in E. coli, strongly suggesting that novel factors are engaged in H. pylori chromosome replication and could represent attractive drug targets.
Collapse
Affiliation(s)
- Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114, Wrocław, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114, Wrocław, Poland
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Ul. Joliot-Curie 14A, 50-383, Wrocław, Poland
| |
Collapse
|
4
|
Joo JS, Song JY, Baik SC, Lee WK, Cho MJ, Lee KH, Cho Y, Youn HS, Seo JH, Rhee KH, Kang HL. Genetic organization and conjugal plasmid DNA transfer of pHP69, a plasmid from a Korean isolate of Helicobacter pylori. J Microbiol 2012; 50:955-61. [PMID: 23274982 DOI: 10.1007/s12275-012-2580-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 11/12/2012] [Indexed: 11/25/2022]
Abstract
We isolated pHP69, a 9,153 bp plasmid from Helicobacter pylori with a 33.98% (G+C) content. We identified 11 open reading frames (ORFs), including replication initiation protein A (repA), fic (cAMP-induced filamentation protein), mccC, mccB, mobA, mobD, mobB, and mobC, as well as four 22 bp tandem repeat sequences. The nucleic acid and predicted amino acid sequences of these ORFs exhibited significant homology to those of other H. pylori plasmids. pHP69 repA encodes a replication initiation protein and its amino acid sequence is similar to those of replicase proteins from theta-type plasmids. pHP69 contains two types of repeat sequences (R1 and R2), a MOBHEN family mobilization region comprising mobC, mobA, mobB, and mobD, and genes encoding microcin B and C. Among the 36 H. pylori strains containing plasmids, mobA or mccBC are present in 12 or 6, respectively and 3 contain both genes. To examine intrinsic capability of H. pylori for conjugative plasmid transfer, a shuttle vector pBHP69KH containing pHP69 and replication origin of pBR322 was constructed. It was shown that this vector could stably replicate and be mobilized among clinical H. pylori strains and demonstrated to gene transfer by natural plasmid.
Collapse
Affiliation(s)
- Jung-Soo Joo
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Multiple pathways of plasmid DNA transfer in Helicobacter pylori. PLoS One 2012; 7:e45623. [PMID: 23029142 PMCID: PMC3447787 DOI: 10.1371/journal.pone.0045623] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 08/20/2012] [Indexed: 01/25/2023] Open
Abstract
Many Helicobacter pylori (Hp) strains carry cryptic plasmids of different size and gene content, the function of which is not well understood. A subgroup of these plasmids (e.g. pHel4, pHel12), contain a mobilisation region, but no cognate type IV secretion system (T4SS) for conjugative transfer. Instead, certain H. pylori strains (e.g. strain P12 carrying plasmid pHel12) can harbour up to four T4SSs in their genome (cag-T4SS, comB, tfs3, tfs4). Here, we show that such indigenous plasmids can be efficiently transferred between H. pylori strains, even in the presence of extracellular DNaseI eliminating natural transformation. Knockout of a plasmid-encoded mobA relaxase gene significantly reduced plasmid DNA transfer in the presence of DNaseI, suggesting a DNA conjugation or mobilisation process. To identify the T4SS involved in this conjugative DNA transfer, each individual T4SS was consecutively deleted from the bacterial chromosome. Using a marker-free counterselectable gene deletion procedure (rpsL counterselection method), a P12 mutant strain was finally obtained with no single T4SS (P12ΔT4SS). Mating experiments using these mutants identified the comB T4SS in the recipient strain as the major mediator of plasmid DNA transfer between H. pylori strains, both in a DNaseI-sensitive (natural transformation) as well as a DNaseI-resistant manner (conjugative transfer). However, transfer of a pHel12::cat plasmid from a P12ΔT4SS donor strain into a P12ΔT4SS recipient strain provided evidence for the existence of a third, T4SS-independent mechanism of DNA transfer. This novel type of plasmid DNA transfer, designated as alternate DNaseI-Resistant (ADR) mechanism, is observed at a rather low frequency under in vitro conditions. Taken together, our study describes for the first time the existence of three distinct pathways of plasmid DNA transfer between H. pylori underscoring the importance of horizontal gene transfer for this species.
