1
|
Zhao J, Huang G, Xu T, Yin D, Bai J, Gu W. Early developmental exposure to pentachlorophenol causes alterations on mRNA expressions of caspase protease family in zebrafish embryos. CHEMOSPHERE 2017; 180:141-148. [PMID: 28402832 DOI: 10.1016/j.chemosphere.2017.03.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
Caspase proteases play an essential role in cell apoptosis and inflammation, thus matter greatly in animal development and other biological processes. As a ubiquitous environmental pollutant, pentachlorophenol (PCP) is considered to have adverse effects on animal apoptosis during embryonic development, yet the evidence that PCP interfere with caspase genes was seldom reported. To uncover the effects of PCP on caspases expression in early embryos of zebrafish, two concentrations of PCP (5 μg/L and 200 μg/L) were chosen and 14 types of caspase genes at two different developmental stages, 8 h post-fertilization (hpf) and 24 hpf were analyzed. Lower survival and hatching rates, distinct developmental delay and morphological deformities of head and tail were observed. PCP, especially in the high concentration, significantly altered the expressions of most caspase genes. At 8 hpf, PCP had the most significant inductive effects on gene casp8l2 with fold changes (FCs) of 6.87 at 5 μg/L and 4.48 at 200 μg/L, and casp6l1 (with FCs of 3.15/3.69), and inhibitory effects on caspa (with FCs of 0.93/0.53) and caspb (with FCs of 0.99/0.57). At 24 hpf, PCP had the most significant effects on casp6l2, casp9, and caspc. PCP exposure possibly disrupted intrinsic apoptosis pathway considering its effects on casp9 expression. In addition, most caspase genes exhibited higher levels at 24 hpf than 8 hpf except caspc. Our results suggested that PCP had different effects on varied caspase genes, which probably resulting in a profound impact on caspase proteins and apoptosis processes and, ultimately, developmental abnormality.
Collapse
Affiliation(s)
- Jing Zhao
- Shanghai Collaborative Innovation Centre for WEEE Recycling, WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China
| | - Gaofeng Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Jianfeng Bai
- Shanghai Collaborative Innovation Centre for WEEE Recycling, WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China
| | - Weihua Gu
- Shanghai Collaborative Innovation Centre for WEEE Recycling, WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China
| |
Collapse
|
2
|
Ozolins̆ TR. Cyclophosphamide and the Teratology society: an awkward marriage. ACTA ACUST UNITED AC 2010; 89:289-99. [DOI: 10.1002/bdrb.20255] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Lahijani MS, Tehrani DM, Sabouri E. Histopathological and ultrastructural studies on the effects of electromagnetic fields on the liver of preincubated white Leghorn chicken embryo. Electromagn Biol Med 2010; 28:391-413. [PMID: 20017630 DOI: 10.3109/15368370903287689] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There are several reports indicating a linkage between exposures to 50-60 Hz electromagnetic fields and abnormalities in the early stages of embryonic development of chicken embryos. The present study was designed to demonstrate whether electromagnetic fields could be an environmental factor invoking histopathological and ultra-structural changes in livers of preincubated chicken embryos exposed to EMFs. Following other researchers and our previous results from different groups of Developmental Biology at the Animal Sciences, Faculty of Biological Sciences, Shahid-Beheshti University, effects of most effective intensities (1.33, 2.66, 5.52, and 7.32 mT) of electromagnetic fields (EMFs, 50 Hz ) on livers of pre-incubated white leghorn chicken embryos were investigated . 150 healthy, fresh, and fertilized eggs (55-65 gr) were divided into 6 groups of experimental(1-4, n = 30), control (n = 60), and sham (n = 50). Experimental eggs (inside coil) were exposed to 4 different intensities (1.33, 2.66, 5.52, and 7.32 mT). Sham groups were located inside same coil, with no exposure, for 24 h before incubation. Control, sham, and experimental groups (1-4) were then incubated in an incubator (38 +/- 0.5 degrees C, 60% humidity) for 17 days. At the end of this period, livers of experimental, sham, and control groups were processed for light and transmission electrom microscopes (TEM and SEM) studies. So, livers of 17-day old chicken embryos were removed by C-sections, fixed in formalin 10%, stained with H&E and reticulin, and studied under light microscope. Others were prepared for electron microscopes (TEM and SEM) investigations. Morphological observations indicated exencephalic embryos, embryos with asymmetrical faces, crossed beak, shorter upper beak, deformed hind limbs, gastroschesis, anophthalmia, and microphthalmia. H&E and reticulin stainings, TEMS, and SEMs studies indicated EMFs would create hepato-cytes with fibrotic bands, severe steatohepatitis, vacuolizations, swollen and extremely electron-dense mitochondria, reduced invisible cristae, crystalized mitochondria with degenerated cristae, myelin-like figures, macrophages engulfing adjacent cells, dentated nuclei, nuclei with irregular envelopes, degenerated hepatocytes, abnormal lipid accumulations, lipid droplets pushing hepatocytes' nuclei to the corner of the cells, abundant cellular infiltrations cellular infiltrations inside sinusoid and around central veins, disrupted reticulin plexus, and release of chromatin into cytosol,, with partially regular water layers. An elevated oxyradical generation and, subsequently, cell membrane disruptions were the reasons for electromagnetic fields inducing cell damages.
