1
|
Olschewski S, Cusack S, Rosenthal M. The Cap-Snatching Mechanism of Bunyaviruses. Trends Microbiol 2020; 28:293-303. [PMID: 31948728 DOI: 10.1016/j.tim.2019.12.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 11/25/2022]
Abstract
In common with all segmented negative-sense RNA viruses, bunyavirus transcripts contain heterologous sequences at their 5' termini originating from capped host cell RNAs. These heterologous sequences are acquired by a so-called cap-snatching mechanism. Whereas for nuclear replicating influenza virus the source of capped primers as well as the cap-binding and endonuclease activities of the viral polymerase needed for cap snatching have been functionally and structurally well characterized, our knowledge on the expected counterparts of cytoplasmic replicating bunyaviruses is still limited and controversial. This review focuses on the cap-snatching mechanism of bunyaviruses in the light of recent structural and functional data.
Collapse
Affiliation(s)
- Silke Olschewski
- Bernhard Nocht Institute for Tropical Medicine, Department of Virology, Hamburg, Germany
| | | | - Maria Rosenthal
- Bernhard Nocht Institute for Tropical Medicine, Department of Virology, Hamburg, Germany.
| |
Collapse
|
2
|
Rice Stripe Tenuivirus Has a Greater Tendency To Use the Prime-and-Realign Mechanism in Transcription of Genomic than in Transcription of Antigenomic Template RNAs. J Virol 2017; 92:JVI.01414-17. [PMID: 29046442 DOI: 10.1128/jvi.01414-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023] Open
Abstract
Most segmented negative-sense RNA viruses employ a process termed cap snatching, during which they snatch capped RNA leaders from host cellular mRNAs and use the snatched leaders as primers for transcription, leading to the synthesis of viral mRNAs with 5' heterogeneous sequences (HSs). With traditional methods, only a few HSs can be determined, and identification of their donors is difficult. Here, the mRNA 5' ends of Rice stripe tenuivirus (RSV) and Rice grassy stunt tenuivirus (RGSV) and those of their host rice were determined by high-throughput sequencing. Millions of tenuiviral HSs were obtained, and a large number of them mapped to the 5' ends of corresponding host cellular mRNAs. Repeats of the dinucleotide AC, which are complementary to the U1G2 of the tenuiviral template 3'-U1G2U3G4UUUCG, were found to be prevalent at the 3' termini of tenuiviral HSs. Most of these ACs did not match host cellular mRNAs, supporting the idea that tenuiviruses use the prime-and-realign mechanism during cap snatching. We previously reported a greater tendency of RSV than RGSV to use the prime-and-realign mechanism in transcription with leaders cap snatched from a coinfecting reovirus. Besides confirming this observation in natural tenuiviral infections, the data here additionally reveal that RSV has a greater tendency to use this mechanism in transcribing genomic than in transcribing antigenomic templates. The data also suggest that tenuiviruses cap snatch host cellular mRNAs from translation- and photosynthesis-related genes, and capped RNA leaders snatched by tenuiviruses base pair with U1/U3 or G2/G4 of viral templates. These results provide unprecedented insights into the cap-snatching process of tenuiviruses.IMPORTANCE Many segmented negative-sense RNA viruses (segmented NSVs) are medically or agriculturally important pathogens. The cap-snatching process is a promising target for the development of antiviral strategies against this group of viruses. However, many details of this process remain poorly characterized. Tenuiviruses constitute a genus of agriculturally important segmented NSVs, several members of which are major viral pathogens of rice. Here, we for the first time adopted a high-throughput sequencing strategy to determine the 5' heterogeneous sequences (HSs) of tenuiviruses and mapped them to host cellular mRNAs. Besides providing deep insights into the cap snatching of tenuiviruses, the data obtained provide clear evidence to support several previously proposed models regarding cap snatching. Curiously and importantly, the data here reveal that not only different tenuiviruses but also the same tenuivirus synthesizing different mRNAs use the prime-and-realign mechanism with different tendencies during their cap snatching.