Collapse
|
6
|
Miller WG, Heath S, Mandrell RE. Cryptic plasmids isolated from Campylobacter strains represent multiple, novel incompatibility groups. Plasmid 2007; 57:108-17. [PMID: 17064774 DOI: 10.1016/j.plasmid.2006.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 08/22/2006] [Accepted: 08/26/2006] [Indexed: 10/24/2022]
Abstract
Three small, cryptic plasmids from the multi-drug-resistant (MDR) Campylobacter coli strain RM2228 and one small, cryptic plasmid from the MDR Campylobacter jejuni strain RM1170 were sequenced and characterized. pCC2228-1 has some similarity to Firmicutes RepL family plasmids that replicate via a rolling-circle mechanism. pCC2228-2 is a theta-replicating, iteron-containing plasmid (ICP) that is a member of the same incompatibility (Inc) group as previously described Campylobacter shuttle vectors. The other two ICPs, pCC2228-3 and pCJ1170, represent a second novel Inc group. Comparison of the four plasmids described in this study with other characterized plasmids from C. jejuni, C. coli, C. lari, and C. hyointestinalis suggests that cryptic plasmids in Campylobacter may be classified into as many as nine Inc groups. The plasmids characterized in this study have several unique features suitable for the construction of novel Campylobacter shuttle vectors, e.g., small size, absence of many common multiple-cloning site restriction sites, and Inc groups not represented by current Campylobacter shuttle plasmids. Thus, these plasmids may be used to construct a new generation of Campylobacter shuttle vectors that would permit transformation of environmental Campylobacter isolates with an existing repertoire of native plasmids.
Collapse
Affiliation(s)
- William G Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, US Department of Agriculture, Albany, CA 94710, USA.
| | | | | |
Collapse
|
7
|
Eppinger M, Baar C, Linz B, Raddatz G, Lanz C, Keller H, Morelli G, Gressmann H, Achtman M, Schuster SC. Who ate whom? Adaptive Helicobacter genomic changes that accompanied a host jump from early humans to large felines. PLoS Genet 2006; 2:e120. [PMID: 16789826 PMCID: PMC1523251 DOI: 10.1371/journal.pgen.0020120] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 06/15/2006] [Indexed: 01/10/2023] Open
Abstract
Helicobacter pylori infection of humans is so old that its population genetic structure reflects that of ancient human migrations. A closely related species, Helicobacter acinonychis, is specific for large felines, including cheetahs, lions, and tigers, whereas hosts more closely related to humans harbor more distantly related Helicobacter species. This observation suggests a jump between host species. But who ate whom and when did it happen? In order to resolve this question, we determined the genomic sequence of H. acinonychis strain Sheeba and compared it to genomes from H. pylori. The conserved core genes between the genomes are so similar that the host jump probably occurred within the last 200,000 (range 50,000-400,000) years. However, the Sheeba genome also possesses unique features that indicate the direction of the host jump, namely from early humans to cats. Sheeba possesses an unusually large number of highly fragmented genes, many encoding outer membrane proteins, which may have been destroyed in order to bypass deleterious responses from the feline host immune system. In addition, the few Sheeba-specific genes that were found include a cluster of genes encoding sialylation of the bacterial cell surface carbohydrates, which were imported by horizontal genetic exchange and might also help to evade host immune defenses. These results provide a genomic basis for elucidating molecular events that allow bacteria to adapt to novel animal hosts.
Collapse
Affiliation(s)
- Mark Eppinger
- Department of Biochemistry and Molecular Biology, Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Claudia Baar
- Department of Biochemistry and Molecular Biology, Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Bodo Linz
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Günter Raddatz
- Genomics Group, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christa Lanz
- Genomics Group, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Heike Keller
- Genomics Group, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Giovanna Morelli
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Helga Gressmann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Mark Achtman
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stephan C Schuster
- Department of Biochemistry and Molecular Biology, Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Genomics Group, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
8
|
Eppinger M, Baar C, Linz B, Raddatz G, Lanz C, Keller H, Morelli G, Gressmann H, Achtman M, Schuster SC. Who ate whom? Adaptive Helicobacter genomic changes that accompanied a host jump from early humans to large felines. PLoS Genet 2006. [PMID: 16789826 DOI: 10.1371/journal.pgen.0020120.eor] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Helicobacter pylori infection of humans is so old that its population genetic structure reflects that of ancient human migrations. A closely related species, Helicobacter acinonychis, is specific for large felines, including cheetahs, lions, and tigers, whereas hosts more closely related to humans harbor more distantly related Helicobacter species. This observation suggests a jump between host species. But who ate whom and when did it happen? In order to resolve this question, we determined the genomic sequence of H. acinonychis strain Sheeba and compared it to genomes from H. pylori. The conserved core genes between the genomes are so similar that the host jump probably occurred within the last 200,000 (range 50,000-400,000) years. However, the Sheeba genome also possesses unique features that indicate the direction of the host jump, namely from early humans to cats. Sheeba possesses an unusually large number of highly fragmented genes, many encoding outer membrane proteins, which may have been destroyed in order to bypass deleterious responses from the feline host immune system. In addition, the few Sheeba-specific genes that were found include a cluster of genes encoding sialylation of the bacterial cell surface carbohydrates, which were imported by horizontal genetic exchange and might also help to evade host immune defenses. These results provide a genomic basis for elucidating molecular events that allow bacteria to adapt to novel animal hosts.
