1
|
Gundemir S, Monteagudo A, Akbar A, Keillor JW, Johnson GVW. The complex role of transglutaminase 2 in glioblastoma proliferation. Neuro Oncol 2017; 19:208-218. [PMID: 27591334 PMCID: PMC5464277 DOI: 10.1093/neuonc/now157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glioblastomas (GBMs) are a heterogeneous group of primary brain tumors. These tumors are resistant to therapeutic interventions and invariably recur after surgical resection. The multifunctional protein transglutaminase 2 (TG2) has been shown to promote cell survival in a number of different tumors. There is also evidence that TG2 may be a pro-survival factor in GBMs. However, the roles that TG2 plays in facilitating GBM survival and proliferation have not yet been clearly delineated . METHODS The functions of TG2 are often cell- and context-specific. Therefore, in this study we examined the ability of TG2 to facilitate GBM proliferation using colony formation assays and 5-ethynyl-2'-deoxyuridine (EdU) incorporation in several different GBM cell lines as well as neurospheres derived from patient tumors representing the 3 major subtypes of GBM tumors (mesenchymal, proneural, and classical) and maintained in the absence of serum. TG2 knockdown or selective TG2 inhibitors were used to modulate TG2 expression and activity. RESULTS We show that TG2 plays differential roles in the proliferative process depending on the cell type. In most, but not all, GBM models TG2 plays a crucial role in the proliferative process, and some but not all TG2 inhibitors were highly effective at reducing proliferation in a large subset of the GBM models. CONCLUSION Our results show that TG2 plays an important-but notoriously context-specific-role in GBM cell biology. Nonetheless, as future studies unravel the genetic "fingerprints" that make TG2 inhibitors effective, this information could be exploited to develop TG2 inhibitors into personalized GBM therapies.
Collapse
Affiliation(s)
- Soner Gundemir
- Department of Anesthesiology, University of Rochester, Rochester, New York; Department of Pharmacology and Physiology, University of Rochester, Rochester, New York; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Alina Monteagudo
- Department of Anesthesiology, University of Rochester, Rochester, New York; Department of Pharmacology and Physiology, University of Rochester, Rochester, New York; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Abdullah Akbar
- Department of Anesthesiology, University of Rochester, Rochester, New York; Department of Pharmacology and Physiology, University of Rochester, Rochester, New York; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Jeffrey W Keillor
- Department of Anesthesiology, University of Rochester, Rochester, New York; Department of Pharmacology and Physiology, University of Rochester, Rochester, New York; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Gail V W Johnson
- Department of Anesthesiology, University of Rochester, Rochester, New York; Department of Pharmacology and Physiology, University of Rochester, Rochester, New York; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Aydin O, Akyuz F, Tekin N, Ustuner M, Degirmenci I, Burukoglu D, Ozden H. Effect of retinyl acetate on transglutaminase 2 activity in carcinogen treated rat liver. Biotech Histochem 2016; 91:342-51. [PMID: 27089473 DOI: 10.3109/10520295.2016.1170879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transglutaminase 2 (TG2) has been implicated in wound healing, cellular differentiation, apoptosis and cell survival. TG2 activity increases following acute and chronic liver injury; however, the role of TG2 in tumors, is controversial. TG2 is a retinoid-inducible enzyme. We investigated the effects of retinyl acetate (RA) on the activity and levels of TG2 during the initiation and promotion stages of liver cancer. p-Dimethylaminoazobenzene (p-DAB) was used as initiator and 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) was used as promoter in our model of carcinogenesis. Rats were divided into four groups of 24: control, corn oil control, p-DAB + TCDD, and p-DAB + TCDD + RA. Six rats from each group were sacrificed at days 30, 60, 90 and 120. TG2 activity decreased in the p-DAB + TCDD treated group, but TG2 immunostaining scores did not change by days 90 and 120. Neither TG2 enzyme activity nor the immunostaining score of TG2 protein changed in the tissues of the p-DAB + TCDD + RA group by days 90 and 120. TG2 activity was not be ameliorated by RA during the initiation or promotion stages of carcinogen induced liver cancer.