Collapse
|
3
|
Amroun A, Priet S, Querat G. Toscana virus cap-snatching and initiation of transcription. J Gen Virol 2017; 98:2676-2688. [PMID: 29022865 DOI: 10.1099/jgv.0.000941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toscana virus (TOSV) is an arthropod-borne phlebovirus within the family Phenuiviridae in the order Bunyavirales. It seems to be an important agent of human meningoencephalitis in the warm season in the Mediterranean area. Because the polymerase of Bunyavirales lacks a capping activity, it cleaves short-capped RNA leaders derived from the host cell, and uses them to initiate viral mRNA synthesis. To determine the size and nucleotide composition of the host-derived RNA leaders, and to elucidate the first steps of TOSV transcription initiation, we performed a high-throughput sequencing of the 5' end of TOSV mRNAs in infected cells at different times post-infection. Our results indicated that the viral polymerase cleaved the host-capped RNA leaders within a window of 11-16 nucleotides. A single population of cellular mRNAs could be cleaved at different sites to prime the synthesis of several viral mRNA species. The majority of the mRNA resulted from direct priming, but we observed mRNAs resulting from several rounds of prime-and-realign events. Our data suggest that the different rounds of the prime-and-realign mechanism result from the blocking of the template strand in a static position in the active site, leading to the slippage of the nascent strand by two nucleotides when the growing duplex is sorted out from the active site. To minimize this rate-limiting step, TOSV polymerase cleaves preferentially capped RNA leaders after GC, so as to greatly reduce the number of cycles of priming and realignment, and facilitate the separation of the growing duplex.
Collapse
Affiliation(s)
- Abdennour Amroun
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille Université - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection), Marseille, France
| | - Stéphane Priet
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille Université - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection), Marseille, France
| | - Gilles Querat
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille Université - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection), Marseille, France
| |
Collapse
|
4
|
Amroun A, Priet S, de Lamballerie X, Quérat G. Bunyaviridae RdRps: structure, motifs, and RNA synthesis machinery. Crit Rev Microbiol 2017; 43:753-778. [PMID: 28418734 DOI: 10.1080/1040841x.2017.1307805] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bunyaviridae family is the largest and most diverse family of RNA viruses. It has more than 350 members divided into five genera: Orthobunyavirus, Phlebovirus, Nairovirus, Hantavirus, and Tospovirus. They are present in the five continents, causing recurrent epidemics, epizootics, and considerable agricultural loss. The genome of bunyaviruses is divided into three segments of negative single-stranded RNA according to their relative size: L (Large), M (Medium) and S (Small) segment. Bunyaviridae RNA-dependent RNA polymerase (RdRp) is encoded by the L segment, and is in charge of the replication and transcription of the viral RNA in the cytoplasm of the infected cell. Viral RdRps share a characteristic right hand-like structure with three subdomains: finger, palm, and thumb subdomains that define the formation of the catalytic cavity. In addition to the N-terminal endonuclease domain, eight conserved motifs (A-H) have been identified in the RdRp of Bunyaviridae. In this review, we have summarized the recent insights from the structural and functional studies of RdRp to understand the roles of different motifs shared by RdRps, the mechanism of viral RNA replication, genome segment packaging by the nucleoprotein, cap-snatching, mRNA transcription, and other RNA mechanisms of bunyaviruses.
Collapse
Affiliation(s)
- Abdennour Amroun
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| | - Stéphane Priet
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| | - Xavier de Lamballerie
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| | - Gilles Quérat
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| |
Collapse
|
5
|
Liu X, Xiong G, Qiu P, Du Z, Kormelink R, Zheng L, Zhang J, Ding X, Yang L, Zhang S, Wu Z. Inherent properties not conserved in other tenuiviruses increase priming and realignment cycles during transcription of Rice stripe virus. Virology 2016; 496:287-298. [PMID: 27393974 DOI: 10.1016/j.virol.2016.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/29/2022]
Abstract
Two tenuiviruses Rice stripe virus (RSV) and Rice grassy stunt virus (RGSV) were found to co-infect rice with the same reovirus Rice ragged stunt virus (RRSV). During the co-infection, both tenuiviruses recruited 10-21 nucleotides sized capped-RNA leaders from the RRSV. A total of 245 and 102 RRSV-RGSV and RRSV-RSV chimeric mRNA clones, respectively, were sequenced. An analysis of the sequences suggested a scenario consistent with previously reported data on related viruses, in which capped leader RNAs having a 3' end complementary to the viral template are preferred and upon base pairing the leaders prime processive transcription directly or after one to several cycles of priming and realignment (repetitive prime-and-realign). Interestingly, RSV appeared to have a higher tendency to use repetitive prime-and-realign than RGSV even with the same leader derived from the same RRSV RNA. Combining with relevant data reported previously, this points towards an intrinsic feature of RSV.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Guihong Xiong
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ping Qiu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhenguo Du
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Luping Zheng
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jie Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xinlun Ding
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liang Yang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Songbai Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zujian Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
6
|
Koppstein D, Ashour J, Bartel DP. Sequencing the cap-snatching repertoire of H1N1 influenza provides insight into the mechanism of viral transcription initiation. Nucleic Acids Res 2015; 43:5052-64. [PMID: 25901029 PMCID: PMC4446424 DOI: 10.1093/nar/gkv333] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/01/2015] [Indexed: 12/15/2022] Open
Abstract
The influenza polymerase cleaves host RNAs ∼10–13 nucleotides downstream of their 5′ ends and uses this capped fragment to prime viral mRNA synthesis. To better understand this process of cap snatching, we used high-throughput sequencing to determine the 5′ ends of A/WSN/33 (H1N1) influenza mRNAs. The sequences provided clear evidence for nascent-chain realignment during transcription initiation and revealed a strong influence of the viral template on the frequency of realignment. After accounting for the extra nucleotides inserted through realignment, analysis of the capped fragments indicated that the different viral mRNAs were each prepended with a common set of sequences and that the polymerase often cleaved host RNAs after a purine and often primed transcription on a single base pair to either the terminal or penultimate residue of the viral template. We also developed a bioinformatic approach to identify the targeted host transcripts despite limited information content within snatched fragments and found that small nuclear RNAs and small nucleolar RNAs contributed the most abundant capped leaders. These results provide insight into the mechanism of viral transcription initiation and reveal the diversity of the cap-snatched repertoire, showing that noncoding transcripts as well as mRNAs are used to make influenza mRNAs.