Collapse
Affiliation(s)
- Maryam Shams Lahijani
- Animal Sciences, Faculty of Biological Sciences, Shahid-Beheshti University, G.C., Tehran, Iran.
| | | | | |
Collapse
|
4
|
Barrier M, Dix DJ, Mirkes PE. Inducible 70 kDa heat shock proteins protect embryos from teratogen-induced exencephaly: Analysis using Hspa1a/a1b knockout mice. ACTA ACUST UNITED AC 2009; 85:732-40. [DOI: 10.1002/bdra.20610] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
5
|
Hosako H, Francisco LE, Martin GS, Mirkes PE. The roles of p53 and p21 in normal development and hyperthermia-induced malformations. ACTA ACUST UNITED AC 2009; 86:40-7. [PMID: 19140129 DOI: 10.1002/bdrb.20180] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hyperthermia (HS) is a well-studied teratogen that induces serious malformations, including neural tube defects. Our previous studies have shown that HS induces apoptosis by activating the mitochondrial apoptotic pathway. Prior to activation of the mitochondrial apoptotic pathway, HS also activates p53 and its target genes. In the present study, we determine whether p53 and/or p21 play a role as teratogen suppressors or inducers of HS-induced malformations. METHODS Pregnant mice carrying all three p53 or p21 genotype embryos were exposed to HS on day 8.5. Subsequently, fetuses were collected on day 15.5, and genotyped. In addition to genotype, we also determined the number of resorptions and dead fetuses as well as the number and types of external malformations. RESULTS In the absence of HS exposure, fetuses exhibiting exencephaly and spina bifida were observed in approximately 11% of p53 -/- fetuses, whereas no malformations were observed among p21 -/- fetuses. Exposure to HS resulted in an increase in exencephaly and polydactyly in fetuses of all three p53 genotypes. However, the incidence of these malformations was statistically significantly higher in p53 -/- compared to p53 +/- and p53 +/+ fetuses. Exencephaly was the only malformation observed in p21 fetuses exposed to HS, with an approximately 2-fold increase among p21 +/- and a 3-fold increase among p21 -/- compared to p21 +/+ fetuses. CONCLUSIONS Our study confirms that p53 plays a role in normal development and has shown, for the first time that p53 and p21 function to suppress HS-induced malformations.
Collapse
Affiliation(s)
- Hiromi Hosako
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843,
| | | | | | | |
Collapse
|
6
|
Lopez V, Keen CL, Lanoue L. Prenatal zinc deficiency: influence on heart morphology and distribution of key heart proteins in a rat model. Biol Trace Elem Res 2008; 122:238-55. [PMID: 18224284 DOI: 10.1007/s12011-007-8079-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/25/2007] [Accepted: 11/23/2007] [Indexed: 12/22/2022]
Abstract
The etiology of congenital heart disease is multifactorial, with genetics and nutritional deficiencies recognized as causative agents. Maternal zinc (Zn) deficiency is associated with an increased risk for fetal heart malformations; however, the contributing mechanisms have yet to be identified. In this study, we fed pregnant rats a Zn-adequate diet (ZnA), a Zn-deficient (ZnD), or a restricted amount of Zn adequate diet (RF) beginning on gestation day (GD) 4.5, to examine whether increased cell death and changes in cardiac neural crest cells (NCC) play a role in Zn deficiency-induced heart defects. Fetuses were collected on GD 13.5, 15.5, and 18.5 and processed for GATA-4, FOG-2, connexin-43 (Cx43), HNK-1, smooth muscle alpha-actin (SMA) and cleaved caspase-3 protein expression. Fetuses from ZnA-fed dams showed normal heart development, whereas fetuses from dams fed with the ZnD diet exhibited a variety of heart anomalies, particularly in the region of the outflow tract. HNK-1 expression was lower than normal in the hearts of GD13.5 and 15.5 ZnD fetuses, particularly in the right atrium and in the distal tip of the interventricular septum. Conversely, Cx43 immunoreactivity was increased throughout the heart in fetuses from ZnD dams compared to fetuses from control dams. The distribution and intensity of expression of SMA, GATA-4, FOG-2, and markers of apoptosis were similar among the three groups. We propose that Zn deficiency induced alterations in the distribution of Cx43 and HNK-1 in fetal hearts contribute to the occurrence of the developmental heart anomalies.
Collapse
Affiliation(s)
- Veronica Lopez
- Department of Nutrition, University of California, Davis, One Shields Ave., Meyer Hall, Davis, CA 95616, USA
| | | | | |
Collapse
|
7
|
Abstract
Research over the past 50 years has consistently documented that cell death is an integral part of both normal development and the etiology of birth defects; however, the significance of this cell death has been, until recently, unclear. Research published during the past 15 years has now shown that programmed cell death (PCD) and teratogen-induced cell death are genetically controlled processes (apoptosis) that play important roles in both normal and abnormal development. Therefore, the purpose of this review is to highlight what is known about PCD and teratogen-induced cell death and their relationships to the mechanisms of apoptosis and abnormal development.
