1
|
Vasques RM, Correa RFT, da Silva LA, Blawid R, Nagata T, Ribeiro BM, Ardisson-Araújo DMP. Assembly of tomato blistering mosaic virus-like particles using a baculovirus expression vector system. Arch Virol 2019; 164:1753-1760. [PMID: 31025116 DOI: 10.1007/s00705-019-04262-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/27/2019] [Indexed: 01/23/2023]
Abstract
The expression of several structural proteins from a wide variety of viruses in heterologous cell culture systems results in the formation of virus-like particles (VLPs). These VLPs structurally resemble the wild-type virus particles and have been used to study viral assembly process and as antigens for diagnosis and/or vaccine development. Tomato blistering mosaic virus (ToBMV) is a tymovirus that has a 6.3-kb positive-sense ssRNA genome. We have employed the baculovirus expression vector system (BEVS) for the production of tymovirus-like particles (tVLPs) in insect cells. Two recombinant baculoviruses containing the ToBMV wild-type coat protein (CP) gene or a modified short amino-terminal deletion (Δ2-24CP) variant were constructed and used to infect insect cells. Both recombinant viruses were able to express ToBMV CP and Δ2-24CP from infected insect cells that self-assembled into tVLPs. Therefore, the N-terminal residues (2-24) of the native ToBMV CP were shown not to be essential for self-assembly of tVLPs. We also constructed a third recombinant baculovirus containing a small sequence coding for the major epitope of the chikungunya virus (CHIKV) envelope protein 2 (E2) replacing the native CP N-terminal 2-24 amino acids. This recombinant virus also produced tVLPs. In summary, ToBMV VLPs can be produced in a baculovirus/insect cell heterologous expression system, and the N-terminal residues 2-24 of the CP are not essential for this assembly, allowing its potential use as a protein carrier that facilitates antigen purification and might be used for diagnosis.
Collapse
Affiliation(s)
- Raquel Medeiros Vasques
- Laboratory of Microscopy and Virology, Cell Biology Department, University of Brasilia, Brasília, DF, Brazil
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasília, DF, Brazil
| | | | - Leonardo Assis da Silva
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasília, DF, Brazil
| | - Rosana Blawid
- Laboratory of Phytovirology, Department of Agronomy, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Tatsuya Nagata
- Laboratory of Microscopy and Virology, Cell Biology Department, University of Brasilia, Brasília, DF, Brazil
| | - Bergmann Morais Ribeiro
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasília, DF, Brazil
| | - Daniel M P Ardisson-Araújo
- Laboratory of Insect Virology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
2
|
Elgaied L, Salem R, Elmenofy W. Expression of tomato yellow leaf curl virus coat protein using baculovirus expression system and evaluation of its utility as a viral antigen. 3 Biotech 2017; 7:269. [PMID: 28794924 PMCID: PMC5534191 DOI: 10.1007/s13205-017-0893-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/11/2017] [Indexed: 01/15/2023] Open
Abstract
DNA encoding the coat protein (CP) of an Egyptian isolate of tomato yellow leaf curl virus (TYLCV) was inserted into the genome of Autographa californica nucleopolyhedrovirus (AcNPV) under the control of polyhedrin promoter. The generated recombinant baculovirus construct harboring the coat protein gene was characterized using PCR analysis. The recombinant coat protein expressed in infected insect cells was used as a coating antigen in an indirect Enzyme-linked immunosorbent assay (ELISA) and dot blot to test its utility for the detection of antibody generated against TYLCV virus particles. The results of ELISA and dot blot showed that the TYLCV-antibodies reacted positively with extracts of infected cells using the recombinant virus as a coating antigen with strong signals as well as the TYLCV infected tomato and beat plant extracts as positive samples. Scanning electron microscope examination showed that the expressed TYLCV coat protein was self-assembled into virus-like particles (VLPs) similar in size and morphology to TYLCV virus particles. These results concluded that, the expressed coat protein of TYLCV using baculovirus vector system is a reliable candidate for generation of anti-CP antibody for inexpensive detection of TYLCV-infected plants using indirect CP-ELISA or dot blot with high specificity.