Collapse
Affiliation(s)
- David Koppstein
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Whitehead Institute of Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA Howard Hughes Medical Institute, Whitehead Institute of Biomedical Research, Cambridge, MA 02142, USA
| | - Joseph Ashour
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Whitehead Institute of Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - David P Bartel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Whitehead Institute of Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA Howard Hughes Medical Institute, Whitehead Institute of Biomedical Research, Cambridge, MA 02142, USA
| |
Collapse
|
7
|
Walia JJ, Falk BW. Fig mosaic virus mRNAs show generation by cap-snatching. Virology 2012; 426:162-6. [PMID: 22356803 DOI: 10.1016/j.virol.2012.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/09/2011] [Accepted: 01/28/2012] [Indexed: 10/28/2022]
Abstract
Fig mosaic virus (FMV), a member of the newly described genus Emaravirus, has four negative-sense single-stranded genomic RNAs, and each codes for a single protein in the viral complementary RNA (vcRNA). In this study we show that FMV mRNAs for genome segments 2 and 3 contain short (12-18 nucleotides) heterogeneous nucleotide leader sequences at their 5' termini. Furthermore, by using the high affinity cap binding protein eIF4E(K119A), we also determined that a 5' cap is present on a population of the FMV positive-sense RNAs, presumably as a result of cap-snatching. Northern hybridization results showed that the 5' capped RNA3 segments are slightly smaller than the homologous vcRNA3 and are not polyadenylated. These data suggest that FMV generates 5' capped mRNAs via cap-snatching, similar to strategies used by other negative-sense multipartite ssRNA viruses.
Collapse
Affiliation(s)
- Jeewan Jyot Walia
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
8
|
Yao M, Zhang T, Zhou T, Zhou Y, Zhou X, Tao X. Repetitive prime-and-realign mechanism converts short capped RNA leaders into longer ones that may be more suitable for elongation during rice stripe virus transcription initiation. J Gen Virol 2012; 93:194-202. [PMID: 21918010 DOI: 10.1099/vir.0.033902-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cucumber mosaic virus (CMV) RNAs were found to serve as cap donors for rice stripe virus (RSV) transcription initiation during their co-infection of Nicotiana benthamiana. The 5' end of CMV RNAs was cleaved preferentially at residues that had multiple-base complementarity to the 3' end of the RSV template. The length requirement for CMV capped primers to be suitable for elongation varied between 12 and 20 nt, and those of 12-16 nt were optimal for elongation and generated more CMV-RSV chimeric mRNA transcripts. The original cap donors that were cleaved from CMV RNAs were predominantly short (10-13 nt). However, the CMV capped RNA leaders that underwent long-distance elongation were found to contain up to five repetitions of additional AC dinucleotides. Sequence analysis revealed that these AC dinucleotides were used to increase the size of short cap donors in multiple prime-and-realign cycles. Each prime-and-realign cycle added an AC dinucleotide onto the capped RNA leaders; thus, the original cap donors were gradually converted to longer capped RNA leaders (of 12-20 nt). Interestingly, the original 10 nt (or 11 nt) cap donor cleaved from CMV RNA1/2 did not undergo direct extension; only capped RNA leaders that had been increased to ≥12 nt were used for direct elongation. These findings suggest that this repetitive priming and realignment may serve to convert short capped CMV RNA leaders into longer, more suitable sizes to render a more stabilized transcription complex for elongation during RSV transcription initiation.