Collapse
Affiliation(s)
- O Aydin
- a Department of Medical Biochemistry , Faculty of Medicine, Eskisehir Osmangazi University , Eskisehir , Turkey
| | - F Akyuz
- a Department of Medical Biochemistry , Faculty of Medicine, Eskisehir Osmangazi University , Eskisehir , Turkey
| | - N Tekin
- b Department of Biotechnology and Molecular Biology , Faculty of Science and Letters, Aksaray University , Aksaray , Turkey
| | - Mc Ustuner
- c Department of Medical Biology , Eskisehir , Turkey
| | - I Degirmenci
- c Department of Medical Biology , Eskisehir , Turkey
| | - D Burukoglu
- d Department of Histology and Embryology , Eskisehir , Turkey
| | - H Ozden
- e Department of Anatomy , Faculty of Medicine, Eskisehir Osmangazi University , Eskisehir , Turkey
| |
Collapse
|
3
|
Fortunati D, Chau DYS, Wang Z, Collighan RJ, Griffin M. Cross-linking of collagen I by tissue transglutaminase provides a promising biomaterial for promoting bone healing. Amino Acids 2014; 46:1751-61. [DOI: 10.1007/s00726-014-1732-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/19/2014] [Indexed: 01/05/2023]
|
4
|
Wang Z, Griffin M. The role of TG2 in regulating S100A4-mediated mammary tumour cell migration. PLoS One 2013; 8:e57017. [PMID: 23469180 PMCID: PMC3585722 DOI: 10.1371/journal.pone.0057017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 01/21/2013] [Indexed: 12/21/2022] Open
Abstract
The importance of S100A4, a Ca(2+)-binding protein, in mediating tumour cell migration, both intracellularly and extracellularly, is well documented. Tissue transglutaminase (TG2) a Ca(2+)-dependent protein crosslinking enzyme, has also been shown to enhance cell migration. Here by using the well characterised non-metastatic rat mammary R37 cells (transfected with empty vector) and highly metastatic KP1 cells (R37 cells transfected with S100A4), we demonstrate that inhibition of TG2 either by TG2 inhibitors or transfection of cells with TG2 shRNA block S100A4-accelerated cell migration in the KP1cells and in R37 cells treated with exogenous S100A4. Cell migration was also blocked by the treatment with the non-cell permeabilizing TG2 inhibitor R294, in the human breast cancer cell line MDA-MB-231 (Clone 16, which has a high level of TG2 expression). Inhibition was paralleled by a decrease in S100A4 polymer formation. In vitro co-immunoprecipitation and Far Western blotting assays and cross-linking assays showed not only the direct interaction between TG2 and S100A4, but also confirmed S100A4 as a substrate for TG2. Using specific functional blocking antibodies, a targeting peptide and a recombinant protein as a competitive treatment, we revealed the involvement of syndecan-4 and α5β1 integrin co-signalling pathways linked by activation of PKCα in this TG2 and S100A4-mediated cell migration. We propose a mechanism for TG2-regulated S100A4-related mediated cell migration, which is dependent on TG2 crosslinking.
Collapse
Affiliation(s)
- Zhuo Wang
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom
| | - Martin Griffin
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Le BV, Nguyen JB, Logarajah S, Wang B, Marcus J, Williams HP, Catteruccia F, Baxter RHG. Characterization of Anopheles gambiae transglutaminase 3 (AgTG3) and its native substrate Plugin. J Biol Chem 2013; 288:4844-53. [PMID: 23288850 DOI: 10.1074/jbc.m112.435347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Male Anopheles mosquitoes coagulate their seminal fluids via cross-linking of a substrate, called Plugin, by the seminal transglutaminase AgTG3. Formation of the "mating plug" by cross-linking Plugin is necessary for efficient sperm storage by females. AgTG3 has a similar degree of sequence identity (~30%) to both human Factor XIII (FXIII) and tissue transglutaminase 2 (hTG2). Here we report the solution structure and in vitro activity for the cross-linking reaction of AgTG3 and Plugin. AgTG3 is a dimer in solution and exhibits Ca(2+)-dependent nonproteolytic activation analogous to cytoplasmic FXIII. The C-terminal domain of Plugin is predominantly α-helical with extended tertiary structure and oligomerizes in solution. The specific activity of AgTG3 was measured as 4.25 × 10(-2) units mg(-1). AgTG3 is less active than hTG2 assayed using the general substrate TVQQEL but has 8-10× higher relative activity when Plugin is the substrate. Mass spectrometric analysis of cross-linked Plugin detects specific peptides including a predicted consensus motif for cross-linking by AgTG3. These results support the development of AgTG3 inhibitors as specific and effective chemosterilants for A. gambiae.
