1
|
Ekpo MD, Xie J, Hu Y, Liu X, Liu F, Xiang J, Zhao R, Wang B, Tan S. Antifreeze Proteins: Novel Applications and Navigation towards Their Clinical Application in Cryobanking. Int J Mol Sci 2022; 23:2639. [PMID: 35269780 PMCID: PMC8910022 DOI: 10.3390/ijms23052639] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Antifreeze proteins (AFPs) or thermal hysteresis (TH) proteins are biomolecular gifts of nature to sustain life in extremely cold environments. This family of peptides, glycopeptides and proteins produced by diverse organisms including bacteria, yeast, insects and fish act by non-colligatively depressing the freezing temperature of the water below its melting point in a process termed thermal hysteresis which is then responsible for ice crystal equilibrium and inhibition of ice recrystallisation; the major cause of cell dehydration, membrane rupture and subsequent cryodamage. Scientists on the other hand have been exploring various substances as cryoprotectants. Some of the cryoprotectants in use include trehalose, dimethyl sulfoxide (DMSO), ethylene glycol (EG), sucrose, propylene glycol (PG) and glycerol but their extensive application is limited mostly by toxicity, thus fueling the quest for better cryoprotectants. Hence, extracting or synthesizing antifreeze protein and testing their cryoprotective activity has become a popular topic among researchers. Research concerning AFPs encompasses lots of effort ranging from understanding their sources and mechanism of action, extraction and purification/synthesis to structural elucidation with the aim of achieving better outcomes in cryopreservation. This review explores the potential clinical application of AFPs in the cryopreservation of different cells, tissues and organs. Here, we discuss novel approaches, identify research gaps and propose future research directions in the application of AFPs based on recent studies with the aim of achieving successful clinical and commercial use of AFPs in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (M.D.E.); (J.X.); (Y.H.); (X.L.); (F.L.); (J.X.); (R.Z.); (B.W.)
| |
Collapse
|
2
|
Beetle and mussel-inspired chimeric protein for fabricating anti-icing coating. Colloids Surf B Biointerfaces 2021; 210:112252. [PMID: 34902712 DOI: 10.1016/j.colsurfb.2021.112252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/23/2022]
Abstract
Ice accretion on surfaces can cause serious damages and economic losses in industries and civilian facilities. Antifreeze proteins (AFPs) as evolutionary adaptation products of organisms to cold climates, provide solutions for alleviating icing problems. In this work, a chimeric protein Mfp-AFP was rationally designed combining mussel-inspired adhesive domain with Tenebrio molitor-derived antifreeze protein domain. Expectedly, the multifunctional Mfp-AFP can lower the freezing point of water and inhibit ice recrystallization. The chimeric protein could also readily modify diverse solid surfaces due to the adhesive domain containing Dopa, and resist frosting and delay ice formation due to the beetle-derived antifreeze fragment. Moreover, Mfp-AFP coatings display excellent biocompatibility proved by cytocompatibility and hemolysis assays. Here, the designed multifunctional protein coatings provide an alternative strategy for fabricating anti-icing surfaces.
Collapse
|
3
|
Optimization of the pilot-scale production of an ice-binding protein by fed-batch culture of Pichia pastoris. Appl Microbiol Biotechnol 2012. [PMID: 23203635 DOI: 10.1007/s00253-012-4594-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ice-binding proteins (IBPs) can bind to the ice crystal and inhibit its growth. Because this property of IBPs can increase the freeze-thaw survival of cells, IBPs have attracted the attention from industries for their potential use in biotechnological applications. However, their use was largely hampered by the lack of the large-scale recombinant production system. In this study, the codon-optimized IBP from Leucosporidium sp. (LeIBP) was constructed and subjected to high-level expression in methylotrophic Pichia pastoris system. In a laboratory-scale fermentation (7 L), the optimal induction temperature and pH were determined to be 25 °C and 6.0, respectively. Further, employing glycerol fed-batch phase prior to methanol induction phase enhanced the production of recombinant LelBP (rLeIBP) by ∼100 mg/l. The total amount of secreted proteins at these conditions (25 °C, pH 6.0, and glycerol fed-batch phase) was ∼443 mg/l, 60 % of which was rLeIBP, yielding ∼272 mg/l. In the pilot-scale fermentation (700 L) under the same conditions, the yield of rLeIBP was 300 mg/l. To our best knowledge, this result reports the highest production yield of the recombinant IBP. More importantly, the rLeIBP secreted into culture media was stable and active for 6 days of fermentation. The thermal hysteresis (TH) activity of rLeIBP was about 0.42 °C, which is almost the same to those reported previously. The availability of large quantities of rLeIBP may accelerate further application studies.