Collapse
Affiliation(s)
- Mark Eppinger
- Department of Biochemistry and Molecular Biology, Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Backert S, Kwok T, König W. Conjugative plasmid DNA transfer in Helicobacter pylori mediated by chromosomally encoded relaxase and TraG-like proteins. MICROBIOLOGY-SGM 2005; 151:3493-3503. [PMID: 16272373 DOI: 10.1099/mic.0.28250-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
One of the striking characteristics of Helicobacter pylori is the extensive genetic diversity among clinical isolates. This diversity has been attributed to an elevated mutation rate, impaired DNA repair, DNA transfer and frequent recombination events. Plasmids have also been identified in H. pylori but it remained unknown whether conjugation can contribute to DNA transfer between clinical isolates. To examine whether H. pylori possesses intrinsic capability for conjugative plasmid transfer, shuttle vectors were introduced into H. pylori containing an oriT sequence of the conjugative IncPalpha plasmid RP4 but no mobilization (mob) genes. It was shown that these vectors could stably replicate and be mobilized among clinical H. pylori strains. It was also demonstrated that traG and relaxase (rlx) homologues carried on the H. pylori chromosome were important for plasmid transfer. Primer extension studies and mutagenesis further confirmed that the relaxase homologue rlx1 in H. pylori encodes a functional enzyme capable of acting on the RP4 oriT. Furthermore, the findings of this study indicate that traG and rlx1 act independently of the previously described type IV secretion systems, including that encoded by the cag pathogenicity island and the comB transformation apparatus, in mediating conjugative plasmid DNA transfer between H. pylori strains.
Collapse
Affiliation(s)
- Steffen Backert
- Department of Medical Microbiology, Otto von Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Terry Kwok
- Department of Medical Microbiology, Otto von Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Wolfgang König
- Department of Medical Microbiology, Otto von Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| |
Collapse
|
10
|
Höfler C, Fischer W, Hofreuter D, Haas R. Cryptic plasmids in Helicobacter pylori: putative functions in conjugative transfer and microcin production. Int J Med Microbiol 2005; 294:141-8. [PMID: 15493824 DOI: 10.1016/j.ijmm.2004.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Claudia Höfler
- Max von Pettenkofer Institut für Hygiene und Mikrobiologie, LMU München, Pettenkoferstr 9a, D-80336 München, Germany
| | | | | | | |
Collapse
|
11
|
Song JY, Park SG, Kang HL, Lee WK, Cho MJ, Park JU, Baik SC, Youn HS, Ko GH, Rhee KH. pHP489, a Helicobacter pylori small cryptic plasmid, harbors a novel gene coding for a replication initiation protein. Plasmid 2004; 50:236-41. [PMID: 14597012 DOI: 10.1016/s0147-619x(03)00061-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have analyzed a Helicobacter pylori plasmid, pHP489. The 1222-bp nucleotide sequence had one open reading frame, a DnaA-binding site, one direct repeat, and three inverted repeats. The (G+C) content of pHP489 was 33.3%. Although the nucleic acid sequence and deduced amino acid sequence were homologous to those of other bacterial plasmid Rep proteins, the degree of similarity was very low. A deletion analysis showed that the Rep protein was not required for the replication of pHP489 in its H. pylori host, but the host replication machinery was needed.