Collapse
Affiliation(s)
- Binh V Le
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-81070, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang Z, Collighan RJ, Pytel K, Rathbone DL, Li X, Griffin M. Characterization of heparin-binding site of tissue transglutaminase: its importance in cell surface targeting, matrix deposition, and cell signaling. J Biol Chem 2012; 287:13063-83. [PMID: 22298777 DOI: 10.1074/jbc.m111.294819] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tissue transglutaminase (TG2) is a multifunctional Ca(2+)-activated protein cross-linking enzyme secreted into the extracellular matrix (ECM), where it is involved in wound healing and scarring, tissue fibrosis, celiac disease, and metastatic cancer. Extracellular TG2 can also facilitate cell adhesion important in wound healing through a nontransamidating mechanism via its association with fibronectin, heparan sulfates (HS), and integrins. Regulating the mechanism how TG2 is translocated into the ECM therefore provides a strategy for modulating these physiological and pathological functions of the enzyme. Here, through molecular modeling and mutagenesis, we have identified the HS-binding site of TG2 (202)KFLKNAGRDCSRRSSPVYVGR(222). We demonstrate the requirement of this binding site for translocation of TG2 into the ECM through a mechanism involving cell surface shedding of HS. By synthesizing a peptide NPKFLKNAGRDCSRRSS corresponding to the HS-binding site within TG2, we also demonstrate how this mimicking peptide can in isolation compensate for the RGD-induced loss of cell adhesion on fibronectin via binding to syndecan-4, leading to activation of PKCα, pFAK-397, and ERK1/2 and the subsequent formation of focal adhesions and actin cytoskeleton organization. A novel regulatory mechanism for TG2 translocation into the extracellular compartment that depends upon TG2 conformation and the binding of HS is proposed.
Collapse
Affiliation(s)
- Zhuo Wang
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, United Kingdom
| | | | | | | | | | | |
Collapse
|
7
|
Importance of syndecan-4 and syndecan -2 in osteoblast cell adhesion and survival mediated by a tissue transglutaminase-fibronectin complex. Exp Cell Res 2010; 317:367-81. [PMID: 21036168 DOI: 10.1016/j.yexcr.2010.10.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/23/2010] [Accepted: 10/16/2010] [Indexed: 11/20/2022]
Abstract
Tissue transglutaminase (TG2) has been identified as an important extracellular crosslinking enzyme involved in matrix turnover and in bone differentiation. Here we report a novel cell adhesion/survival mechanism in human osteoblasts (HOB) which requires association of FN bound TG2 with the cell surface heparan sulphates in a transamidase independent manner. This novel pathway not only enhances cell adhesion on FN but also mediates cell adhesion and survival in the presence of integrin competing RGD peptides. We investigate the involvement of cell surface receptors and their intracellular signalling molecules to further explore the pathway mediated by this novel TG-FN heterocomplex. We demonstrate by siRNA silencing the crucial importance of the cell surface heparan sulphate proteoglycans syndecan-2 and syndecan-4 in regulating the compensatory effect of TG-FN on osteoblast cell adhesion and actin cytoskeletal formation in the presence of RGD peptides. By use of immunoprecipitation and inhibitory peptides we show that syndecan-4 interacts with TG2 and demonstrate that syndecan-2 and the α5β1 integrins, but not α4β1 function as downstream modulators in this pathway. Using function blocking antibodies, we show activation of α5β1 occurs by an inside out signalling mechanism involving activation and binding of protein kinase PKCα and phosphorylation of focal adhesion kinase (FAK) at Tyr(861) and activation of ERK1/2.