Collapse
Affiliation(s)
- Min Yao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianqi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tong Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, PR China
| | - Xiaorong Tao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
9
|
Molecular mechanisms of transcription and replication of the influenza A virus genome. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11515-011-1151-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Geerts-Dimitriadou C, Goldbach R, Kormelink R. Preferential use of RNA leader sequences during influenza A transcription initiation in vivo. Virology 2010; 409:27-32. [PMID: 21030059 DOI: 10.1016/j.virol.2010.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 07/21/2010] [Accepted: 09/07/2010] [Indexed: 11/18/2022]
Abstract
In vitro transcription initiation studies revealed a preference of influenza A virus for capped RNA leader sequences with base complementarity to the viral RNA template. Here, these results were verified during an influenza infection in MDCK cells. Alfalfa mosaic virus RNA3 leader sequences mutated in their base complementarity to the viral template, or the nucleotides 5' of potential base-pairing residues, were tested for their use either singly or in competition. These analyses revealed that influenza transcriptase is able to use leaders from an exogenous mRNA source with a preference for leaders harboring base complementarity to the 3'-ultimate residues of the viral template, as previously observed during in vitro studies. Internal priming at the 3'-penultimate residue, as well as "prime-and-realign" was observed. The finding that multiple base-pairing promotes cap donor selection in vivo, and the earlier observed competitiveness of such molecules in vitro, offers new possibilities for antiviral drug design.
Collapse
|
11
|
Abstract
Regulation of protein synthesis by viruses occurs at all levels of translation. Even prior to protein synthesis itself, the accessibility of the various open reading frames contained in the viral genome is precisely controlled. Eukaryotic viruses resort to a vast array of strategies to divert the translation machinery in their favor, in particular, at initiation of translation. These strategies are not only designed to circumvent strategies common to cell protein synthesis in eukaryotes, but as revealed more recently, they also aim at modifying or damaging cell factors, the virus having the capacity to multiply in the absence of these factors. In addition to unraveling mechanisms that may constitute new targets in view of controlling virus diseases, viruses constitute incomparably useful tools to gain in-depth knowledge on a multitude of cell pathways.
Collapse
|
12
|
Snippe M, Goldbach R, Kormelink R. Tomato spotted wilt virus particle assembly and the prospects of fluorescence microscopy to study protein-protein interactions involved. Adv Virus Res 2006; 65:63-120. [PMID: 16387194 DOI: 10.1016/s0065-3527(05)65003-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Marjolein Snippe
- Department of Asthma, Allergy, and Respiratory Diseases, King's College, London, WC2R 2LS United Kingdom
| | | | | |
Collapse
|
13
|
van Knippenberg I, Lamine M, Goldbach R, Kormelink R. Tomato spotted wilt virus transcriptase in vitro displays a preference for cap donors with multiple base complementarity to the viral template. Virology 2005; 335:122-30. [PMID: 15823611 DOI: 10.1016/j.virol.2005.01.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 01/05/2005] [Accepted: 01/31/2005] [Indexed: 11/20/2022]
Abstract
Transcription of segmented negative-strand RNA viruses is initiated by cap snatching: a host mRNA is cleaved generally at 10-20 nt from its 5' capped end and the resulting capped leader used to prime viral transcription. For Tomato spotted wilt virus (TSWV), type species of the plant-infecting Tospovirus genus within the Bunyaviridae, cap donors were previously shown to require a single base complementarity to the ultimate or penultimate viral template sequence. More recently, the occurrence in vitro of "re-snatching" of viral mRNAs, i.e., the use of viral mRNAs as cap donors, has been demonstrated for TSWV. To estimate the relative occurrence of re-snatching compared to snatching of host mRNAs, the use of cap donors with either single, double, or multiple complementarity to the viral template was analyzed in pair-wise competition in TSWV in vitro transcription assays. A strong preference was observed for multiple-basepairing donors.
Collapse
Affiliation(s)
- Ingeborg van Knippenberg
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709PD Wageningen, The Netherlands
| | | | | | | |
Collapse
|
14
|
Abstract
Among the negative RNA viruses, ambisense RNA viruses or 'ambisense viruses' occupy a distinct niche. Ambisense viruses contain at least one ambisense RNA segment, i.e. an RNA that is in part of positive and in part of negative polarity. Because of this unique gene organization, one might expect ambisense RNA viruses to borrow expression strategies from both positive and negative RNA viruses. However, they have little in common with positive RNA viruses, but possess many features of negative RNA viruses. Transcription and/or replication of their RNAs appear generally to be coupled to translation. Such coupling might be important to ensure temporal control of gene expression, allowing the two genes of an ambisense RNA segment to be differently regulated. Ambisense viruses can infect one host asymptomatically and in certain cases, they can lethally infect two hosts of a different kingdom. A possible model to explain the differential behavior of a given virus in different hosts could be that perturbation of the translation machinery would lead to differences in the severity of symptoms.