Collapse
Affiliation(s)
- Philip E Mirkes
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA.
| |
Collapse
|
8
|
Pekar O, Molotski N, Savion S, Fein A, Toder V, Torchinsky A. p53 regulates cyclophosphamide teratogenesis by controlling caspases 3, 8, 9 activation and NF-kappaB DNA binding. Reproduction 2007; 134:379-88. [PMID: 17660247 DOI: 10.1530/rep-07-0086] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tumor suppressor protein p53 regulates the sensitivity of embryos to such human teratogens as ionizing radiation, diabetes, and cytostatics. Yet, the molecular mechanisms whereby it fulfills this function remain undefined. We used p53 heterozygous (p53(+/-)) female mice mated with p53(+/-) males and then exposed to cyclophosphamide (CP) to test whether caspases 3, 8, and 9 and the transcription factor nuclear factor (NF)-kappaB may serve as p53 targets. Mice were exposed to CP on day 12 of pregnancy and killed on days 15 and 18 of pregnancy to evaluate CP-induced teratogenic effect. The brain and limbs of embryos harvested 24 h after CP treatment were used to evaluate NF-kappaB (p65) DNA-binding activity by an ELISA-based method, the activity of the caspases by appropriate colorimetric kits, apoptosis, and cell proliferation by TUNEL, and 5'-bromo-2'-deoxyuridine incorporation respectively. We observed that the activation of caspases 3, 8, and 9 and the suppression of NF-kappaB DNA binding following CP-induced teratogenic insult took place only in teratologically sensitive organs of p53(+/+) but not p53(-/-) embryos. CP-induced apoptosis and suppression of cell proliferation were also more intensive in the former, and they exhibited a higher incidence of structural anomalies, such as open eyes, digit, limb, and tail anomalies. The analysis of the correlations between the p53 embryonic genotype, the activity of the tested molecules, and the CP-induced dysmorphic events at the cellular and organ level suggests caspases 3, 8, and 9 and NF-kappaB as components of p53-targeting mechanisms in embryos exposed to the teratogen.
Collapse
Affiliation(s)
- Olga Pekar
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
9
|
Jincho Y, Sotomaru Y, Kawahara M, Ono Y, Ogawa H, Obata Y, Kono T. Identification of genes aberrantly expressed in mouse embryonic stem cell-cloned blastocysts. Biol Reprod 2007; 78:568-76. [PMID: 17978277 DOI: 10.1095/biolreprod.107.064634] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During development, cloned embryos often undergo embryonic arrest at any stage of embryogenesis, leading to diverse morphological abnormalities. The long-term effects resulting from embryo cloning procedures would manifest after birth as early death, obesity, various functional disorders, and so forth. Despite extensive studies, the parameters affecting the developmental features of cloned embryos remain unclear. The present study carried out extensive gene expression analysis to screen a cluster of genes aberrantly expressed in embryonic stem cell-cloned blastocysts. Differential screening of cDNA subtraction libraries revealed 224 differentially expressed genes in the cloned blastocysts: eighty-five were identified by the BLAST search as known genes performing a wide range of functions. To confirm their differential expression, quantitative gene expression analyses were performed by real-time PCR using single blastocysts. The genes Skp1a, Canx, Ctsd, Timd2, and Psmc6 were significantly up-regulated, whereas Aqp3, Ak3l1, Rhot1, Sf3b3, Nid1, mt-Rnr2, mt-Nd1, mt-Cytb, and mt-Co2 were significantly down-regulated in the majority of embryonic stem cell-cloned embryos. Our results suggest that an extraordinarily high frequency of multiple functional disorders caused by the aberrant expression of various genes in the blastocyst stage is involved in developmental arrest and various other disorders in cloned embryos.
Collapse
Affiliation(s)
- Yuko Jincho
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Loureiro B, Brad AM, Hansen PJ. Heat shock and tumor necrosis factor-α induce apoptosis in bovine preimplantation embryos through a caspase-9-dependent mechanism. Reproduction 2007; 133:1129-37. [PMID: 17636167 DOI: 10.1530/rep-06-0307] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heat shock and tumor necrosis factor-α (TNF-α) induce apoptosis through different mechanisms, with heat shock acting to cause mitochondrial depolarization and caspase-9 activation, while TNF-α acts through a receptor-mediated process to activate caspase-8. In some cells, however, TNF-α can also cause mitochondrial depolarization and caspase-9 activation. In the present study, we tested the hypothesis that heat shock at 41 °C and TNF-α induce apoptosis in bovine preimplantation embryos through a caspase-9-dependent mechanism. Treatment of embryos with either heat shock (41 °C) or TNF-α increased the proportion of blastomeres that were TUNEL positive and the proportion of embryos exhibiting elevated caspase-9 activity. Furthermore, the caspase-9 inhibitor, z-LEHD-fmk, blocked the increase in TUNEL-positive nuclei caused by both heat shock and TNF-α. For embryos at day 6 after insemination, for example, the percent of blastomeres positive for TUNEL was 3.6% for control embryos, 11.1% for embryos cultured at 41 °C, and 15.1% for embryos cultured with 10 ng/ml TNF-α. In the presence of z-LEHD-fmk, the percent of cells positive for TUNEL was 3.7% for control embryos, 6.1% for embryos cultured at 41 °C, and 8% for embryos cultured with 10 ng/ml TNF-α. Although TNF-α did not cause a measurable increase in caspase-8 activity, there was a tendency (P= 0.07) for treatment of embryos with z-IETD-fmk, an inhibitor of caspase-8, to partly reduce the magnitude of the increase in TUNEL-positive cells caused by TNF-α. The percent of cells that were TUNEL positive was increased by TNF-α from 9.7 to 19.7% in the absence of inhibitor and from 13.0 to 15.6% in the presence of z-IETD-fmk. Results indicate that induction of apoptosis by both heat shock and TNF-α involve activation of caspase-9-dependent pathways. It is likely that TNF-α also activates apoptotic pathways involving caspase-8 but that the degree of activation is small and caspase-9-dependent pathways are required for full activation of apoptosis.