Collapse
Affiliation(s)
- Lamiaa Elgaied
- Department of Molecular Microbiology, Agricultural Genetic Engineering Research Institute, ARC, 9 Gamma St, Giza, Egypt
| | - Reda Salem
- Department of Plant Molecular Biology, Agricultural Genetic Engineering Research Institute, ARC, 9 Gamma St, Giza, Egypt
| | - Wael Elmenofy
- Department of Molecular Microbiology, Agricultural Genetic Engineering Research Institute, ARC, 9 Gamma St, Giza, Egypt
| |
Collapse
|
3
|
Belval L, Hemmer C, Sauter C, Reinbold C, Fauny J, Berthold F, Ackerer L, Schmitt‐Keichinger C, Lemaire O, Demangeat G, Ritzenthaler C. Display of whole proteins on inner and outer surfaces of grapevine fanleaf virus-like particles. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2288-2299. [PMID: 27178344 PMCID: PMC5103221 DOI: 10.1111/pbi.12582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
Virus-like particles (VLPs) derived from nonenveloped viruses result from the self-assembly of capsid proteins (CPs). They generally show similar structural features to viral particles but are noninfectious and their inner cavity and outer surface can potentially be adapted to serve as nanocarriers of great biotechnological interest. While a VLP outer surface is generally amenable to chemical or genetic modifications, encaging a cargo within particles can be more complex and is often limited to small molecules or peptides. Examples where both inner cavity and outer surface have been used to simultaneously encapsulate and expose entire proteins remain scarce. Here, we describe the production of spherical VLPs exposing fluorescent proteins at either their outer surface or inner cavity as a result of the self-assembly of a single genetically modified viral structural protein, the CP of grapevine fanleaf virus (GFLV). We found that the N- and C-terminal ends of the GFLV CP allow the genetic fusion of proteins as large as 27 kDa and the plant-based production of nucleic acid-free VLPs. Remarkably, expression of N- or C-terminal CP fusions resulted in the production of VLPs with recombinant proteins exposed to either the inner cavity or the outer surface, respectively, while coexpression of both fusion proteins led to the formation hybrid VLP, although rather inefficiently. Such properties are rather unique for a single viral structural protein and open new potential avenues for the design of safe and versatile nanocarriers, particularly for the targeted delivery of bioactive molecules.
Collapse
Affiliation(s)
- Lorène Belval
- SVQVINRAUniversité de StrasbourgColmarFrance
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| | - Caroline Hemmer
- SVQVINRAUniversité de StrasbourgColmarFrance
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| | - Claude Sauter
- Institut de Biologie Moléculaire et Cellulaire du CNRSUPR 9002Architecture et Réactivité de l'ARNUniversité de StrasbourgStrasbourgFrance
| | | | - Jean‐Daniel Fauny
- Institut de Biologie Moléculaire et Cellulaire du CNRSUPR 9002Architecture et Réactivité de l'ARNUniversité de StrasbourgStrasbourgFrance
| | - François Berthold
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| | - Léa Ackerer
- SVQVINRAUniversité de StrasbourgColmarFrance
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
- Institut Français de la Vigne et du VinDomaine de l'EspiguetteLe Grau‐du‐RoiFrance
| | - Corinne Schmitt‐Keichinger
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| | | | | | - Christophe Ritzenthaler
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| |
Collapse
|
4
|
Fuchs M, Schmitt-Keichinger C, Sanfaçon H. A Renaissance in Nepovirus Research Provides New Insights Into Their Molecular Interface With Hosts and Vectors. Adv Virus Res 2016; 97:61-105. [PMID: 28057260 DOI: 10.1016/bs.aivir.2016.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nepoviruses supplied seminal landmarks to the historical trail of plant virology. Among the first agriculturally relevant viruses recognized in the late 1920s and among the first plant viruses officially classified in the early 1970s, nepoviruses also comprise the first species for which a soil-borne ectoparasitic nematode vector was identified. Early research on nepoviruses shed light on the genome structure and expression, biological properties of the two genomic RNAs, and mode of transmission. In recent years, research on nepoviruses enjoyed an extraordinary renaissance. This resurgence provided new insights into the molecular interface between viruses and their plant hosts, and between viruses and dagger nematode vectors to advance our understanding of some of the major steps of the infectious cycle. Here we examine these recent findings, highlight ongoing work, and offer some perspectives for future research.