Collapse
|
4
|
Can O, Holland NB. Conjugation of type I antifreeze protein to polyallylamine increases thermal hysteresis activity. Bioconjug Chem 2011; 22:2166-71. [PMID: 21905742 DOI: 10.1021/bc2004318] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antifreeze proteins (AFPs) are ice binding proteins found in some plants, insects, and Antarctic fish allowing them to survive at subzero temperatures by inhibiting ice crystal growth. The interaction of AFPs with ice crystals results in a difference between the freezing and melting temperatures, termed thermal hysteresis, which is the most common measure of AFP activity. Creating antifreeze protein constructs that reduce the concentration of protein needed to observe thermal hysteresis activities would be beneficial for diverse applications including cold storage of cells or tissues, ice slurries used in refrigeration systems, and food storage. We demonstrate that conjugating multiple type I AFPs to a polyallylamine chain increases thermal hysteresis activity compared to the original protein. The reaction product is approximately twice as active when compared to the same concentration of free proteins, yielding 0.5 °C thermal hysteresis activity at 0.3 mM protein concentration. More impressively, the amount of protein required to achieve a thermal hysteresis of 0.3 °C is about 100 times lower when conjugated to the polymer (3 μM) compared to free protein (300 μM). Ice crystal morphologies observed in the presence of the reaction product are comparable to those of the protein used in the conjugation reaction.
Collapse
Affiliation(s)
- Ozge Can
- Department of Chemical & Biomedical Engineering, Cleveland State University, Cleveland, Ohio 44115, United States
| | | |
Collapse
|
5
|
Patel SN, Graether SP. Increased flexibility decreases antifreeze protein activity. Protein Sci 2010; 19:2356-65. [PMID: 20936690 DOI: 10.1002/pro.516] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 09/28/2010] [Indexed: 11/10/2022]
Abstract
Antifreeze proteins protect several cold-blooded organisms from subzero environments by preventing death from freezing. The Type I antifreeze protein (AFP) isoform from Pseudopleuronectes americanus, named HPLC6, is a 37-residue protein that is a single α-helix. Mutational analysis of the protein showed that its alanine-rich face is important for binding to and inhibiting the growth of macromolecular ice. Almost all structural studies of HPLC6 involve the use of chemically synthesized protein as it requires a native N-terminal aspartate and an amidated C-terminus for full activity. Here, we examine the role of C-terminal amide and C-terminal arginine side chain in the activity, structure, and dynamics of nonamidated Arg37 HPLC6, nonamidated HPLC6 Ala37, amidated HPLC6 Ala37, and fully native HPLC6 using a recombinant bacterial system. The thermal hysteresis (TH) activities of the nonamidated mutants are 35% lower compared with amidated proteins, but analysis of the NMR data and circular dichroism spectra shows that they are all still α-helical. Relaxation data from the two nonamidated mutants indicate that the C-terminal residues are considerably more flexible than the rest of the protein because of the loss of the amide group, whereas the amidated Ala37 mutant has a C-terminus that is as rigid as the wild-type protein and has high TH activity. We propose that an increase in flexibility of the AFP causes it to lose activity because its dynamic nature prevents it from binding strongly to the ice surface.
Collapse
Affiliation(s)
- Shruti N Patel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
6
|
Gwak IG, Jung WS, Kim HJ, Kang SH, Jin E. Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracile. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:630-639. [PMID: 20024694 DOI: 10.1007/s10126-009-9250-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 12/04/2009] [Indexed: 05/28/2023]
Abstract
The antifreeze protein gene (Cn-AFP) from the Antarctic marine diatom, Chaetoceros neogracile was cloned and characterized. The full-length Cn-AFP cDNA contained an open reading frame of 849 bp and the deduced 282 amino acid peptide chain encodes a 29.2 kDa protein, which includes a signal peptide of 30 amino acids at the N terminus. Both the Cn-AFP coding region with and without the signal sequence were cloned and expressed in Escherichia coli. Recombinant Cn-AFPs were shown to display antifreeze activities based on measuring the thermal hysteresis and modified morphology of single ice crystals. Recombinant mature Cn-AFP showed 16-fold higher thermal hysteresis activity than that of pre-mature Cn-AFP at the same concentration. The ice crystal shape changed to an elongated hexagonal shape in the presence of the recombinant mature Cn-AFP, while single ice crystal showed a circular disk shape in absence of Cn-AFP. Northern analysis demonstrated a dramatic accumulation of Cn-AFP transcripts when the cells were subjected to freezing stress. This rapid response to freeze stress, and the antifreeze activity of recombinant Cn-AFPs, indicates that Cn-AFP plays an important role in low temperature adaptation.