Collapse
Affiliation(s)
- Bárbara Loureiro
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, Florida 32611-0910, USA
| | | | | |
Collapse
|
11
|
Kaufmann P, Haschke M, Török M, Beltinger J, Bogman K, Wenk M, Terracciano L, Krähenbühl S. Mechanisms of venoocclusive disease resulting from the combination of cyclophosphamide and roxithromycin. Ther Drug Monit 2007; 28:766-74. [PMID: 17164692 DOI: 10.1097/01.ftd.0000249943.85160.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND High doses (>or=500 mg/m) of cyclophosphamide are known to cause venoocclusive disease (VOD). The authors recently observed a patient treated with immunosuppressive cyclophosphamide doses (100 mg/day) and roxithromycin who developed VOD. Because roxithromycin inhibits cytochrome P450 (CYP) 3A4 and P-glycoprotein, the patient may have been exposed to higher cyclophosphamide and/or cyclophosphamide metabolite concentrations. METHODS The effect of roxithromycin on the metabolism and toxicity of cyclophosphamide was studied using human hepatic microsomes and a human endothelial cell line. RESULTS Cyclophosphamide or roxithromycin at concentrations from 0.05 to 500 micromol/L were not toxic to endothelial cells as assessed by lactate dehydrogenase (LDH) leakage assay. However, the combination of roxithromycin (500 micromol/L) and cyclophosphamide was toxic for all the tested cyclophosphamide concentrations (0.05 to 500 micromol/L) without clear concentration dependence (LDH ratio 38.3 +/- 11.0 [mean +/- SEM] for the combination with cyclophosphamide 0.05 micromol/L and 50.2 +/- 10.2 for the combination with cyclophosphamide 500 micromol/L; P <or= 0.005 for all tested combinations vs. control). Although roxithromycin did not favor the generation of toxic metabolites from cyclophosphamide, it led to cyclophosphamide accumulation due to inhibition of both CYP3A4 and CYP2B6. Although roxithromycin inhibited P-glycoprotein, this was not the mechanism by which cyclophosphamide toxicity was increased because cyclophosphamide in combination with other P-glycoprotein inhibitors was not toxic to endothelial cells. In the presence of roxithromycin (500 micromol/L), cyclophosphamide (500 micromol/L) induced apoptosis in endothelial cells (34.3 +/- 10.4% apoptotic cells [in % of total cells] for the combination of cyclophosphamide and roxithromycin, 0.7 +/- 0.25% for cyclophosphamide alone, 0% for roxithromycin alone; P < 0.0001) most probably by mitochondrial membrane permeability transition and release of cytochrome c. CONCLUSIONS The combination cyclophosphamide and roxithromycin, but not the individual compounds, is toxic to endothelial cells by inducing apoptosis. Inhibition of P-glycoprotein and formation of toxic metabolites are unlikely causes.
Collapse
Affiliation(s)
- Priska Kaufmann
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
White MG, Luca LE, Nonner D, Saleh O, Hu B, Barrett EF, Barrett JN. Cellular mechanisms of neuronal damage from hyperthermia. PROGRESS IN BRAIN RESEARCH 2007; 162:347-71. [PMID: 17645927 DOI: 10.1016/s0079-6123(06)62017-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hyperthermia can cause brain damage and also exacerbate the brain damage produced by stroke and amphetamines. The developing brain is especially sensitive to hyperthermia. The severity of, and mechanisms underlying, hyperthermia-induced neuronal death depend on both temperature and duration of exposure. Severe hyperthermia can produce necrotic neuronal death. For a window of less severe heat stresses, cultured neurons exhibit a delayed death with apoptotic characteristics including cytochrome c release and caspase activation. Little is known about mechanisms of hyperthermia-induced damage upstream of these late apoptotic effects. This chapter considers several possible upstream mechanisms, drawing on both in vivo and in vitro studies of the nervous system and other tissues. Hyperthermia-induced damage in some non-neuronal cells includes endoplasmic reticular stress due to denaturing of nascent polypeptide chains, as well as nuclear and cytoskeletal damage. Evidence is presented that hyperthermia produces mitochondrial damage, including depolarization, in cultured mammalian neurons.
Collapse
Affiliation(s)
- Michael G White
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Hosako H, Little SA, Barrier M, Mirkes PE. Teratogen-Induced Activation of p53 in Early Postimplantation Mouse Embryos. Toxicol Sci 2006; 95:257-69. [PMID: 17068108 DOI: 10.1093/toxsci/kfl143] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hyperthermia (HS) and 4-hydroperoxycyclophosphamide (4CP) activate the mitochondrial apoptotic pathway in day 9 mouse embryos. Previous microarray analyses Microarray analyses revealed that several p53 target genes are upregulated after exposure to HS or 4CP, suggesting a role for p53 in teratogen-induced apoptosis. To explore the role of p53, we assessed the activation of p53 in day 9 mouse embryos exposed to HS or 4CP in vitro. Both teratogens induced the accumulation of p53 and phosphorylation of p53 at ser-15, two hallmarks of p53 activation. HS and 4CP also induced an increase in Noxa and Puma mRNAs, transcripts of two known proapoptotic p53 target genes; however, these two teratogens did not induce significant increases in NOXA and PUMA proteins, suggesting that p53 does not activate the mitochondrial apoptotic pathway by transcriptionally upregulating the expression of NOXA and PUMA proteins. HS and 4CP also induced the expression of p21 mRNA and protein, suggesting a role for p53 in teratogen-induced cell cycle arrest. Previously, we also showed that HS and 4CP activate the apoptotic pathway in the embryo proper (head and trunk) but not in the heart. We now show that HS and 4CP induce a robust activation of p53 in the embryo proper but an attenuated induction in the heart. HS and 4CP induce the expression of p21 protein in majority of the cells in the embryo; however, expression of NOXA and PUMA proteins were not significantly induced in heads, hearts, or trunks of day 9 embryos. Overall, our results suggest that p53 may play a transcription-dependent role in teratogen-induced cell cycle arrest but a transcription-independent role in teratogen-induced apoptosis in day 9 mouse embryos exposed to HS or 4CP.
