1
|
Xu Y, Da Silva WL, Qian Y, Gray SM. An aromatic amino acid and associated helix in the C-terminus of the potato leafroll virus minor capsid protein regulate systemic infection and symptom expression. PLoS Pathog 2018; 14:e1007451. [PMID: 30440046 PMCID: PMC6264904 DOI: 10.1371/journal.ppat.1007451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 11/29/2018] [Accepted: 11/01/2018] [Indexed: 12/26/2022] Open
Abstract
The C-terminal region of the minor structural protein of potato leafroll virus (PLRV), known as the readthrough protein (RTP), is involved in efficient virus movement, tissue tropism and symptom development. Analysis of numerous C-terminal deletions identified a five-amino acid motif that is required for RTP function. A PLRV mutant expressing RTP with these five amino acids deleted (Δ5aa-RTP) was compromised in systemic infection and symptom expression. Although the Δ5aa-RTP mutant was able to move long distance, limited infection foci were observed in systemically infected leaves suggesting that these five amino acids regulate virus phloem loading in the inoculated leaves and/or unloading into the systemically infected tissues. The 5aa deletion did not alter the efficiency of RTP translation, nor impair RTP self-interaction or its interaction with P17, the virus movement protein. However, the deletion did alter the subcellular localization of RTP. When co-expressed with a PLRV infectious clone, a GFP tagged wild-type RTP was localized to discontinuous punctate spots along the cell periphery and was associated with plasmodesmata, although localization was dependent upon the developmental stage of the plant tissue. In contrast, the Δ5aa-RTP-GFP aggregated in the cytoplasm. Structural modeling indicated that the 5aa deletion would be expected to perturb an α-helix motif. Two of 30 plants infected with Δ5aa-RTP developed a wild-type virus infection phenotype ten weeks post-inoculation. Analysis of the virus population in these plants by deep sequencing identified a duplication of sequences adjacent to the deletion that were predicted to restore the α-helix motif. The subcellular distribution of the RTP is regulated by the 5-aa motif which is under strong selection pressure and in turn contributes to the efficient long distance movement of the virus and the induction of systemic symptoms.
Collapse
Affiliation(s)
- Yi Xu
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY, United States of America
| | - Washington Luis Da Silva
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY, United States of America
| | - Yajuan Qian
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Stewart M. Gray
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY, United States of America
- Emerging Pest and Pathogens Research Unit, USDA, ARS, Ithaca, NY, United States of America
| |
Collapse
|
2
|
Mann KS, Bejerman N, Johnson KN, Dietzgen RG. Cytorhabdovirus P3 genes encode 30K-like cell-to-cell movement proteins. Virology 2016; 489:20-33. [PMID: 26700068 DOI: 10.1016/j.virol.2015.11.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022]
Abstract
Plant viruses encode movement proteins (MP) to facilitate cell-to-cell transport through plasmodesmata. In this study, using trans-complementation of a movement-defective turnip vein-clearing tobamovirus (TVCV) replicon, we show for the first time for cytorhabdoviruses (lettuce necrotic yellows virus (LNYV) and alfalfa dwarf virus (ADV)) that their P3 proteins function as MP similar to the TVCV P30 protein. All three MP localized to plasmodesmata when ectopically expressed. In addition, we show that these MP belong to the 30K superfamily since movement was inhibited by mutation of an aspartic acid residue in the critical 30K-specific LxD/N50-70G motif. We also report that Nicotiana benthamiana microtubule-associated VOZ1-like transcriptional activator interacts with LNYV P3 and TVCV P30 but not with ADV P3 or any of the MP point mutants. This host protein, which is known to interact with P3 of sonchus yellow net nucleorhabdovirus, may be involved in aiding the cell-to-cell movement of LNYV and TVCV.