Collapse
|
8
|
Wang Z, Collighan RJ, Gross SR, Danen EHJ, Orend G, Telci D, Griffin M. RGD-independent cell adhesion via a tissue transglutaminase-fibronectin matrix promotes fibronectin fibril deposition and requires syndecan-4/2 α5β1 integrin co-signaling. J Biol Chem 2010; 285:40212-29. [PMID: 20929862 DOI: 10.1074/jbc.m110.123703] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibronectin (FN) deposition mediated by fibroblasts is an important process in matrix remodeling and wound healing. By monitoring the deposition of soluble biotinylated FN, we show that the stress-induced TG-FN matrix, a matrix complex of tissue transglutaminase (TG2) with its high affinity binding partner FN, can increase both exogenous and cellular FN deposition and also restore it when cell adhesion is interrupted via the presence of RGD-containing peptides. This mechanism does not require the transamidase activity of TG2 but is activated through an RGD-independent adhesion process requiring a heterocomplex of TG2 and FN and is mediated by a syndecan-4 and β1 integrin co-signaling pathway. By using α5 null cells, β1 integrin functional blocking antibody, and a α5β1 integrin targeting peptide A5-1, we demonstrate that the α5 and β1 integrins are essential for TG-FN to compensate RGD-induced loss of cell adhesion and FN deposition. The importance of syndecan-2 in this process was shown using targeting siRNAs, which abolished the compensation effect of TG-FN on the RGD-induced loss of cell adhesion, resulting in disruption of actin skeleton formation and FN deposition. Unlike syndecan-4, syndecan-2 does not interact directly with TG2 but acts as a downstream effector in regulating actin cytoskeleton organization through the ROCK pathway. We demonstrate that PKCα is likely to be the important link between syndecan-4 and syndecan-2 signaling and that TG2 is the functional component of the TG-FN heterocomplex in mediating cell adhesion via its direct interaction with heparan sulfate chains.
Collapse
Affiliation(s)
- Zhuo Wang
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
9
|
Telci D, Collighan RJ, Basaga H, Griffin M. Increased TG2 expression can result in induction of transforming growth factor beta1, causing increased synthesis and deposition of matrix proteins, which can be regulated by nitric oxide. J Biol Chem 2009; 284:29547-58. [PMID: 19657147 DOI: 10.1074/jbc.m109.041806] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In fibrotic conditions increases in TG2 activity has been linked to an increase in the deposition of extracellular matrix proteins. Using TG2 transfected Swiss 3T3 fibroblasts expressing TG2 under the control of the tetracycline-regulated inducible promoter, we demonstrate that induction of TG2 not only stimulates an increase in collagen and fibronectin deposition but also an increase in the expression of these proteins. Increased TG2 expression in these fibroblasts led to NF-kappaB activation, resulting in the increased expression of transforming growth factor (TGF) beta(1). In addition, cells overexpressing TG2 demonstrated an increase in biologically active TGFbeta(1) in the extracellular environment. A specific site-directed inhibitor of TG abolished the NF-kappaB and TGFbeta1 activation and the subsequent elevation in the synthesis and deposition of extracellular matrix proteins, confirming that this process depends on the induction of transglutaminase activity. Treatment of TG2-induced fibroblasts with nontoxic doses of nitric oxide donor S-nitroso-N-acetylpenicillamine resulted in decreased TG2 activity and apprehension of the inactive enzyme on the cell surface. This was paralleled by a reduction in activation of NF-kappaB and TGFbeta(1) production with a subsequent decrease in collagen expression and deposition. These findings support a role for NO in the regulation of TG2 function in the extracellular environment.