Collapse
Affiliation(s)
- Hiromi Hosako
- Department of Veterinary Physiology and Pharmacology, MS4466 435 VMR Building, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
14
|
Mammon K, Savion S, Keshet R, Aroch I, Orenstein H, Fein A, Torchinsky A, Toder V. Expression of apoptosis-associated molecules in the fetoplacental unit of cyclophosphamide-treated mice. Reprod Toxicol 2006; 22:774-82. [PMID: 16952439 DOI: 10.1016/j.reprotox.2006.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 06/15/2006] [Accepted: 07/18/2006] [Indexed: 02/05/2023]
Abstract
The mechanisms underlying the teratogen-induced apoptotic process leading to anomaly formation are not as yet understood. Therefore, we tried to evaluate possible changes in the expression of molecules regulating the apoptotic process induced in the embryo and placenta by exposure to cyclophosphamide (CP). Exposure to CP resulted in clear growth retardation that was accompanied by a time-dependent increase in cellular damage and an appearance of apoptotic cells in the embryonic brain and limbs as well as a decrease in cell proliferation. Western blot analysis demonstrated an increase in the level of Bax and a decrease in the expression of the p65 subunit of NF-kappaB and IkappaB alpha in the embryo and placenta. Immunohistochemical analysis localized cells expressing those molecules to the areas that exhibited CP-induced cellular damage, while in the placenta they were revealed mainly in the luminal and glandular epithelium. Our results suggest a possible involvement of Bax, p65 and IkappaB alpha in the response of the embryo and the placenta to teratogenic insults.
Collapse
Affiliation(s)
- Keren Mammon
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Klostergaard J, Leroux ME, Auzenne E, Khodadadian M, Spohn W, Wu JY, Donato NJ. Hyperthermia engages the intrinsic apoptotic pathway by enhancing upstream caspase activation to overcome apoptotic resistance in MCF-7 breast adenocarcinoma cells. J Cell Biochem 2006; 98:356-69. [PMID: 16440323 DOI: 10.1002/jcb.20729] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Febrile hyperthermia enhanced TNF-stimulated apoptosis of MCF-7 cells and overcame resistance in a TNF-resistant, MCF-7 variant (3E9), increasing their TNF-sensitivity by 10- and 100-fold, respectively. In either cell line, the hyperthermic potentiation was attributable to increased apoptosis that was totally quenched by caspase inhibition. In MCF-7 cells, hyperthermic potentiation of apoptosis was associated with sustained activation of upstream caspases in response to TNF and more prominent engagement of the intrinsic apoptotic pathway. Apoptotic enhancement by hyperthermia was primarily mediated by caspase-8 activation, as the specific inhibitor, Z-IETD, blocked cell death, whereas direct engagement of the intrinsic apoptotic pathway (with doxorubicin) was not affected. In 3E9 cells, hyperthermia alone induced activation of caspase-8, and was further enhanced by TNF. In 3E9 cells, hyperthermia caused TNF-dependent loss of mitochondrial membrane potential and activation of capspase-9 that was initiated and dependent on upstream caspases. MCF-7 and 3E9 cells were equally sensitive to exogenous C(6)-ceramide, but mass spectroscopic analysis of ceramide species indicated that total ceramide content was not enhanced by TNF and/or hyperthermia treatment, and that the combination of TNF and hyperthermia caused only modest elevation of one species (dihydro-palmitoyl ceramide). We conclude that febrile hyperthermia potentiates apoptosis of MCF-7 cells and overcomes TNF-resistance by sustained activation of caspase-8 and engagement of the intrinsic pathway that is independent of ceramide flux. This report provides the first evidence for regulation of caspase-dependent apoptosis by febrile hyperthermia.