Collapse
Affiliation(s)
- Marie Nguyen
- Institut Jacques Monod, 2 Place Jussieu-Tour 43, 75251 Paris, Cedex 05, France.
| | | |
Collapse
|
15
|
Rao P, Yuan W, Krug RM. Crucial role of CA cleavage sites in the cap-snatching mechanism for initiating viral mRNA synthesis. EMBO J 2003; 22:1188-98. [PMID: 12606583 PMCID: PMC150342 DOI: 10.1093/emboj/cdg109] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In viral cap-snatching, the endonuclease intrinsic to the viral polymerase cleaves cellular capped RNAs to generate capped fragments that are primers for viral mRNA synthesis. Here we demonstrate that the influenza viral polymerase, which is assembled in human cells using recombinant proteins, effectively uses only CA-terminated capped fragments as primers for viral mRNA synthesis in vitro. Thus we provide the first in vitro system that mirrors the cap-snatching process occurring in vivo during virus infection. Further, we demonstrate that when a capped RNA substrate contains a CA cleavage site, the functions of virion RNA (vRNA) differ from those previously described: the 5' terminal sequence of vRNA alone is sufficient for endonuclease activation, and the 3' terminal sequence of vRNA functions solely as a template for mRNA synthesis. Consequently, we are able to identify the vRNA sequences that are required for each of these two separable functions. We present a new model for the influenza virus cap-snatching mechanism, which we postulate is a paradigm for the cap-snatching mechanisms of other segmented, negative-strand and ambisense RNA viruses.
Collapse
Affiliation(s)
| | | | - Robert M. Krug
- Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, TX 78712, USA
Corresponding author e-mail:
| |
Collapse
|
16
|
Duijsings D, Kormelink R, Goldbach R. In vivo analysis of the TSWV cap-snatching mechanism: single base complementarity and primer length requirements. EMBO J 2001; 20:2545-52. [PMID: 11350944 PMCID: PMC125463 DOI: 10.1093/emboj/20.10.2545] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2001] [Revised: 03/06/2001] [Accepted: 03/23/2001] [Indexed: 11/14/2022] Open
Abstract
Requirements for capped leader sequences for use during transcription initiation by tomato spotted wilt virus (TSWV) were tested using mutant alfalfa mosaic virus (AMV) RNAs as specific cap donors in transgenic Nicotiana tabacum plants expressing the AMV replicase proteins. Using a series of AMV RNA3 mutants modified in either the 5'-non-translated region or in the subgenomic RNA4 leader, sequence analysis revealed that cleaved leader lengths could vary between 13 and 18 nucleotides. Cleavage occurred preferentially at an A residue, suggesting a requirement for a single base complementarity with the TSWV RNA template, which could be confirmed by analyses of host mRNAs used in vivo as cap donors.
Collapse
Affiliation(s)
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD, Wageningen, The Netherlands
Corresponding author e-mail:
| | | |
Collapse
|
17
|
Estabrook EM, Tsai J, Falk BW. In vivo transfer of barley stripe mosaic hordeivirus ribonucleotides to the 5' terminus of maize stripe tenuivirus RNAs. Proc Natl Acad Sci U S A 1998; 95:8304-9. [PMID: 9653182 PMCID: PMC20971 DOI: 10.1073/pnas.95.14.8304] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/1998] [Accepted: 04/20/1998] [Indexed: 02/08/2023] Open
Abstract
The Tenuivirus maize stripe virus (MStV) shares many properties with viruses in the genus Phlebovirus of the family Bunyaviridae. Besides genome organization and gene expression strategies, one property shared by these plant- and vertebrate-infecting viruses is that transcription gives rise to virus-specific mRNAs containing nonviral 5'-terminal nucleotide sequences. The 5'-terminal nucleotides are believed to be derived from host mRNA sequences as a result of "cap-snatching." We investigated whether specific nucleotide sequences could serve as primer donors for cap-snatching in vivo. Barley (Hordeum vulgare) plants were singly and doubly infected with MStV and the Hordeivirus barley stripe mosaic virus (BSMV). A reverse transcription-PCR assay was used to identify chimeric BSMV/MStV RNAs. Specific reverse transcription-PCR products were detected from doubly infected plants by using one PCR primer corresponding to the 5' termini of the BSMV RNAs (alpha, beta, and gamma) and a second primer complementary to MStV RNA 4. The resulting cDNAs were cloned, and nucleotide sequence analysis showed them to be chimeric, containing BSMV 5'-terminal sequences as well as MStV RNA 4 sequences. All clones contained the BSMV RNA 5' primer nucleotide sequence, but they also showed characteristics common to Tenuivirus mRNAs. More than 80% of the clones contained BSMV RNA nucleotides not present on the PCR primer. Several lacked the exact 5' terminus of MStV RNA 4, a feature also seen for viruses in the Bunyaviridae. These data show that heterologous virus RNAs (BSMV) can serve as primer donors for MStV mRNA capped RNA-primed transcription in doubly infected plants.