Collapse
Affiliation(s)
- Dilek Telci
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, United Kingdom
| | | | | | | |
Collapse
|
10
|
Telci D, Wang Z, Li X, Verderio EAM, Humphries MJ, Baccarini M, Basaga H, Griffin M. Fibronectin-tissue transglutaminase matrix rescues RGD-impaired cell adhesion through syndecan-4 and beta1 integrin co-signaling. J Biol Chem 2008; 283:20937-47. [PMID: 18499669 DOI: 10.1074/jbc.m801763200] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterotropic association of tissue transglutaminase (TG2) with extracellular matrix-associated fibronectin (FN) can restore the adhesion of fibroblasts when the integrin-mediated direct binding to FN is impaired using RGD-containing peptide. We demonstrate that the compensatory effect of the TG-FN complex in the presence of RGD-containing peptides is mediated by TG2 binding to the heparan sulfate chains of the syndecan-4 cell surface receptor. This binding mediates activation of protein kinase Calpha (PKCalpha) and its subsequent interaction with beta(1) integrin since disruption of PKCalpha binding to beta(1) integrins with a cell-permeant competitive peptide inhibits cell adhesion and the associated actin stress fiber formation. Cell signaling by this process leads to the activation of focal adhesion kinase and ERK1/2 mitogen-activated protein kinases. Fibroblasts deficient in Raf-1 do not respond fully to the TG-FN complex unless either the full-length kinase competent Raf-1 or the kinase-inactive domain of Raf-1 is reintroduced, indicating the involvement of the Raf-1 protein in the signaling mechanism. We propose a model for a novel RGD-independent cell adhesion process that could be important during tissue injury and/or remodeling whereby TG-FN binding to syndecan-4 activates PKCalpha leading to its association with beta(1) integrin, reinforcement of actin-stress fiber organization, and MAPK pathway activation.
Collapse
Affiliation(s)
- Dilek Telci
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Jones RA, Kotsakis P, Johnson TS, Chau DYS, Ali S, Melino G, Griffin M. Matrix changes induced by transglutaminase 2 lead to inhibition of angiogenesis and tumor growth. Cell Death Differ 2005; 13:1442-53. [PMID: 16294209 DOI: 10.1038/sj.cdd.4401816] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Administration of active TG2 to two different in vitro angiogenesis assays resulted in the accumulation of a complex extracellular matrix (ECM) leading to the suppression of endothelial tube formation without causing cell death. Matrix accumulation was accompanied by a decreased rate of ECM turnover, with increased resistance to matrix metalloproteinase-1. Intratumor injection of TG2 into mice bearing CT26 colon carcinoma tumors demonstrated a reduction in tumor growth, and in some cases tumor regression. In TG2 knockout mice, tumor progression was increased and survival rate reduced compared to wild-type mice. In wild-type mice, an increased presence of TG2 was detectable in the host tissue around the tumor. Analysis of CT26 tumors injected with TG2 revealed fibrotic-like tissue containing increased collagen, TG2-mediated crosslink and reduced organized vasculature. TG2-mediated modulation of cell behavior via changes in the ECM may provide a new approach to solid tumor therapy.
Collapse
Affiliation(s)
- R A Jones
- School of Biomedical and Natural Sciences, Nottingham Trent University, Nottingham NG11 8NS, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Chau DYS, Collighan RJ, Verderio EAM, Addy VL, Griffin M. The cellular response to transglutaminase-cross-linked collagen. Biomaterials 2005; 26:6518-29. [PMID: 15927250 DOI: 10.1016/j.biomaterials.2005.04.017] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Accepted: 04/07/2005] [Indexed: 11/22/2022]
Abstract
Collagen, type I, is a highly abundant natural protein material which has been cross-linked by a variety of methods including chemical agents, physical heating and UV irradiation with the aim of enhancing its physical characteristics such as mechanical strength, thermal stability, resistance to proteolytic breakdown, thus increasing its overall biocompatibility. However, in view of the toxicity of residual cross-linking agents, or impracticability at large scales, it would be more useful if the collagen could be cross-linked by a milder, efficient and more practical means by using enzymes as biological catalysts. We demonstrate that on treating native collagen type I (from bovine skin) with both tissue transglutaminase (TG2; tTG) and microbial transglutaminase (mTG; Streptoverticillium mobaraense) leads to an enhancement in cell attachment, spreading and proliferation of human osteoblasts (HOB) and human foreskin dermal fibroblasts (HFDF) when compared to culture on native collagen. The transglutaminase-treated collagen substrates also showed a greater resistance to cell-mediated endogenous protease degradation than the native collagen. In addition, the HOB cells were shown to differentiate at a faster rate than on native collagen when assessed by measurement of alkaline phosphatase activity and osteopontin expression.