Collapse
Affiliation(s)
- J Klostergaard
- Department of Molecular & Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Torchinsky A, Gongadze M, Savion S, Fein A, Toder V. Differential teratogenic response of TNFα+/+ and TNFα−/− mice to cyclophosphamide: The possible role of NF-κB. ACTA ACUST UNITED AC 2006; 76:437-44. [PMID: 16933209 DOI: 10.1002/bdra.20274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND We observed previously that tumor necrosis factor alpha (TNFalpha)-knockout embryos are more sensitive to a cyclophosphamide (CP)-induced teratogenic insult than their TNFalpha-positive counterparts, implicating molecules acting in TNFalpha-activated antiapoptotic pathways in the mechanisms underlying this phenomenon. The main goal of this study was to assess whether the transcription factor nuclear factor kappaB (NF-kappaB) may be 1 of those molecules. Such a choice is based by evidence demonstrating TNFalpha as a powerful activator of NF-kappaB and a key role of the transcription factor in the most effective TNFalpha-activated antiapoptotic cascade. Also, the expression pattern of active caspases 3, 8, and 9 was researched to assess the sensitivity of TNFalpha+/+ and TNFalpha-/- embryos to CP-induced apoptotic stimuli. METHODS TNFalpha-knockout mice were exposed to CP on day 12 of pregnancy, with or without an NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC) and sacrificed on day 18 of pregnancy to evaluate the CP-induced teratogenic effect. Embryos harvested 24 or 48 hr after the CP treatment were used to evaluate NF-kappaB DNA-binding and activity of caspases 3, 8, and 9. RESULTS PDTC potentiated the CP-induced teratogenic effect and augmented the CP-induced suppression of NF-kappaB DNA-binding. These effects were more prominent in TNFalpha-/- than TNFalpha+/+ embryos. CP-induced caspase activation was found to be similar in TNFalpha-/- and TNFalpha+/+ embryos at 24 hr after treatment. At 48 hr, TNFalpha-/- embryos exhibited higher levels of active caspases 8 and 9 than their TNFalpha-positive counterparts. CONCLUSIONS The results of our study allow us to hypothesize that NF-kappaB may be a component of mechanisms underlying differential sensitivity of TNFalpha-/- and TNFalpha+/+ mice to CP-induced teratogenic insult.
Collapse
Affiliation(s)
- Arkady Torchinsky
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | |
Collapse
|
17
|
Torchinsky A, Gongadze M, Zaslavsky Z, Savion S, Fein A, Toder V. Maternal Immunopotentiation Affects Caspase Activation and NF-kappaB DNA-binding Activity in Embryos Responding to an Embryopathic Stress. Am J Reprod Immunol 2006; 55:36-44. [PMID: 16364010 DOI: 10.1111/j.1600-0897.2005.00321.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PROBLEM Increased embryonic resistance to teratogenic stresses as a result of maternal immunopotentiation is associated with a decrease in the intensity of teratogen-induced apoptosis in target embryonic structures. These findings suggest that this effect of maternal immunopotentiation might be realized through modification of the expression of molecules regulating the teratogen-induced apoptotic process. To examine this possibility, we evaluated caspases 3, 8 and 9 activation as well as nuclear factor (NF)-kappaB DNA-binding activity in the embryos of immunopotentiated mice exposed to cyclophosphamide (CP). METHODS OF STUDY The rate of resorptions and the proportion of malformed fetuses in CP-treated mice were recorded on day 19 of pregnancy. Activity of caspases was tested in cytoplasmic extracts collected from the embryonic brain 24 hr after CP treatment using appropriate fluorometric kits, whereas NF-kappaB DNA-binding activity was evaluated in nuclear extracts using the electrophoretic mobility shift assay. RESULTS As in our previous studies, immunopotentiated CP-treated females exhibited a lower rate of resorptions or fetuses with open eyes than their non-immunopotentiated counterparts. In parallel, we observed that maternal immunopotentiation normalized the CP-induced activation of the tested caspases as well as the CP-induced suppression of NF-kappaB DNA-binding activity. CONCLUSIONS As caspases act as inducers of apoptosis, and NF-kappaB acts in CP-treated embryos as an apoptosis suppressor, the above results suggest that maternal immunopotentiation might affect embryonic sensitivity to embryopathic stresses via NF-kappaB- and caspases-associated pathways.
Collapse
Affiliation(s)
- Arkady Torchinsky
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | | | | | | | | | | |
Collapse
|
18
|
Torchinsky A, Fein A, Toder V. Teratogen-induced apoptotic cell death: Does the apoptotic machinery act as a protector of embryos exposed to teratogens? ACTA ACUST UNITED AC 2005; 75:353-61. [PMID: 16425249 DOI: 10.1002/bdrc.20052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Considerable evidence has been collected demonstrating that many teratogens induce apoptotic cell death in embryonic structures that turn out to be malformed in fetuses and newborns. Apoptosis is a genetically regulated process that is realized by the activation of death and pro-survival signaling cascades, and the interplay between these cascades determines whether the cell exposed to apoptotic stimuli dies or survives. Therefore, there is intense interest in understanding how the apoptotic machinery functions in embryos exposed to teratogens. However, the interpretation of the results obtained remains problematic. The main problem is that excessive embryonic cell death, regardless of its nature, if uncompensated for, ultimately leads to maldevelopment or embryonic death. Therefore, we can easily interpret results when the intensity of teratogen-induced cell death and the severity or incidence of teratogen-induced anomalies directly correlate with each other. However, when teratogen-induced cell death is not followed by the formation of anomalies, a usual explanation is that teratogen-induced apoptotic cell death contributes to the renewal of teratogen-targeted cell populations by promoting the removal of injured cells. It is clear that such an explanation leaves vague the role of the anti-apoptotic signaling mechanism (and, hence, the apoptotic machinery as a whole) with respect to protecting the embryo against teratogenic stress. In this review, we summarize the data from studies addressing the function of the apoptotic machinery in embryos exposed to teratogens, and then we discuss approaches to interpreting the results of these studies. We hypothesize that activation of a proapoptotic signaling in teratogen-targeted cell populations is a necessary condition for an anti-apoptotic signaling that counteracts the process of maldevelopment to be activated. If such a scenario is true, we need to modify our approaches to choosing molecular targets for studies addressing this topic.