Collapse
Affiliation(s)
- E M Estabrook
- Department of Plant Pathology, 1 Shields Avenue, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
18
|
Falk BW, Tsai JH. Biology and molecular biology of viruses in the genus Tenuivirus. ANNUAL REVIEW OF PHYTOPATHOLOGY 1998; 36:139-163. [PMID: 15012496 DOI: 10.1146/annurev.phyto.36.1.139] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Viruses in the genus Tenuivirus (Tenuiviruses) cause a number of important diseases in economically important crop plants including rice and maize. Tenuiviruses are transmitted from plant to plant by specific planthopper vectors, and their transmission relationship is circulative-propagative. Thus, Tenuiviruses have host ranges including plants and animals (planthoppers). Four or five characteristic, circular ribonucleoprotein particles (RNPs), each containing a single Tenuivirus genomic RNA, can be isolated from Tenuivirus-infected plants. The genomic RNAs range in size from ca 9.0 kb to 1.3 kb and together give a total genome size of ca 18-19 kb. The genomic RNAs are either negative-sense or ambisense, and expression of the ambisense RNAs utilizes cap-snatching during mRNA transcription. The combination of characteristics exhibited by Tenuiviruses are quite different than those found for most plant viruses and are more similar to vertebrate-infecting viruses in the genus Phlebovirus of the Bunyaviridae.
Collapse
Affiliation(s)
- B W Falk
- Department of Plant Pathology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
19
|
Nguyen M, Ramirez BC, Goldbach R, Haenni AL. Characterization of the in vitro activity of the RNA-dependent RNA polymerase associated with the ribonucleoproteins of rice hoja blanca tenuivirus. J Virol 1997; 71:2621-7. [PMID: 9060614 PMCID: PMC191383 DOI: 10.1128/jvi.71.4.2621-2627.1997] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
An RNA-dependent RNA polymerase (RdRp) activity associated with the ribonucleoproteins of rice hoja blanca tenuivirus (RHBV) was detected and analyzed. Conditions for in vitro RNA synthesis and for coupled RNA synthesis-translation of RHBV were established. In both cases, synthesis of the viral and viral complementary genomic and subgenomic RNA3 and RNA4 were observed, demonstrating that both transcription and replication occurred. Though coupling of RNA synthesis to translation allowed efficient translation of the newly synthesized subgenomic RNAs, studies of the effect of various inhibitors of protein synthesis revealed that RNA synthesis was independent of translation. Primer extension experiments demonstrated that in the presence of capped exogenous RNAs, a stretch of 10 to 16 nonviral nucleotides was added to the 5' end of a population of newly synthesized viral complementary RNA4. It appears that in addition to RdRp activity, RHBV-associated protein(s) also possessed cap-snatching capacity.
Collapse
Affiliation(s)
- M Nguyen
- Institut Jacques Monod, Paris, France.
| | | | | | | |
Collapse
|
20
|
Albo C, Martín J, Portela A. The 5' ends of Thogoto virus (Orthomyxoviridae) mRNAs are homogeneous in both length and sequence. J Virol 1996; 70:9013-7. [PMID: 8971034 PMCID: PMC191002 DOI: 10.1128/jvi.70.12.9013-9017.1996] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Thogoto (THO) virus is a tick-borne member of the Orthomyxoviridae whose genome consists of six segments of linear, negative sense, single-stranded RNA. To gain insight into the mechanism by which viral mRNA transcripts are initiated, poly(A)+ RNA isolated from THO virus-infected cells was characterized by (i) primer extension experiments, (ii) immunoprecipitation studies with an anticap monoclonal antibody, (iii) direct sequencing analysis of the isolated RNA, and (iv) cloning and sequencing of individual mRNA molecules. The results indicated that THO virus mRNAs are capped and homogeneous in both length and sequence at their 5' end. These findings contrast with the situation found in all other segmented, negative sense or ambisense, single-stranded RNA viruses so far analyzed in which the 5' ends of viral mRNAs are heterogeneous in length and sequence. These results are discussed in terms of the mechanism used by THO virus to initiate mRNA synthesis.