Collapse
Affiliation(s)
- Krin S Mann
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nicolas Bejerman
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
3
|
Luna E, Rodríguez-Huete A, Rincón V, Mateo R, Mateu MG. Systematic study of the genetic response of a variable virus to the introduction of deleterious mutations in a functional capsid region. J Virol 2009; 83:10140-51. [PMID: 19625409 PMCID: PMC2748030 DOI: 10.1128/jvi.00903-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 07/11/2009] [Indexed: 11/20/2022] Open
Abstract
We have targeted the intersubunit interfaces in the capsid of foot-and-mouth disease virus to investigate the genetic response of a variable virus when individual deleterious mutations are systematically introduced along a functionally defined region of its genome. We had previously found that the individual truncation (by mutation to alanine) of 28 of the 42 amino acid side chains per protomer involved in interactions between capsid pentameric subunits severely impaired infectivity. We have now used viral RNAs individually containing each of those 28 deleterious mutations (or a few others) to carry out a total of 96 transfections of susceptible cells, generally followed by passage(s) of the viral progeny in cell culture. The results revealed a very high frequency of fixation in the capsid of second-site, stereochemically diverse substitutions that compensated for the detrimental effect of primary substitutions at many different positions. Most second-site substitutions occurred at or near the capsid interpentamer interfaces and involved residues that are spatially very close to the originally substituted residue. However, others occurred far from the primary substitution, and even from the interpentamer interfaces. Remarkably, most second-site substitutions involved only a few capsid residues, which acted as "second-site hot spots." Substitutions at these hot spots compensated for the deleterious effects of many different replacements at diverse positions. The remarkable capacity of the virus to respond to the introduction of deleterious mutations in the capsid with the frequent fixation of diverse second-site mutations, and the existence of second-site hot spots, may have important implications for virus evolution.
Collapse
Affiliation(s)
- Eva Luna
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
4
|
Sambade A, Brandner K, Hofmann C, Seemanpillai M, Mutterer J, Heinlein M. Transport of TMV movement protein particles associated with the targeting of RNA to plasmodesmata. Traffic 2008; 9:2073-88. [PMID: 19281527 DOI: 10.1111/j.1600-0854.2008.00824.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cell-to-cell movement of Tobacco mosaic virus through plasmodesmata (PD) requires virus-encoded movement protein (MP). The MP targets PD through the endoplasmic reticulum (ER)/actin network, whereas the intercellular movement of the viral RNA genome has been correlated with the association of the MP with mobile, microtubule-proximal particles in cells at the leading front of infection as well as the accumulation of the protein on the microtubule network during later infection stages. To understand how the associations of MP with ER and microtubules are functionally connected, we applied multiple marker three-dimensional confocal and time-lapse video microscopies to Nicotiana benthamiana cells expressing fluorescent MP, fluorescent RNA and fluorescent cellular markers. We report the reconstitution of MP-dependent RNA transport to PD in a transient assay. We show that transiently expressed MP occurs in association with small particles as observed during infection. The same MP accumulates in PD and mediates the transport of its messenger RNA transcript to the pore. In the cellular cortex, the particles occur at microtubule-proximal sites and can undergo ER-associated and latrunculin-sensitive movements between such sites. These and other observations suggest that the microtubule network performs anchorage and release functions for controlling the assembly and intracellular movement of MP-containing RNA transport particles in association with the ER.
Collapse
Affiliation(s)
- Adrian Sambade
- Department of Integrative Virology, Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS (UPR 2357) conventionné avec l'Université Louis Pasteur (Strasbourg 1), 12 rue du Général Zimmer, 67084 Strasbourg CEDEX, France
| | | | | | | | | | | |
Collapse
|
5
|
Vogler H, Kwon MO, Dang V, Sambade A, Fasler M, Ashby J, Heinlein M. Tobacco mosaic virus movement protein enhances the spread of RNA silencing. PLoS Pathog 2008; 4:e1000038. [PMID: 18389061 PMCID: PMC2270343 DOI: 10.1371/journal.ppat.1000038] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 03/06/2008] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic cells restrain the activity of foreign genetic elements, including viruses, through RNA silencing. Although viruses encode suppressors of silencing to support their propagation, viruses may also exploit silencing to regulate host gene expression or to control the level of their accumulation and thus to reduce damage to the host. RNA silencing in plants propagates from cell to cell and systemically via a sequence-specific signal. Since the signal spreads between cells through plasmodesmata like the viruses themselves, virus-encoded plasmodesmata-manipulating movement proteins (MP) may have a central role in compatible virus:host interactions by suppressing or enhancing the spread of the signal. Here, we have addressed the propagation of GFP silencing in the presence and absence of MP and MP mutants. We show that the protein enhances the spread of silencing. Small RNA analysis indicates that MP does not enhance the silencing pathway but rather enhances the transport of the signal through plasmodesmata. The ability to enhance the spread of silencing is maintained by certain MP mutants that can move between cells but which have defects in subcellular localization and do not support the spread of viral RNA. Using MP expressing and non-expressing virus mutants with a disabled silencing suppressing function, we provide evidence indicating that viral MP contributes to anti-viral silencing during infection. Our results suggest a role of MP in controlling virus propagation in the infected host by supporting the spread of silencing signal. This activity of MP involves only a subset of its properties implicated in the spread of viral RNA.