Collapse
Affiliation(s)
- M Fuchs
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, United States.
| | - C Schmitt-Keichinger
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - H Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| |
Collapse
|
5
|
Gordon JC, Fenley AT, Onufriev A. An analytical approach to computing biomolecular electrostatic potential. II. Validation and applications. J Chem Phys 2009; 129:075102. [PMID: 19044803 DOI: 10.1063/1.2956499] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An ability to efficiently compute the electrostatic potential produced by molecular charge distributions under realistic solvation conditions is essential for a variety of applications. Here, the simple closed-form analytical approximation to the Poisson equation rigorously derived in Part I for idealized spherical geometry is tested on realistic shapes. The effects of mobile ions are included at the Debye-Huckel level. The accuracy of the resulting closed-form expressions for electrostatic potential is assessed through comparisons with numerical Poisson-Boltzmann (NPB) reference solutions on a test set of 580 representative biomolecular structures under typical conditions of aqueous solvation. For each structure, the deviation from the reference is computed for a large number of test points placed near the dielectric boundary (molecular surface). The accuracy of the approximation, averaged over all test points in each structure, is within 0.6 kcal/mol/mid R:emid R: approximately kT per unit charge for all structures in the test set. For 91.5% of the individual test points, the deviation from the NPB potential is within 0.6 kcal/mol/mid R:emid R:. The deviations from the reference decrease with increasing distance from the dielectric boundary: The approximation is asymptotically exact far away from the source charges. Deviation of the overall shape of a structure from ideal spherical does not, by itself, appear to necessitate decreased accuracy of the approximation. The largest deviations from the NPB reference are found inside very deep and narrow indentations that occur on the dielectric boundaries of some structures. The dimensions of these pockets of locally highly negative curvature are comparable to the size of a water molecule; the applicability of a continuum dielectric models in these regions is discussed. The maximum deviations from the NPB are reduced substantially when the boundary is smoothed by using a larger probe radius (3 A) to generate the molecular surface. A detailed accuracy analysis is presented for several proteins of various shapes, including lysozyme whose surface features a functionally relevant region of negative curvature. The proposed analytical model is computationally inexpensive; this strength of the approach is demonstrated by computing and analyzing the electrostatic potential generated by a full capsid of the tobacco ring spot virus at atomic resolution (500 000 atoms). An analysis of the electrostatic potential of the inner surface of the capsid reveals what might be a RNA binding pocket. These results are generated with the modest computational power of a desktop personal computer.
Collapse
Affiliation(s)
- John C Gordon
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
6
|
Sivakumar S, Wang Z, Harrison RL, Liu S, Miller WA, Bonning BC. Baculovirus-expressed virus-like particles of Pea enation mosaic virus vary in size and encapsidate baculovirus mRNAs. Virus Res 2009; 139:54-63. [PMID: 19013202 DOI: 10.1016/j.virusres.2008.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 09/30/2008] [Accepted: 10/10/2008] [Indexed: 11/24/2022]
Abstract
Pea enation mosaic virus (PEMV: family Luteoviridae) is transmitted in a persistent, circulative manner by aphids. We inserted cDNAs encoding the structural proteins of PEMV, the coat protein (CP) and coat protein-read through domain (CPRT) into the genome of the baculovirus Autographa californica multiple nucleopolyhedrovirus with and without a histidine tag or an upstream Kozak consensus sequence. The Sf21 cell line provided the highest level of CP expression of the cell lines tested and resulted in production of virus-like particles (VLPs). The CPRT was not detected in recombinant baculovirus-infected cells by Western blot. Addition of a Kozak sequence increased the yield of baculovirus produced VLPs. Baculovirus-expressed VLPs purified on a nickel NTA column were of variable size (13-30 nm) and contained CP mRNA. The purified VLPs were also shown by RT-PCR to contain 70% of 154 baculovirus mRNAs, indicative of non-specific RNA encapsidation in the absence of viral RNA replication. When fed to the pea aphid, Acyrthosiphon pisum (Harris), the VLPs entered the aphid hemocoel, demonstrating that CPRT is not required for uptake of PEMV from the aphid gut. Baculovirus expression of PEMV VLPs provides a useful tool for future analysis of RNA encapsidation requirements and molecular aphid-virus interactions.