Collapse
Affiliation(s)
- David Y S Chau
- School of Biomedical and Natural Sciences, The Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | | | | | | | | |
Collapse
|
13
|
Mamone G, Ferranti P, Melck D, Tafuro F, Longobardo L, Chianese L, Addeo F. Susceptibility to transglutaminase of gliadin peptides predicted by a mass spectrometry-based assay. FEBS Lett 2004; 562:177-82. [PMID: 15044021 DOI: 10.1016/s0014-5793(04)00231-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 02/18/2004] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
A peptidomics approach was developed to identify transglutaminase-susceptible Q residues within a pepsin-trypsin gliadin digest. Based on tagging with a monodansylcadaverine fluorescent probe, six alpha/beta-, gamma-gliadin, and low molecular weight glutenin peptides were identified by nanospray tandem mass spectrometry. In functioning as an acyl acceptor, tissue transglutaminase was able to form complexes with the glutamine-rich gliadin peptides, whereas by lowering pH, the peptides were deamidated by transglutaminase at the same Q residues, which were previously transamidated. The main common feature shared by the peptides was the consensus sequence Q-X-P. Our findings offer relevant information for the understanding of how dietary peptides interact with the host organism in celiac disease.
Collapse
|
14
|
Gillet SMFG, Chica RA, Keillor JW, Pelletier JN. Expression and rapid purification of highly active hexahistidine-tagged guinea pig liver transglutaminase. Protein Expr Purif 2004; 33:256-64. [PMID: 14711514 DOI: 10.1016/j.pep.2003.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tissue transglutaminase has been identified as a contributor to a wide variety of diseases, including cataract formation and Celiac disease. Guinea pig tissue transglutaminase has a very broad substrate specificity and therefore is useful for kinetic studies using substrate analogues. Here, we report the expression in Escherichia coli of a hexahistidine-tagged guinea pig liver tissue transglutaminase (His(6)-tTGase) allowing rapid purification by immobilized-metal affinity chromatography. Using this procedure we have obtained the highest reported specific activity (17 U/mg) combined with a high yield (22 mg/L of culture) for recombinant TGase using a single-step purification protocol. Using two independent spectrophotometric assays, we determined that the K(m) value of the recombinant enzyme with the substrate Cbz-Gln-Gly is in the same range as values reported in the literature for the native enzyme. We have thus developed a rapid and reproducible protocol for the preparation of high quality tissue TGase.
Collapse
Affiliation(s)
- Steve M F G Gillet
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | |
Collapse
|
15
|
Verderio EAM, Telci D, Okoye A, Melino G, Griffin M. A novel RGD-independent cel adhesion pathway mediated by fibronectin-bound tissue transglutaminase rescues cells from anoikis. J Biol Chem 2003; 278:42604-14. [PMID: 12732629 DOI: 10.1074/jbc.m303303200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Specific association of tissue transglutaminase (tTG) with matrix fibronectin (FN) results in the formation of an extracellular complex (tTG-FN) with distinct adhesive and pro-survival characteristics. tTG-FN supports RGD-independent cell adhesion of different cell types and the formation of distinctive RhoA-dependent focal adhesions following inhibition of integrin function by competitive RGD peptides and function blocking anti-integrin antibodies alpha5beta1. Association of tTG with its binding site on the 70-kDa amino-terminal FN fragment does not support this cell adhesion process, which seems to involve the entire FN molecule. RGD-independent cell adhesion to tTG-FN does not require transamidating activity, is mediated by the binding of tTG to cell-surface heparan sulfate chains, is dependent on the function of protein kinase Calpha, and leads to activation of the cell survival focal adhesion kinase. The tTG-FN complex can maintain cell viability of tTG-null mouse dermal fibroblasts when apoptosis is induced by inhibition of RGD-dependent adhesion (anoikis), suggesting an extracellular survival role for tTG. We propose a novel RGD-independent cell adhesion mechanism that promotes cell survival when the anti-apoptotic role mediated by RGD-dependent integrin function is reduced as in tissue injury, which is consistent with the externalization and binding of tTG to fibronectin following cell damage/stress.