Collapse
Affiliation(s)
- Hannes Vogler
- Department of Plant Physiology, Botanical Institute, University of Basel, Basel, Switzerland
| | - Myoung-Ok Kwon
- Department of Plant Physiology, Botanical Institute, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Vy Dang
- Department of Plant Physiology, Botanical Institute, University of Basel, Basel, Switzerland
| | - Adrian Sambade
- Institut Biologie Moléculaire des Plantes, Laboratoire propre du CNRS (UPR 2357) conventionné avec l'Université Louis Pasteur (Strasbourg 1), Strasbourg, France
| | - Monika Fasler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jamie Ashby
- Department of Plant Physiology, Botanical Institute, University of Basel, Basel, Switzerland
| | - Manfred Heinlein
- Department of Plant Physiology, Botanical Institute, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Institut Biologie Moléculaire des Plantes, Laboratoire propre du CNRS (UPR 2357) conventionné avec l'Université Louis Pasteur (Strasbourg 1), Strasbourg, France
| |
Collapse
|
6
|
Charron C, Nicolaï M, Gallois JL, Robaglia C, Moury B, Palloix A, Caranta C. Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:56-68. [PMID: 18182024 DOI: 10.1111/j.1365-313x.2008.03407.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Amino acid substitutions in the eukaryotic translation initiation factor 4E (eIF4E) result in recessive resistance to potyviruses in a range of plant species, including Capsicum spp. Correspondingly, amino acid changes in the central part of the viral genome-linked protein (VPg) are responsible for the potyvirus's ability to overcome eIF4E-mediated resistance. A key observation was that physical interaction between eIF4E and the VPg is required for viral infection, and eIF4E mutations that cause resistance prevent VPg binding and inhibit the viral cycle. In this study, polymorphism analysis of the pvr2-eIF4E coding sequence in a worldwide sample of 25 C. annuum accessions identified 10 allelic variants with exclusively non-synonymous variations clustered in two surface loops of eIF4E. Resistance and genetic complementation assays demonstrated that pvr2 variants, each with signature amino acid changes, corresponded to potyvirus resistance alleles. Systematic analysis of the interactions between eIF4E proteins encoded by the 10 pvr2 alleles and VPgs of virulent and avirulent potato virus Y (PVY) and tobacco etch virus (TEV) strains demonstrated that resistance phenotypes arose from disruption of the interaction between eIF4E and VPg, and that viral adaptation to eIF4E-mediated resistance resulted from restored interaction with the resistance protein. Complementation of an eIF4E knockout yeast strain by C. annuum eIF4E proteins further shows that amino acid changes did not impede essential eIF4E functions. Altogether, these results argue in favour of a co-evolutionary 'arms race' between Capsicum eIF4E and potyviral VPg.
Collapse
Affiliation(s)
- Carine Charron
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Domaine St Maurice, BP94, F-84143 Montfavet, France
| | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Mateo R, Mateu MG. Deterministic, compensatory mutational events in the capsid of foot-and-mouth disease virus in response to the introduction of mutations found in viruses from persistent infections. J Virol 2006; 81:1879-87. [PMID: 17151123 PMCID: PMC1797555 DOI: 10.1128/jvi.01899-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The evolution of foot-and-mouth disease virus (FMDV) (biological clone C-S8c1) in persistently infected cells led to the emergence of a variant (R100) that displayed increased virulence, reduced stability, and other modified phenotypic traits. Some mutations fixed in the R100 genome involved a cluster of highly conserved residues around the capsid pores that participate in interactions with each other and/or between capsid protomers. We have investigated phenotypic and genotypic changes that occurred when these replacements were introduced into the C-S8c1 capsid. The C3007V and M3014L mutations exerted no effect on plaque size or viral yield during lytic infections, or on virion stability, but led to a reduction in biological fitness; the D3009A mutation caused drastic reductions in plaque size and viability. Remarkably, competition of the C3007V mutant with the nonmutated virus invariably resulted in the fixation of the D3009A mutation in the C3007V capsid. In turn, the presence of the D3009A mutation invariably led to the fixation of the M3014L mutation. In both cases, two individually disadvantageous mutations led, together, to an increase in fitness, as the double mutants outcompeted the nonmutated genotype. The higher fitness of C3007V/D3009A was related to a faster multiplication rate. These observations provide evidence for a chain of linked, compensatory mutational events in a defined region of the FMDV capsid. Furthermore, they indicate that the clustering of unique amino acid replacements in viruses from persistent infections may also occur in cytolytic infections in response to changes caused by previous mutations without an involvement of the new mutations in the adaptation to a different environment.