Collapse
Affiliation(s)
- Jae-Young Song
- Department of Microbiology, Gyeongsang National University College of Medicine, 90 Chiram-dong, Jinju, Gyeongsangnam-do 660-751, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Song JY, Choi SH, Byun EY, Lee SG, Park YH, Park SG, Lee SK, Kim KM, Park JU, Kang HL, Baik SC, Lee WK, Cho MJ, Youn HS, Ko GH, Bae DW, Rhee KH. Characterization of a small cryptic plasmid, pHP51, from a Korean isolate of strain 51 of Helicobacter pylori. Plasmid 2003; 50:145-51. [PMID: 12932740 DOI: 10.1016/s0147-619x(03)00059-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The nucleotide sequence of a 3955-bp Helicobacter pylori plasmid, pHP51 was determined, and two open reading frames, ORF1 and ORF2, were identified. The deduced amino acid sequence of ORF1 was highly conserved (87-89%) among plasmid replication initiation proteins, RepBs. The function of ORF2 was not assigned because it lacked known functional domains or sequence similarity with other known proteins, although it had a HPFXXGNG motif that was also found in the cAMP-induced filamentation (fic) gene. Three kinds of repeats were present on the plasmid outside of the ORFs, including the R1 and R2 repeats that are common in H. pylori plasmids. One 100-bp sequence detected in the noncoding region of pHP51 was highly similar to the genomic sequence of H. pylori 26695.
Collapse
Affiliation(s)
- Jae-Young Song
- Department of Microbiology, Gyeongsang Institute of Health Science, Gyeongsang National University College of Medicine, 90 Chiram-dong, Jinju, Gyeongsangnam-do 660-751, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Alfredson DA, Korolik V. Sequence analysis of a cryptic plasmid pCJ419 from Campylobacter jejuni and construction of an Escherichia coli-Campylobacter shuttle vector. Plasmid 2003; 50:152-60. [PMID: 12932741 DOI: 10.1016/s0147-619x(03)00060-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A small cryptic plasmid, pCJ419, was identified in a human clinical isolate of Campylobacter jejuni, cloned and sequenced. pCJ419 is a circular molecule of 4013 bp with a G+C content of 27.1%. The products of four open reading frames (ORFs) share significant sequence similarity with putative proteins from known C. jejuni and Campylobacter coli plasmids. ORF-1 encodes a putative mobilisation protein (Mob). ORF-2 and ORF-3 encode proteins that have high identity to putative RepA and RepB proteins, respectively, of known C. jejuni and C. coli plasmids. ORF-4 encodes a protein that has high identity to a hypothetical protein of unknown function, Cjp32, previously described in a pVir plasmid of C. jejuni. Tandem repeating 22-bp sequences typical of a plasmid replication origin (ori) were identified upstream of the DNA sequences encoding putative replication initiation proteins. An Escherichia coli-Campylobacter shuttle cloning vector, pGU0202, was constructed using plasmid pMW2 that harbours a Campylobacter-derived kanamycin resistance gene [aph(3')-III]. The sequences encoding pCJ419 mob, RepA and RepB proteins were inserted upstream of aph(3')-III resulting in a stable construct of 6174 bp that was used to transform both E. coli and Campylobacter.
Collapse
Affiliation(s)
- David A Alfredson
- Microbial Glycobiology, Institute for Glycomics, Griffith University, Gold Coast, Southport, Qld. 4215, Australia.
| | | |
Collapse
|
14
|
Bacon DJ, Alm RA, Hu L, Hickey TE, Ewing CP, Batchelor RA, Trust TJ, Guerry P. DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81-176. Infect Immun 2002; 70:6242-50. [PMID: 12379703 PMCID: PMC130303 DOI: 10.1128/iai.70.11.6242-6250.2002] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The circular pVir plasmid of Campylobacter jejuni strain 81-176 was determined to be 37,468 nucleotides in length with a G+C content of 26%. A total of 83% of the plasmid represented coding information, and all but 2 of the 54 predicted open reading frames were encoded on the same DNA strand. There were seven genes on the plasmid in a continguous region of 8.9 kb that encoded orthologs of type IV secretion proteins found in Helicobacter pylori, including four that have been described previously (D. J. Bacon, R. A. Alm, D. H. Burr, L. Hu, D. J. Kopecko, C. P. Ewing, T. J. Trust, and P. Guerry, Infect. Immun. 68:4384-4390, 2000). There were seven other pVir-encoded proteins that showed significant similarities to proteins encoded by the plasticity zones of either H. pylori J99 or 26695. Mutational analyses of 19 plasmid genes identified 5 additional genes that affect in vitro invasion of intestinal epithelial cells. These included one additional gene encoding a component of a type IV secretion system, an ortholog of Cj0041 from the chromosome of C. jejuni NCTC 11168, two Campylobacter plasmid-specific genes, and an ortholog of HP0996 from the plasticity zone of H. pylori 26695.