Collapse
Affiliation(s)
- Arkady Torchinsky
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | |
Collapse
|
19
|
Belay HT, Brown IR. Spatial analysis of cell death and Hsp70 induction in brain, thymus, and bone marrow of the hyperthermic rat. Cell Stress Chaperones 2004; 8:395-404. [PMID: 15115291 PMCID: PMC514910 DOI: 10.1379/1466-1268(2003)008<0395:saocda>2.0.co;2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Heat shock response and programmed cell death are cellular reactions to stressful stimuli. Previous studies have not correlated these responses in vivo at the spatial level in mammalian tissues. This study uses a dual procedure involving immunocytochemistry for Hsp70 localization and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end-labeling (TUNEL) assay for cell death to correlate the pattern of stress-inducible Hsp70 and cell death at the cellular level. After whole-body hyperthermia in the rat, an increase in Hsp70-positive cells and TUNEL-positive cells was noted in brain, thymus, and bone marrow. However, 2 populations of cells were apparent in the tissues examined, those inducing Hsp70 and those triggered into programmed cell death. Cells that were both Hsp70 positive and TUNEL positive were rarely detected. In tissues of the intact mammal, cells that induce Hsp70 after whole-body hyperthermia were not triggered into programmed cell death.
Collapse
Affiliation(s)
- Hiwote T Belay
- Centre for the Neurobiology of Stress, Department of Life Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada M1C 1A4
| | | |
Collapse
|
20
|
Kim WK, Mirkes PE. Alterations in mitochondrial morphology are associated with hyperthermia-induced apoptosis in early postimplantation mouse embryos. ACTA ACUST UNITED AC 2004; 67:929-40. [PMID: 14745931 DOI: 10.1002/bdra.10102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Previously, we showed that teratogens such as hyperthermia activate the mitochondrial apoptotic pathway in day nine mouse embryos. Activation of this pathway involves an initial release of cytochrome c from intermembranous spaces of the mitochondria into the cytoplasm. Cytoplasmic cytochrome c then activates a caspase cascade resulting in the orderly demise of the cell. In addition, we showed that teratogens activate the mitochondrial pathway in cells of the neuroepithelium, but not the heart. METHODS To further investigate the role of the mitochondrion in teratogen-induced apoptosis, we used transmission electron microscopy (TEM) to compare mitochondrial morphology in cells of the neuroepithelium and heart of control and hyperthermia-treated embryos. Because we know that the apoptotic pathway is activated some time during the first 5 hr after teratogen exposure is initiated, we assessed mitochondrial morphology at 1, 2.5, and 5 hr after day nine mouse embryos were exposed to hyperthermia (43 degrees C, 15 min). RESULTS In neuroepithelial cells of the prosencephalon, abnormally-shaped mitochondria were observed at the 1 hr time point and thereafter, whereas loss of cristae and shrunken mitochondria were noted at the 5 hr time point. In contrast, no obvious changes in mitochondria of heart cells were observed at any of the time points monitored. CONCLUSIONS These results indicate that teratogen-induced cell death in neuroepithelial cells is temporally correlated with alterations in mitochondrial morphology, whereas the absence of cell death in the heart is correlated with a corresponding lack of change in mitochondrial morphology. Birth Defects Research (Part A), 2003.
Collapse
Affiliation(s)
- Won-Kyu Kim
- Birth Defects Research Laboratory, Division of Genetics and Development, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
21
|
Lopez SG, Luderer U. Effects of cyclophosphamide and buthionine sulfoximine on ovarian glutathione and apoptosis. Free Radic Biol Med 2004; 36:1366-77. [PMID: 15135172 DOI: 10.1016/j.freeradbiomed.2004.02.067] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 02/09/2004] [Accepted: 02/19/2004] [Indexed: 11/19/2022]
Abstract
Treatment with the anticancer drug cyclophosphamide (CPA) destroys ovarian follicles. The active metabolites of CPA are detoxified by conjugation with glutathione (GSH). We tested the hypotheses that CPA causes apoptosis in ovarian follicles and that suppression of ovarian GSH synthesis before CPA administration enhances CPA-induced apoptosis. Proestrous rats were given two injections, 2 h apart, with (1) saline, then saline; (2) saline, then 50 mg/kg CPA; (3) saline, then 300 mg/kg CPA; or (4) 5 mmol/kg buthionine sulfoximine (BSO) to inhibit glutamate cysteine ligase (GCL), the rate-limiting enzyme in GSH synthesis, and then 50 mg/kg CPA. Statistically significantly increased DNA fragmentation by agarose gel electrophoresis and granulosa cell apoptosis by TUNEL were observed in the CPA-treated ovaries 24 h after the second injection, but BSO did not enhance the effect of 50 mg/kg CPA. We next tested the hypothesis that CPA depresses ovarian GSH concentration and expression of the rate-limiting enzyme in GSH synthesis, GCL. Proestrous rats were injected with 300 or 50 mg/kg CPA or vehicle and were sacrificed 8 or 24 h later. After CPA treatment, ovarian and hepatic GSH levels decreased significantly, and ovarian GCL subunit mRNA levels increased significantly. There were no significant changes in GCL subunit protein levels. Finally, we tested the hypothesis that GSH depletion causes apoptosis in ovarian follicles. Proestrous or estrous rats were injected with 5 mmol/kg BSO or saline at 0700 and 1900 h. There was a significant increase in the percentage of histologically atretic follicles and a nonsignificant increase in the percentage of apoptotic, TUNEL-positive follicles 24 h after onset of BSO treatment. Our results demonstrate that CPA destroys ovarian follicles by inducing granulosa cell apoptosis and that CPA treatment causes a decline in ovarian GSH levels. More pronounced GSH suppression achieved after BSO treatment did not cause a statistically significant increase in follicular apoptosis. Thus, GSH depletion does not seem to be the mechanism by which CPA causes follicular apoptosis.