Collapse
Affiliation(s)
- Roberto Mateo
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
9
|
Karger EM, Frolova OY, Fedorova NV, Baratova LA, Ovchinnikova TV, Susi P, Makinen K, Ronnstrand L, Dorokhov YL, Atabekov JG. Dysfunctionality of a tobacco mosaic virus movement protein mutant mimicking threonine 104 phosphorylation. J Gen Virol 2003; 84:727-732. [PMID: 12604825 DOI: 10.1099/vir.0.18972-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Replication of tobacco mosaic virus (TMV) is connected with endoplasmic reticulum (ER)-associated membranes at early stages of infection. This study reports that TMV movement protein (MP)-specific protein kinases (PKs) associated with the ER of tobacco were capable of phosphorylating Thr(104) in TMV MP. The MP-specific PKs with apparent molecular masses of about 45-50 kDa and 38 kDa were revealed by gel PK assays. Two types of mutations were introduced in TMV MP gene of wild-type TMV U1 genome to substitute Thr(104) by neutral Ala or by negatively charged Asp. Mutation of Thr(104) to Ala did not affect the size of necrotic lesions induced by the mutant virus in Nicotiana tabacum Xanthi nc. plants. Conversely, mutation of Thr to Asp mimicking Thr(104) phosphorylation strongly inhibited cell-to-cell movement. The possible role of Thr(104) phosphorylation in TMV MP function is discussed.
Collapse
Affiliation(s)
- E M Karger
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Vorobiovy Gory Moscow 119899, Russia
| | - O Yu Frolova
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Vorobiovy Gory Moscow 119899, Russia
| | - N V Fedorova
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Vorobiovy Gory Moscow 119899, Russia
| | - L A Baratova
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Vorobiovy Gory Moscow 119899, Russia
| | - T V Ovchinnikova
- M. M. Shemyakin and Yu. A. Ovchinnikov Institut of Bioorganic Chemistry, Moscow, Russia
| | - P Susi
- Joint Biotechnology Laboratory, Biocity, Turku, Finland
| | - K Makinen
- University of Helsinki, Institute of Biotechnology, Biocenter, Helsinki, Finland
| | - L Ronnstrand
- Ludwig Institute of Cancer Research, Biomedical Center, Uppsala, Sweden
| | - Yu L Dorokhov
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Vorobiovy Gory Moscow 119899, Russia
| | - J G Atabekov
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Vorobiovy Gory Moscow 119899, Russia
| |
Collapse
|
10
|
Toth RL, Pogue GP, Chapman S. Improvement of the movement and host range properties of a plant virus vector through DNA shuffling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:593-600. [PMID: 12047633 DOI: 10.1046/j.1365-313x.2002.01308.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Virus expression vectors based on the tobacco mosaic virus (TMV) genome are powerful tools for foreign gene expression in plants. However, the inclusion of increased genetic load in the form of foreign genes limits the speed of systemic plant invasion and host range of these vectors due to reduced replication and movement efficiencies. To improve these properties of TMV vectors, the gene encoding the 30-kDa movement protein was subjected to mutagenesis and DNA shuffling. A vector that expresses the green fluorescent protein was used to allow simple visual discrimination of mutants with enhanced movement phenotypes. An initial round of mutagenesis produced 53 clones with a faster local movement phenotype. Two subsequent rounds of DNA shuffling produced additional clones that showed further increased rates of cell-to-cell movement and degrees of systemic invasion in restrictive hosts. Surprisingly, sequence analysis of the best performing shuffled genes revealed alterations resulting in coding and silent changes in the movement protein gene. Separation of these coding and silent alterations into distinct gene backgrounds revealed that each contributes to improved movement protein function to differing degrees. The resulting vectors demonstrate that the complex activities of the movement protein genes of viruses can be evolved to have improved movement phenotypes, as evidenced by cell-to-cell and systemic invasion. The experiments produced improved vectors that will be of use both for in planta functional screening and for therapeutic protein production and demonstrated the power of shuffling for plant virus vector improvement.