Collapse
Affiliation(s)
- S Sivakumar
- Department of Entomology, Iowa State University, Ames, IA 50011-3222, United States
| | | | | | | | | | | |
Collapse
|
7
|
Seitsonen JJT, Susi P, Lemmetty A, Butcher SJ. Structure of the mite-transmitted Blackcurrant reversion nepovirus using electron cryo-microscopy. Virology 2008; 378:162-8. [PMID: 18556038 DOI: 10.1016/j.virol.2008.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 04/21/2008] [Accepted: 05/05/2008] [Indexed: 11/26/2022]
Abstract
Blackcurrant reversion nepovirus (BRV; genus Nepovirus) has a single-stranded, bipartite RNA genome surrounded by 60 copies of a single capsid protein (CP). BRV is the most important mite-transmitted viral pathogen of the Ribes species. It is the causal agent of blackcurrant reversion disease. We determined the structure of BRV to 1.7 nm resolution using electron cryo- microscopy (cryoEM) and image reconstruction. The reconstruction reveals a pseudo T=3 viral capsid similar to that of tobacco ringspot virus (TRSV). We modelled the BRV capsid protein to that of TRSV and fitted it into the cryoEM reconstruction. The fit indicated that the extended C-terminus of BRV-CP is located on the capsid surface and the N-terminus on the interior. We generated peptide antibodies to two putatively exposed C-terminal sequences and these reacted with the virus. Hence homology modelling may be useful for defining epitopes for antibody generation for diagnostic testing of BRV in commercial crops.
Collapse
Affiliation(s)
- Jani J T Seitsonen
- Institute of Biotechnology, P.O. Box 65 (Viikinkaari 1), FIN-00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
8
|
Shanks M, Lomonossoff GP. Co-expression of the capsid proteins of Cowpea mosaic virus in insect cells leads to the formation of virus-like particles. J Gen Virol 2000; 81:3093-3097. [PMID: 11086140 DOI: 10.1099/0022-1317-81-12-3093] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regions of RNA-2 of Cowpea mosaic virus (CPMV) that encode the Large (L) and Small (S) coat proteins were expressed either individually or together in Spodoptera frugiperda (sf21) cells using baculovirus vectors. Co-expression of the two coat proteins from separate promoters in the same construct resulted in the formation of virus-like particles whose morphology closely resembled that of native CPMV virions. No such particles were formed when the individual L and S proteins were expressed. Sucrose gradient centrifugation of the virus-like particles showed that they had the sedimentation characteristics of empty (protein-only) shells. The results confirm that the 60 kDa L-S fusion is not an obligate intermediate in the virion assembly pathway and indicate that expression of the coat proteins in insect cells will provide a fruitful route for the study of CPMV morphogenesis.
Collapse
Affiliation(s)
- Michael Shanks
- Department of Virus Research, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK1
| | - George P Lomonossoff
- Department of Virus Research, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK1
| |
Collapse
|
9
|
Baker TS, Olson NH, Fuller SD. Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol Mol Biol Rev 1999; 63:862-922, table of contents. [PMID: 10585969 PMCID: PMC98980 DOI: 10.1128/mmbr.63.4.862-922.1999] [Citation(s) in RCA: 367] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses are cellular parasites. The linkage between viral and host functions makes the study of a viral life cycle an important key to cellular functions. A deeper understanding of many aspects of viral life cycles has emerged from coordinated molecular and structural studies carried out with a wide range of viral pathogens. Structural studies of viruses by means of cryo-electron microscopy and three-dimensional image reconstruction methods have grown explosively in the last decade. Here we review the use of cryo-electron microscopy for the determination of the structures of a number of icosahedral viruses. These studies span more than 20 virus families. Representative examples illustrate the use of moderate- to low-resolution (7- to 35-A) structural analyses to illuminate functional aspects of viral life cycles including host recognition, viral attachment, entry, genome release, viral transcription, translation, proassembly, maturation, release, and transmission, as well as mechanisms of host defense. The success of cryo-electron microscopy in combination with three-dimensional image reconstruction for icosahedral viruses provides a firm foundation for future explorations of more-complex viral pathogens, including the vast number that are nonspherical or nonsymmetrical.