Collapse
Affiliation(s)
- In Gyu Gwak
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, 133-791 Seoul, South Korea
| | | | | | | | | |
Collapse
|
7
|
Kawahara H, Higa S, Tatsukawa H, Obata H. Cryoprotection and cryosterilization effects of type I antifreeze protein on E. coli cells. Biocontrol Sci 2009; 14:49-54. [PMID: 19579654 DOI: 10.4265/bio.14.49] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
To establish the effects of type I antifreeze protein (AFP) on E. coli cells, we have focused on the survival rate of the E. coli cells using type I AFP at various concentrations under rapid cooling conditions using liquid N2 at atmospheric or low pressure. The survival rate of E. coli was enhanced by the addition of type I AFP at a concentration of 10 microg/ml, and its value shifted from 0.73% to 2.96%. When the concentration of type I AFP was 100 microg/ml, the cell survival rate markedly decreased to 0.090%. This low survival rate was further decreased (0.022%) by the application of the same freeze-thaw treatment for four times. Also, the effect of type I AFP as a bactericidal agent did not vary according to the varying initial cell densities from 10(4) to 10(8) cells / ml. Furthermore, the effects of using type I AFP at 1.0 MPa with N2 gas under conditions of low pressure and low oxygen tension using a simple device were examined. When the actions of type I AFP as a cryoprotectant were stimulated, the survival rate of the E. coil cells increased to 57.8%. In addition, the bactericidal effect of type I AFP at 100 micro g/ml of protein concentration could also be enhanced. The survival rate using 100 g/ml of type I AFP under low pressure was 0.35% of that using 10 microg/ml under the same conditions. This is the first report on the cryoprotectant and cryosterilization effects of type I AFP of E. coli cells under various conditions.
Collapse
Affiliation(s)
- Hidehisa Kawahara
- Department of Life Science and Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | | | | | | |
Collapse
|
8
|
Venketesh S, Dayananda C. Properties, Potentials, and Prospects of Antifreeze Proteins. Crit Rev Biotechnol 2008; 28:57-82. [DOI: 10.1080/07388550801891152] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Garner J, Harding MM. Design and synthesis of alpha-helical peptides and mimetics. Org Biomol Chem 2007; 5:3577-85. [PMID: 17971985 DOI: 10.1039/b710425a] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The alpha-helix is the most abundant secondary structural element in proteins and is an important structural domain for mediating protein-protein and protein-nucleic acid interactions. Strategies for the rational design and synthesis of alpha-helix mimetics have not matured as well as other secondary structure mimetics such as strands and turns. This perspective will focus on developments in the design, synthesis and applications of alpha-helices and mimetics, particularly in the last 5 years. Examples where synthetic compounds have delivered promising biological results will be highlighted as well as opportunities for the design of mimetics of the type I alpha-helical antifreeze proteins.
Collapse
Affiliation(s)
- James Garner
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
10
|
Khanna HK, Daggard GE. Targeted expression of redesigned and codon optimised synthetic gene leads to recrystallisation inhibition and reduced electrolyte leakage in spring wheat at sub-zero temperatures. PLANT CELL REPORTS 2006; 25:1336-46. [PMID: 16847628 DOI: 10.1007/s00299-006-0191-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 05/28/2006] [Accepted: 06/06/2006] [Indexed: 05/10/2023]
Abstract
Antifreeze proteins (AFPs) adsorb to ice crystals and inhibit their growth, leading to non-colligative freezing point depression. Crops like spring wheat, that are highly susceptible to frost damage, can potentially be made frost tolerant by expressing AFPs in the cytoplasm and apoplast where ice recrystallisation leads to cellular damage. The protein sequence for HPLC-6 alpha-helical antifreeze protein from winter flounder was rationally redesigned after removing the prosequences in the native protein. Wheat nuclear gene preferred amino acid codons were used to synthesize a recombinant antifreeze gene, rAFPI. Antifreeze protein was targeted to the apoplast using a Murine leader peptide sequence from the mAb24 light chain or retained in the endoplasmic reticulum using C-terminus KDEL sequence. The coding sequences were placed downstream of the rice Actin promoter and Actin-1 intron and upstream of the nopaline synthase terminator in the plant expression vectors. Transgenic wheat lines were generated through micro projectile bombardment of immature embryos of spring wheat cultivar Seri 82. Levels of antifreeze protein in the transgenic lines without any targeting peptide were low (0.06-0.07%). The apoplast-targeted protein reached a level of 1.61% of total soluble protein, 90% of which was present in the apoplast. ER-retained protein accumulated in the cells at levels up to 0.65% of total soluble proteins. Transgenic wheat line T-8 with apoplast-targeted antifreeze protein exhibited the highest levels of antifreeze activity and provided significant freezing protection even at temperatures as low as -7 degrees C.