Collapse
Affiliation(s)
- Elisabetta A M Verderio
- Department of Life Sciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
LU S, ZHOU N, TIAN Y, LI H, CHEN J. PURIFICATION AND PROPERTIES OF TRANSGLUTAMINASE FROM STREPTOVERTICILLIUM MOBARAENSE. J Food Biochem 2003. [DOI: 10.1111/j.1745-4514.2003.tb00270.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Jeon JH, Cho SY, Kim CW, Shin DM, Kweon JC, Choi KH, Park SC, Kim IG. GTP is required to stabilize and display transamidation activity of transglutaminase 2. Biochem Biophys Res Commun 2002; 294:818-22. [PMID: 12061780 DOI: 10.1016/s0006-291x(02)00582-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transglutaminase 2 (TGase 2) is a bifunctional enzyme that catalyzes calcium-dependent transamidation and GTP binding/hydrolysis. The transamidation activity is proposed to be associated with several neurodegenerative disorders such as Alzheimer's and Hungtinton's disease. However, the regulation mechanism by which TGase 2 causes neurodegeneration is unknown. In this study, we show that two activities of TGase 2 have a differential stability; transamidation activity is less stable than GTP hydrolytic activity, and that GTP was required to stabilize and to display transamidation activity. Moreover, GTP binding-defective mutant of TGase 2 did not show any transamidation activity in transfection experiments. These results indicate that GTP binding is crucial for transamidation activity of TGase 2, suggesting that protein cross-linking by TGase 2 might be associated with G-protein coupled receptor signaling system. Thus, our data could contribute to understand the regulation of TGase 2 activity and TGase 2-associated pathogenesis.
Collapse
Affiliation(s)
- Ju-Hong Jeon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon Dong, Chongno Gu, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Shi Q, Kim SY, Blass JP, Cooper AJL. Expression in Escherichia coli and purification of hexahistidine-tagged human tissue transglutaminase. Protein Expr Purif 2002; 24:366-73. [PMID: 11922752 DOI: 10.1006/prep.2001.1587] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence suggests that aberrant transglutaminase activity is associated with a wide variety of diseases. Tissue transglutaminase is the most widely distributed of the six well-characterized transglutaminases in humans. We describe a method for expressing hexahistidine-tagged human tissue transglutaminase in Escherichia coli BL21(DE3) using the pET-30 Ek/LIC expression vector. Purification of the expressed enzyme from suspensions of E. coli cells treated with CelLytic B Bacterial Cell Lysis/Extraction Reagent was accomplished by immobilized metal (Ni2+) affinity column chromatography. The procedure typically yields highly purified and highly active recombinant human tissue transglutaminase in about 1 day (about 0.6 mg/from a 1-liter culture).
Collapse
Affiliation(s)
- Qingli Shi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
19
|
Marrano C, de Macédo P, Gagnon P, Lapierre D, Gravel C, Keillor JW. Synthesis and evaluation of novel dipeptide-bound 1,2,4-thiadiazoles as irreversible inhibitors of guinea pig liver transglutaminase. Bioorg Med Chem 2001; 9:3231-41. [PMID: 11711299 DOI: 10.1016/s0968-0896(01)00228-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Herein we report the synthesis and evaluation of 14 novel peptides as potential irreversible inactivators of guinea pig liver transglutaminase (TGase). These peptides were designed to resemble Cbz-L-Gln-Gly, known to be a good TGase substrate, and to include a 1,2,4-thiadiazole group. The side chain length of the amino acid residue bearing the inhibitor group was also varied in order to permit investigation of this effect. Their inactivation rate constants were measured using a direct continuous spectrophotometric method and were found to vary between 0.330 to 0.89 microM(-1) min(-1).