Collapse
Affiliation(s)
- Sarah G Lopez
- Division of Occupational and Environmental Medicine, Department of Medicine, University of California at Irvine, Irvine, CA 92612, USA
| | | |
Collapse
|
22
|
Ali-Khan SE, Hales BF. Caspase-3 mediates retinoid-induced apoptosis in the organogenesis-stage mouse limb. ACTA ACUST UNITED AC 2003; 67:848-60. [PMID: 14745938 DOI: 10.1002/bdra.10090] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Caspases are key mediators in the regulation and execution of apoptosis, a crucial part of the morphogenetic process during limb development. Caspase-8 and -9 are upstream caspases. Caspase-8 mediates the extrinsic pathway of apoptosis triggered by signaling through TNF-R1 family receptors. Caspase-9 is activated during the intrinsic pathway downstream of mitochondria. Caspase-3 is an effector caspase that initiates degradation of the cell in the final stages of apoptosis. Vitamin A is a potent teratogen that causes limb reduction defects in embryos exposed during organogenesis. Previous in vitro studies have shown that exposure of the organogenesis-stage murine limb to vitamin A results in excessive levels of apoptosis. The goal of this work was to characterize the involvement of caspase-3, -8, and -9, as well as cytochrome-c release from the mitochondria, in the apoptotic cascade induced by vitamin A. METHODS Limb buds from gestational day 12 CD-1 mice were cultured in a chemically defined medium in the absence or presence of vitamin A. Cultures were terminated after 6 days to examine the effect of the drug on gross morphology. Apoptosis was detected by TUNEL staining after culture for 24 hr. Caspase activation was determined by Western blotting and localized by immunohistochemistry of control and treated limbs. The release of cytochrome-c into the cytoplasm was assessed by Western blotting after cell-fractionation. RESULTS Limbs cultured in the presence of vitamin A showed a dose-dependent growth reduction and dysmorphogenesis of the cartilaginous anlagen. Apoptosis was increased in the interdigital, anterior, and posterior marginal zones and in the apical ectodermal ridge. Western-blotting confirmed the presence of activated caspase-3 that increased with time in culture and vitamin A concentration. Cleaved caspase-3 immunoreactivity colocalized with TUNEL stained limb regions and increased dramatically with increasing drug concentrations. In contrast, procaspase-8 and -9 were not activated. Exposure to high concentrations of vitamin A did, however, increase cytoplasmic cytochrome-c, suggesting mitochondrial involvement. CONCLUSIONS Caspase-3 is a key effector caspase in the apoptotic pathway induced by Vitamin A. While caspases-8 and -9 are not responsible for the activation of caspase-3 in response to the drug, cytochrome-c release from mitochondria may play an upstream role.
Collapse
Affiliation(s)
- Sarah E Ali-Khan
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | | |
Collapse
|
23
|
Huang C, Hales BF. Role of caspases in murine limb bud cell death induced by 4-hydroperoxycyclophosphamide, an activated analog of cyclophosphamide. TERATOLOGY 2002; 66:288-99. [PMID: 12486762 DOI: 10.1002/tera.10100] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Caspases play a pivotal role in the regulation and execution of apoptosis, an essential process during limb development. Caspase 8 activation is usually downstream of the Fas/FasL death receptors, whereas caspase 9 mediates the mitochondrial signaling pathway of apoptosis. Caspase 3 is an effector caspase. Previous studies have shown that the exposure of embryonic murine limbs in vitro to 4-hydroperoxycyclophosphamide (4-OOHCPA), an activated analog of the anticancer alkylating agent, cyclophosphamide, induced limb malformations and apoptosis. The goal of this study was to determine the role of caspases in mediating apoptosis in this model system. METHODS Limb buds from gestational day 12 CD-1 mice were excised and cultured in roller bottles in a chemically defined medium for up to 6 days in the absence or presence of 4-OOHCPA. Apoptosis was indicated by internucleosomal DNA fragmentation, as detected by TUNEL staining. The profile of caspase activation was characterized by Western blot analysis and immunohistochemistry of control and treated limbs. To determine the consequences to limb morphology of inhibiting caspase activation, DEVD-CHO, a caspase-3 inhibitor, was added to the cultures. RESULTS Limbs cultured in the presence of 4-OOHCPA were growth retarded and malformed; apoptosis was increased in the apical ectodermal ridge and interdigital areas. Western blot analysis showed that 4-OOHCPA exposure did not activate procaspases 8 or 9 in limbs. In contrast, procaspase-3 cleavage was increased in a concentration and time-dependent manner after exposure of limbs to 4-OOHCPA. Immunoreactive activated caspase-3 was localized in the interdigital areas and the apical ectodermal ridge region in control limbs; staining in these areas and in the interdigital areas was increased dramatically in limbs exposed to 4-OOHCPA. Inhibition of caspase 3 activation with DEVD-CHO partially protected limbs from insult with 4-OOHCPA. CONCLUSION Caspase-dependent and caspase-independent pathways of cell death are both important is mediating the abnormal limb development triggered by insult with 4-OOHCPA.
Collapse
Affiliation(s)
- Chunwei Huang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|