Collapse
Affiliation(s)
- David J Bacon
- Naval Medical Research Center, Silver Spring, Maryland 20910, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hosaka Y, Okamoto R, Irinoda K, Kaieda S, Koizumi W, Saigenji K, Inoue M. Characterization of pKU701, a 2.5-kb plasmid, in a Japanese Helicobacter pylori isolate. Plasmid 2002; 47:193-200. [PMID: 12151234 DOI: 10.1016/s0147-619x(02)00003-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A cryptic plasmid of Helicobacter pylori, pKU701 (accession number AB078638), was isolated and the complete nucleotide sequence was determined. No drug resistance properties were mediated by pKU701. The 2454b pKU701 sequence, which had a 38% content of G-C residues, generated one polypeptide from a single open reading frame (ORF1). Extensive sequence homology was evident between pKU701 and ORF1 of H. pylori plasmid pHPO100 (repA, 88.8% identity) as well as ORF3 of plasmid pHPS1 (repB, 80.2% identity), but pKU701 showed only 46.3% homology with ORF1 of plasmid pHPK255 (repA). Tandem direct repeats of a 33-bp segment were found in pKU701 outside ORF1, but there were no inverted repeat ends such as those found in typical insertion sequences. The ability of drug resistance plasmids to replicate in H. pylori is probably limited, so chromosomal mutation may be a more likely cause of resistance.
Collapse
Affiliation(s)
- Yoshio Hosaka
- Department of Microbiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara-shi, Kanagawa 228-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Hofreuter D, Haas R. Characterization of two cryptic Helicobacter pylori plasmids: a putative source for horizontal gene transfer and gene shuffling. J Bacteriol 2002; 184:2755-66. [PMID: 11976306 PMCID: PMC135030 DOI: 10.1128/jb.184.10.2755-2766.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many Helicobacter pylori isolates carry cryptic plasmids of extremely variable size. In this study we analyzed two H. pylori plasmids, pHel4 and pHel5, from H. pylori strains P8 and P29, respectively. Plasmid pHel4 consists of 10,970 bp, constituting 15 putative open reading frames (ORFs), whereas pHel5 consists of 18,291 bp, constituting 17 ORFs. The findings that both plasmids encode a conserved RepA protein and that both have an origin of replication containing an iteron place them in the group of theta plasmids. In pHel4, the products of the overlapping orf4C, orf4D, orf4E, and orf4F sequences are homologous to MobA, MobB, MobC, and MobD, encoded by colicinogenic plasmids, suggesting that pHel4 might be mobilizable. A further putative operon consists of orf4B and orf4A, the products of which are homologous to microcin C7 (MccC7) biosynthesis and secretion proteins MccB and MccC, respectively. Plasmid pHel5 carries putative genes encoding proteins with homology to an endonuclease and gene products of an H. pylori chromosomal plasticity zone. Both plasmids contain repeat sequences, such as the previously identified R2 repeat, which are considered preferred recombination sites. In pHel4, a new repeat sequence (R4 repeat), which seems to act as a hot spot for site-specific recombination, was identified. All H. pylori plasmids characterized so far have a modular structure. We suggest a model that explains the existing plasmids by insertions and deletions of genetic elements at the repeat sequences. A genetic exchange between plasmids and the bacterial chromosome, combined with plasmid mobilization, might add a novel mechanism to explain the high genetic macrodiversity within the H. pylori population.
Collapse
Affiliation(s)
- Dirk Hofreuter
- Max von Pettenkofer Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians Universität München, Petterkoferstrasse 9A, D-80336 Munich, Germany
| | | |
Collapse
|
17
|
Quiñones M, Knesek JE, McIntire SA. Sequence and gene expression analyses of plasmid pHPM8 from Helicobacter pylori reveal the presence of two operons with putative roles in plasmid replication and antibiotic activity. Plasmid 2001; 46:223-8. [PMID: 11735371 DOI: 10.1006/plas.2001.1541] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The DNA sequence of a 7.8-kb Helicobacter pylori plasmid, pHPM8, was determined. Six open reading frames (ORFs) were present. Ribonuclease protection studies showed that ORF1/ORF2 and ORF3/ORF4 genes are organized in operons possibly involved in plasmid replication and in production of a peptide with antibiotic activity, respectively. Finding areas of pHPM8 with a high level of identity to H. pylori chromosomal DNA supported the hypothesis that recombination occurs between plasmids and the chromosome of H. pylori.
Collapse
Affiliation(s)
- M Quiñones
- Biology Department, Texas Woman's University, Denton, Texas 76204, USA
| | | | | |
Collapse
|