Collapse
Affiliation(s)
- C Albo
- Centro Nacional de Biología Fundamental, Instituto de Salud Carlos III, Madrid, Spain
| | | | | |
Collapse
|
21
|
Weber F, Haller O, Kochs G. Nucleoprotein viral RNA and mRNA of Thogoto virus: a novel "cap-stealing" mechanism in tick-borne orthomyxoviruses? J Virol 1996; 70:8361-7. [PMID: 8970956 PMCID: PMC190924 DOI: 10.1128/jvi.70.12.8361-8367.1996] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tick-borne Thogoto virus (THOV) represents the prototype virus of a new genus in the Orthomyxoviridae family. Its genome consists of six segments of negative-sense, single-stranded RNA. We have cloned and sequenced the fifth genomic segment, which codes for the viral nucleoprotein (NP). The deduced amino acid sequence shows 43% similarity to the NP of Dhori virus, a related tick-transmitted orthomyxovirus, and about 14% sequence similarity to those of the influenza viruses. To reveal the mechanism by which THOV initiates mRNA synthesis, we characterized the 5' ends of the NP mRNAs. Transcripts were recognized by a cap-specific monoclonal antibody, indicating that THOV mRNAs are capped. Surprisingly, no large heterogeneous extensions were found at the 5' end, as would have been expected if THOV were using a classical "cap-stealing" mechanism. We therefore propose that THOV is stealing only the cap structure with one or two additional nucleotides from cellular mRNAs to generate appropriate primers for initiation of viral mRNA transcription.
Collapse
Affiliation(s)
- F Weber
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Germany
| | | | | |
Collapse
|
22
|
van Poelwijk F, Kolkman J, Goldbach R. Sequence analysis of the 5' ends of tomato spotted wilt virus N mRNAs. Arch Virol 1996; 141:177-84. [PMID: 8629946 DOI: 10.1007/bf01718599] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Messenger RNAs transcribed from the tomato spotted wilt virus (TSWV) RNA genome have characteristic extra non-templated heterogeneous sequences at their 5' ends which may be the result of a cap-snatching event involving cellular mRNAs. In order to investigate the genetic origin of these extra sequences and to gain more insight in the process of cap-snatching as performed by TSWV, nucleocapsid protein (N) mRNAs derived from the TSWV S RNA were cloned and sequenced. Twenty clones were obtained which contained 5'-proximal sequences of non-viral origin, ranging in length from 12 to 21 nucleotides. None of the sequences analyzed were identical and no base preference at the endonucleolytic site was observed.
Collapse
Affiliation(s)
- F van Poelwijk
- Department of Virology, Wageningen Agricultural University, Wageningen, The Netherlands
| | | | | |
Collapse
|
23
|
de Miranda JR, Muñoz M, Wu R, Espinoza AM. Sequence of Echinochloa hoja blanca tenuivirus RNA-4. Virus Genes 1996; 13:61-4. [PMID: 8938980 DOI: 10.1007/bf00576979] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The sequence is presented of RNA-4 of Echinochloa hoja blanca tenuivirus (EHBV), one of two tenuiviruses associated with rice cultivation in Latin America (together with rice hoja blanca virus; RHBV). Analysis of the sequence shows that the coding regions of EHBV RNA-4 are closely related to those of RHBV RNA-4. However, the intergenic region separating the two ambisense open reading frames, are highly distinct for the two viruses. The features of the RNA and the comparisons with the sequences of RNA-4 of RHBV, rice stripe virus (RStV) and maize stripe virus (MStV) are discussed.
Collapse
|
24
|
de Miranda JR, Muñoz M, Madriz J, Wu R, Espinoza AM. Sequence of Echinochloa hoja blanca tenuivirus RNA-3. Virus Genes 1996; 13:65-8. [PMID: 8938981 DOI: 10.1007/bf00576980] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Analysis of the sequence of the 2336 nucleotide RNA-3 of Echinochloa hoja blanca tenuivirus shows that it is closely related to RNA-3 of rice hoja blanca tenuivirus, the principal virus disease of rice in Latin America. This is especially true for the coding regions, where the viruses are almost 90% similar. However, the non-coding regions of RNA-3 of these viruses, principally the intergenic region separating the two ambisense open reading frames, are only about 50% similar, suggesting that these are distinct viruses. The results closely resemble those obtained for the analysis of RNA-4 of these viruses, both in the absolute and relative percentage similarities of the coding and non-coding regions. This implies a coordinated evolution of the different tenuivirus RNA segments. The features of the RNA and the comparisons with the sequences of RNA-3 of RHBV, rice stripe virus (RStV) and maize stripe virus (MStV) are discussed.