Collapse
Affiliation(s)
- Rachel L Toth
- Mylnefield Research Services Ltd, Unit of Cell Biology, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | | |
Collapse
|
11
|
Boyko V, Ashby JA, Suslova E, Ferralli J, Sterthaus O, Deom CM, Heinlein M. Intramolecular complementing mutations in tobacco mosaic virus movement protein confirm a role for microtubule association in viral RNA transport. J Virol 2002; 76:3974-80. [PMID: 11907237 PMCID: PMC136114 DOI: 10.1128/jvi.76.8.3974-3980.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2001] [Accepted: 01/22/2002] [Indexed: 11/20/2022] Open
Abstract
The movement protein (MP) of Tobacco mosaic virus (TMV) facilitates the cell-to-cell transport of the viral RNA genome through plasmodesmata (Pd). A previous report described the functional reversion of a dysfunctional mutation in MP (Pro81Ser) by two additional amino acid substitution mutations (Thr104Ile and Arg167Lys). To further explore the mechanism underlying this intramolecular complementation event, the mutations were introduced into a virus derivative expressing the MP as a fusion to green fluorescent protein (GFP). Microscopic analysis of infected protoplasts and of infection sites in leaves of MP-transgenic Nicotiana benthamiana indicates that MP(P81S)-GFP and MP(P81S;T104I;R167K)-GFP differ in subcellular distribution. MP(P81S)-GFP lacks specific sites of accumulation in protoplasts and, in epidermal cells, exclusively localizes to Pd. MP(P81S;T104I;R167K)-GFP, in contrast, in addition localizes to inclusion bodies and microtubules and thus exhibits a subcellular localization pattern that is similar, if not identical, to the pattern reported for wild-type MP-GFP. Since accumulation of MP to inclusion bodies is not required for function, these observations confirm a role for microtubules in TMV RNA cell-to-cell transport.
Collapse
Affiliation(s)
- Vitaly Boyko
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
12
|
Dardick CD, Golem S, Culver JN. Susceptibility and symptom development in Arabidopsis thaliana to Tobacco mosaic virus is influenced by virus cell-to-cell movement. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:1139-1144. [PMID: 11043475 DOI: 10.1094/mpmi.2000.13.10.1139] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To identify host factors that regulate susceptibility to Tobacco mosaic virus (TMV), 14 Arabidopsis thaliana ecotypes were screened for their ability to support TMV systemic movement. The susceptibility phenotypes observed included one ecotype that permitted rapid TMV movement accompanied by symptoms, nine ecotypes that allowed a slower intermediate rate of systemic movement without symptoms, and four ecotypes that allowed little or no systemic TMV movement. Molecular comparisons between ecotypes representing the rapid (Shahdara), intermediate (Col-1), and slow (Tsu-1) movement phenotypes revealed a positive correlation between the ability of TMV to move cell to cell and its speed of systemic movement. Additionally, protoplasts prepared from all three ecotypes supported similar levels of TMV replication, indicating that viral replication did not account for differences in systemic movement. Furthermore, induction of the pathogenesis-related genes PR-1 and PR-5 occurred only in the highly susceptible ecotype Shahdara, demonstrating that reduced local and systemic movement in Col-1 and Tsu-1 was not due to the activation of known host defense responses. Genetic analysis of F2 progeny derived from crosses made between Shahdara and Tsu-1 or Col-1 and Tsu-1 showed the faster cell-to-cell movement phenotypes of Shahdara and Col-1 segregated as single dominant genes. In addition, the Shahdara symptom phenotype segregated independently as a single recessive gene. Taken together, these findings suggest that, within Arabidopsis ecotypes, at least two genes modulate susceptibility to TMV.
Collapse
Affiliation(s)
- C D Dardick
- Molecular and Cell Biology, University of Maryland, College Park 20742, USA
| | | | | |
Collapse
|
13
|
Moreno M, Brandwagt BF, Shaw JG, Rodríguez-Cerezo E. Infectious virus in transgenic plants inoculated with a nonviable, P1-proteinase defective mutant of a potyvirus. Virology 1999; 257:322-9. [PMID: 10329543 DOI: 10.1006/viro.1999.9692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A mutant (P1-616) of the tobacco vein mottling potyvirus that contains a four-codon insertion in the P1 protein coding region of the viral RNA is unable to infect the normal host plant of the virus. Processing of the P1/HC-Pro cleavage site does not occur during in vitro translation of the mutant viral RNA. When plants transformed with the P1/HC-Pro/P3 coding region of tobacco vein mottling potyvirus RNA were inoculated with P1-616, some of them became infected, although there was a delay in the production of disease symptoms. Virus isolated from these plants was able to infect nontransgenic plants. Two variants of the recovered, infectious virus contained single-nucleotide alterations in the four-codon insertion in the P1-616 genome. In vitro translation of the variant genomic RNAs resulted in partial processing of the P1/HC-Pro cleavage site, although serological analysis of infected tissue showed complete processing in vivo. These results indicate that limited complementation of P1-616 occurs in the transgenic plants and that eventually there arises one or more variants of the mutant sequence that can effect P1/HC-Pro processing and therefore be replicated.
Collapse
Affiliation(s)
- M Moreno
- Centro Nacional de Biotecnología (CSIC), Madrid, Cantoblanco, 28049, Spain
| | | | | | | |
Collapse
|