Collapse
Affiliation(s)
- C Marrano
- Département de chimie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | | | |
Collapse
|
20
|
Leblanc A, Gravel C, Labelle J, Keillor JW. Kinetic studies of guinea pig liver transglutaminase reveal a general-base-catalyzed deacylation mechanism. Biochemistry 2001; 40:8335-42. [PMID: 11444980 DOI: 10.1021/bi0024097] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Guinea pig liver transglutaminase (TGase) reacts with 0.1 mM N-Cbz-L-Glu(gamma-p-nitrophenyl ester)Gly (5, prepared herein, K(M) = 0.02 mM) to undergo rapid acylation that can be followed spectrophotometrically at 400 nm (pH 7.0, 25 degrees C). Deacylation of the transiently formed thiolester acyl enzyme intermediate via catalytic aminolysis was studied in the presence of six primary amines of widely varying basicity (pK(NH+) = 5.6-10.5). Steady-state kinetic studies were performed to measure k(cat) and K(M) values for each amine substrate. A Brønsted plot constructed through the correlation of log(k(cat)/K(M)) and pK(NH+) for each amine substrate displays a linear free-energy relationship with a slope beta(nuc) = -0.37 +/- 0.08. The shallow negative slope is consistent with a general-base-catalyzed deacylation mechanism in which a proton is removed from the amine substrate during its rate-limiting nucleophilic attack on the thiolester carbonyl. Kinetic isotope effects were measured for four acceptor substrates (water, kie = 1.1 +/- 0.1; aminoacetonitrile, kie = 5.9 +/- 1.2; glycine methyl ester, kie = 3.4 +/- 0.7; N-Ac-L-lysine methyl ester, kie = 1.1 +/- 0.1) and are consistent with a proton in flight at the rate-limiting transition state. The active site general-base implicated by these kinetic results is believed to be His-334, of the highly conserved TGase Cys-His-Asp catalytic triad.
Collapse
Affiliation(s)
- A Leblanc
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | |
Collapse
|
21
|
Marrano C, de Macédo P, Keillor JW. Evaluation of novel dipeptide-bound alpha,beta-unsaturated amides and epoxides as irreversible inhibitors of guinea pig liver transglutaminase. Bioorg Med Chem 2001; 9:1923-8. [PMID: 11425595 DOI: 10.1016/s0968-0896(01)00101-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Herein, we report the results of irreversible inhibition of guinea pig liver transglutaminase (TGase) by a series of 24 novel dipeptides containing either an alpha,beta-unsaturated amide or an epoxide functional group. Their inactivation rate constants were measured using a direct continuous spectrophotometric method and were found to vary between 421 x 10(3) and 3000 x 10(3)M(-1)min(-1).
Collapse
Affiliation(s)
- C Marrano
- Département de chimie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | |
Collapse
|
22
|
de Macédo P, Marrano C, Keillor JW. A direct continuous spectrophotometric assay for transglutaminase activity. Anal Biochem 2000; 285:16-20. [PMID: 10998259 DOI: 10.1006/abio.2000.4713] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herein we report the development of a direct and continuous spectrophotometric method for determining transglutaminase (TGase) activity by using N,N-dimethyl-1,4-phenylenediamine (DMPDA) as a gamma-glutamyl acceptor substrate and carbobenzyloxy-l-glutamylglycine (Z-Gln-Gly) as a typical peptide gamma-glutamyl donor substrate. The transamidation activity of TGase can thus be followed by monitoring the increase of absorbance of the resulting anilide product at 278 nm. The extinction coefficient of the authentic, independently synthesized anilide was determined to be epsilon = 8940 +/- 55 M(-1) cm(-1). Using this assay, we determined the apparent K(M) of DMPDA to be 0.25 mM, which compares favorably to the apparent K(M) values determined for other acceptor substrates under conditions where Z-Gln-Gly is also used as the donor substrate, such as N-acetyl-l-lysine methyl ester (9.6 mM) and methylamine (13.1 mM). Finally, the sensitivity of this assay technique was established through the measurement of irreversible inhibition constants for iodoacetamide, determined to be K(I) = 75 +/- 11 nM and k(inact) = (120 +/- 1) x 10(5) M(-1) min(-1).
Collapse
Affiliation(s)
- P de Macédo
- Département de Chimie, Université de Montréal, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | | | | |
Collapse
|