Collapse
|
25
|
De Miranda JR, Hull R, Espinoza AM. Sequence of the PV2 gene of rice hoja blanca tenuivirus RNA-2. Virus Genes 1995; 10:205-9. [PMID: 8560781 DOI: 10.1007/bf01701809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Comparison of a partial sequence of rice hoja blanca tenuivirus RNA-2 with 40% similarity to rice stripe tenuivirus RNA-2 revealed regions of high local sequence homology at the 5' terminus, within the coding region (the pv2 gene), and in the intergenic region separating this gene from the other protein (pc2) encoded by this ambisense RNA. Analysis of the conserved regions of the pv2 protein identified two motifs found principally in viral membrane glycoproteins and six motifs found each in a wide variety of proteins. The possible significance of these results is discussed.
Collapse
|
26
|
Garcin D, Lezzi M, Dobbs M, Elliott RM, Schmaljohn C, Kang CY, Kolakofsky D. The 5' ends of Hantaan virus (Bunyaviridae) RNAs suggest a prime-and-realign mechanism for the initiation of RNA synthesis. J Virol 1995; 69:5754-62. [PMID: 7637020 PMCID: PMC189436 DOI: 10.1128/jvi.69.9.5754-5762.1995] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We examined the 5' ends of Hantaan virus (HTN) genomes and mRNAs to gain insight into the manner in which these chains were initiated. Like those of all members of the family Bunyaviridae described so far, the HTN mRNAs contained 5' terminal extensions that were heterogeneous in both length and sequence, presumably because HTN also "cap snatches" host mRNAs to initiate the viral mRNAs. Unexpectedly, however, almost all of the mRNAs contained a G residue at position -1, and a large fraction also lacked precisely one of the three UAG repeats at the termini. The genomes, on the other hand, commenced with a U residue at position +1, but only 5' monophosphates were found here, indicating that these chains may not have initiated with UTP at this position. Taken together, these unusual findings suggest a prime-and-realign mechanism of chain initiation in which mRNAs are initiated with a G-terminated host cell primer and genomes with GTP, not at the 3' end of the genome template but internally (opposite the template C at position +3), and after extension by one or a few nucleotides, the nascent chain realigns backwards by virtue of the terminal sequence repeats, before processive elongation takes place. For genome initiation, an endonuclease, perhaps that involved in cap snatching, is postulated to remove the 5' terminal extension of the genome, leaving the 5' pU at position +1.
Collapse
MESH Headings
- Animals
- Base Sequence
- Bunyaviridae/genetics
- Bunyaviridae/metabolism
- DNA Primers
- DNA, Complementary
- Genome, Viral
- Guanosine Triphosphate/metabolism
- Hantaan virus/genetics
- Hantaan virus/metabolism
- Mice
- Molecular Sequence Data
- Polymerase Chain Reaction
- RNA Caps/biosynthesis
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- RNA, Viral/genetics
- Repetitive Sequences, Nucleic Acid
- Species Specificity
- Templates, Genetic
- Transcription, Genetic
- Uridine Triphosphate/metabolism
Collapse
Affiliation(s)
- D Garcin
- Department of Genetics and Microbiology, University of Geneva School of Medicine, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
Ramirez BC, Garcin D, Calvert LA, Kolakofsky D, Haenni AL. Capped nonviral sequences at the 5' end of the mRNAs of rice hoja blanca virus RNA4. J Virol 1995; 69:1951-4. [PMID: 7853540 PMCID: PMC188814 DOI: 10.1128/jvi.69.3.1951-1954.1995] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Subgenomic RNAs of both polarities corresponding to rice hoja blanca virus (RHBV) ambisense RNA4 were detected in RHBV-infected rice tissues. Total RNA extracted from RHBV-infected and noninfected rice tissues and RNA4 purified from RHBV ribonucleoprotein particles were used as templates for primer extension studies. The RNAs extracted from RHBV-infected tissues contain a population of RNA molecules with 10 to 17 nonviral nucleotides at their 5' end. The RNA-cDNA hybrids resulting from primer extension of such RNA molecules were specifically immunoselected with anti-cap antibodies, indicating that the subgenomic RNAs are capped and probably serve as mRNAs and that the additional nucleotides at their 5' end possibly derive from host mRNAs via a cap-snatching mechanism.
Collapse
|