Collapse
Affiliation(s)
- T S Baker
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| | | | | |
Collapse
|
10
|
Ulrich R, Nassal M, Meisel H, Krüger DH. Core particles of hepatitis B virus as carrier for foreign epitopes. Adv Virus Res 1998; 50:141-82. [PMID: 9520999 DOI: 10.1016/s0065-3527(08)60808-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To be effective as vaccines, most monomeric proteins and peptides either require chemical coupling to high molecular weight carriers or application together with adjuvants. More recently, recombinant DNA techniques have been used to insert foreign epitopes into proteins with inherent multimerization capacity, such as particle-forming viral capsid or envelope proteins. The core protein of hepatitis B virus (HBcAg), because of its unique structural and immunological properties, has gained widespread interest as a potential antigen carrier. Foreign sequences of up to approximately 40 amino acid residues at the N terminus, 50 or 100 amino acids in the central immunodominant c/e 1 epitope region of HBcAg, and up to 100 or even more residues at the C terminus, did not interfere with particle formation. The humoral immunogenicity of inserted epitopes is determined by the immunogenicity of the peptide itself and its surface exposure, and is influenced by the route of application. The probably flexible and surface-exposed c/e1 region emerged as the most promising insertion site. When applied together with adjuvants approved for human and veterinary use, or even without adjuvants, such chimeric particles induced B and T cell immune responses against the inserted epitopes. In some cases neutralizing antibodies, cytotoxic T cells and protection against challenge with the intact pathogen were demonstrated. Major factors for the potentiated immune response against the foreign epitopes are the multimeric structure of chimeric HBcAg that results in a high epitope density per particle, and the provision of T cell help by the carrier moiety. Beyond its use as subunit vaccine, chimeric HBcAg produced in attenuated Salmonella strains may be applicable as live vaccine.
Collapse
Affiliation(s)
- R Ulrich
- Charité Medical School, Humboldt University, Berlin, Germany
| | | | | | | |
Collapse
|
11
|
Chandrasekar V, Johnson JE. The structure of tobacco ringspot virus: a link in the evolution of icosahedral capsids in the picornavirus superfamily. Structure 1998; 6:157-71. [PMID: 9519407 DOI: 10.1016/s0969-2126(98)00018-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tobacco ringspot virus (TRSV) is a member of the nepovirus genus of icosahedral RNA plant viruses that cause disease in fruit crops. Nepoviruses, comoviruses and picornaviruses are classified in the picornavirus superfamily. Crystal structures of comoviruses and picornaviruses and the molecular mass of the TRSV subunit (sufficient to accommodate three beta-barrel domains) suggested that nepoviruses may represent a link in the evolution of the picornavirus capsids from a T = 3 icosahedral virus. This evolutionary process is thought to involve triplication of the capsid protein gene, to encode a three-domain polyprotein, followed by development of cleavage sites in the interdomain linking regions. Structural studies on TRSV were initiated to determine if the TRSV subunit corresponds to the proposed uncleaved three-domain polyprotein. RESULTS The 3.5 A resolution structure of TRSV shows that the capsid protein consists of three beta-barrel domains covalently linked by extended polypeptides. The order of connectivity of the domains in TRSV confirms the proposed connectivity for the precleaved comovirus and picornavirus capsid polyprotein. Structural differences between equivalent domains in TRSV and comoviruses are confined to the external surface loops, interdomain connecting polypeptides and N termini. The three different domains within TRSV and comoviruses are more closely related at the structural level than the three individual domains within picornaviruses. CONCLUSIONS The structural results confirm the notion of divergent evolution of the capsid polyproteins of nepoviruses, comoviruses and picornaviruses from a common ancestor. A number of residues were found to be conserved among various nepoviruses, some of which stabilize the quaternary structure of the three domains in the TRSV capsid protein subunit. Two conserved regions were identified on the external surface of TRSV, however, mutational studies will be needed to understand their functional significance. Nepoviruses transmitted by the same nematode species do not share regions with similar amino acid composition on the viral surface.
Collapse
Affiliation(s)
- V Chandrasekar
- Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
12
|
Mancini EJ, de Haas F, Fuller SD. High-resolution icosahedral reconstruction: fulfilling the promise of cryo-electron microscopy. Structure 1997; 5:741-50. [PMID: 9261076 DOI: 10.1016/s0969-2126(97)00229-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two recent papers have defined the secondary structure of the hepatitis virus capsid using a combination of cryo-electron microscopy and icosahedral image reconstruction. These two papers do more than reveal a new fold for a virus protein; they herald a new era in which image reconstruction of single particles will provide reliable high-resolution structural information. In revealing the promise of these techniques to the structural biology community, their two papers should play a seminal role for single particle work, similar to that of the work of Unwin and Henderson on bacteriorhodopsin in revealing the potential of electron microscopy of membrane protein crystals. Indeed, the success of these single particle methods owes much to the development of high-resolution techniques for two-dimensional crystals. This review will summarize some of the history of icosahedral reconstruction from cryo-electron micrographs, compare the two different approaches used to obtain the recent results and outline some of the challenges and promises for the future.
Collapse
Affiliation(s)
- E J Mancini
- Structural Biology Programme, European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|