Collapse
Affiliation(s)
- Harjeet K Khanna
- Centre for Systems Biology, Faculty of Sciences, University of Southern Queensland, Toowoomba, Qld., 4350, Australia.
| | | |
Collapse
|
11
|
Panadero J, Randez-Gil F, Prieto JA. Heterologous expression of type I antifreeze peptide GS-5 in baker's yeast increases freeze tolerance and provides enhanced gas production in frozen dough. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:9966-70. [PMID: 16366681 DOI: 10.1021/jf0515577] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The demand for frozen-dough products has increased notably in the baking industry. Nowadays, no appropriate industrial baker's yeast with optimal gassing capacity in frozen dough is, however, available, and it is unlikely that classical breeding programs could provide significant improvements of this trait. Antifreeze proteins, found in diverse organisms, display the ability to inhibit the growth of ice, allowing them to survive at temperatures below 0 degrees C. In this study a recombinant antifreeze peptide GS-5 was expressed from the polar fish grubby sculpin (Myoxocephalus aenaeus) in laboratory and industrial baker's yeast strains of Saccharomyces cerevisiae. Production of the recombinant protein increased freezing tolerance in both strains tested. Furthermore, expression of the GS-5 encoding gene enhanced notably the gassing rate and total gas production in frozen and frozen sweet doughs. These effects are unlikely to be due to reduced osmotic damage during freezing/thawing, because recombinant cells showed growth behavior similar to that of the parent under hypermosmotic stress conditions.
Collapse
Affiliation(s)
- Joaquin Panadero
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, P.O. Box 73, 46100 Burjassot (Valencia), Spain
| | | | | |
Collapse
|
12
|
Zhang DQ, Liu B, Feng DR, He YM, Wang JF. Expression, purification, and antifreeze activity of carrot antifreeze protein and its mutants. Protein Expr Purif 2005; 35:257-63. [PMID: 15135400 DOI: 10.1016/j.pep.2004.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 01/12/2004] [Indexed: 10/26/2022]
Abstract
Antifreeze proteins (AFPs) enable organisms to survive under freezing or sub-freezing conditions. AFPs have a great potential in the low temperature storage of cells, tissues, organs, and foods. This process will require a large number of recombinant AFPs. In the present study, the recombinant carrot AFP was highly expressed in Escherichia coli strain BL21 (DE3). The activity of the purified and refolded recombinant proteins was analyzed by measurement of thermal hysteresis (TH) activity and detection of in vitro antifreeze activity by measuring enhanced cold resistance of bacteria. Two carrot AFP mutants generated by site-directed mutagenesis were also expressed and purified under these conditions for use in parallel experiments. Recombinant DcAFP displayed a TH activity equivalent to that of native DcAFP, while mutants DcAFP-N130Q and rDcAFP-N130V showed 32 and 43% decreases in TH activity, respectively. Both the recombinant DcAFP and its mutants were able to enhance the cold resistance of bacteria, to degrees consistent with their respective TH activities.
Collapse
Affiliation(s)
- Dang-Quan Zhang
- The Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | |
Collapse
|
13
|
Tanghe A, Van Dijck P, Thevelein JM. Determinants of freeze tolerance in microorganisms, physiological importance, and biotechnological applications. ADVANCES IN APPLIED MICROBIOLOGY 2004; 53:129-76. [PMID: 14696318 DOI: 10.1016/s0065-2164(03)53004-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- An Tanghe
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Belgium
| | | | | |
Collapse
|
14
|
Tong L, Lin Q, Wong WK, Ali A, Lim D, Sung WL, Hew CL, Yang DS. Extracellular expression, purification, and characterization of a winter flounder antifreeze polypeptide from Escherichia coli. Protein Expr Purif 2000; 18:175-81. [PMID: 10686148 DOI: 10.1006/prep.1999.1176] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HPLC6 is the major component of liver-type antifreeze polypeptides (AFPs) from the winter flounder, Pleuronectes americanus. To facilitate mutagenesis studies of this protein, a gene encoding the 37-amino acid mature polypeptide was chemically synthesized and cloned into the Tac cassette immediately after the bacterial ompA leader sequence for direct excretion of the AFP into the culture medium. Escherichia coli transformant with the construct placIQpar8AF was cultured in M9 medium. The recombinant AFP (rAFP) was detected by a competitive enzyme-linked immunosorbent assay (ELISA). After IPTG induction, a biologically active rAFP was expressed. The majority of the rAFP was excreted into the culture medium with only trace amounts trapped in the periplasmic space and cytoplasm. After 18 h of induction, the accumulated rAFP in the culture medium amounted to about 16 mg/L. The excreted AFP was purified from the culture medium by a single-step reverse-phase HPLC. Mass spectrometric and amino acid composition analyses confirmed the identity of the purified product. The rAFP, which lacked amidation at the C-terminal, was about 70% active when compared to the amidated wild-type protein, thus confirming the importance of C-terminal cap structure in protein stability and function.
Collapse
Affiliation(s)
- L Tong
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|