1
|
Szojka Z, Mótyán JA, Miczi M, Mahdi M, Tőzsér J. Y44A Mutation in the Acidic Domain of HIV-2 Tat Impairs Viral Reverse Transcription and LTR-Transactivation. Int J Mol Sci 2020; 21:ijms21165907. [PMID: 32824587 PMCID: PMC7460587 DOI: 10.3390/ijms21165907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 11/28/2022] Open
Abstract
HIV transactivator protein (Tat) plays a pivotal role in viral replication through modulation of cellular transcription factors and transactivation of viral genomic transcription. The effect of HIV-1 Tat on reverse transcription has long been described in the literature, however, that of HIV-2 is understudied. Sequence homology between Tat proteins of HIV-1 and 2 is estimated to be less than 30%, and the main difference lies within their N-terminal region. Here, we describe Y44A-inactivating mutation of HIV-2 Tat, studying its effect on capsid production, reverse transcription, and the efficiency of proviral transcription. Investigation of the mutation was performed using sequence- and structure-based in silico analysis and in vitro experiments. Our results indicate that the Y44A mutant HIV-2 Tat inhibited the activity and expression of RT (reverse transcriptase), in addition to diminishing Tat-dependent LTR (long terminal repeat) transactivation. These findings highlight the functional importance of the acidic domain of HIV-2 Tat in the regulation of reverse transcription and transactivation of the integrated provirions.
Collapse
Affiliation(s)
- Zsófia Szojka
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (J.A.M.); (M.M.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - János András Mótyán
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (J.A.M.); (M.M.)
| | - Márió Miczi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (J.A.M.); (M.M.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (J.A.M.); (M.M.)
- Correspondence: (M.M.); (J.T.)
| | - József Tőzsér
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (J.A.M.); (M.M.)
- Correspondence: (M.M.); (J.T.)
| |
Collapse
|
2
|
Le Hingrat Q, Visseaux B, Bertine M, Chauveau L, Schwartz O, Collin F, Damond F, Matheron S, Descamps D, Charpentier C. Genetic Variability of Long Terminal Repeat Region between HIV-2 Groups Impacts Transcriptional Activity. J Virol 2020; 94:e01504-19. [PMID: 31915276 PMCID: PMC7081896 DOI: 10.1128/jvi.01504-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022] Open
Abstract
The HIV-2 long terminal repeat (LTR) region contains several transcription factor (TF) binding sites. Efficient LTR transactivation by cellular TF and viral proteins is crucial for HIV-2 reactivation and viral production. Proviral LTRs from 66 antiretroviral-naive HIV-2-infected patients included in the French ANRS HIV-2 CO5 Cohort were sequenced. High genetic variability within the HIV-2 LTR was observed, notably in the U3 subregion, the subregion encompassing most known TF binding sites. Genetic variability was significantly higher in HIV-2 group B than in group A viruses. Notably, all group B viruses lacked the peri-ETS binding site, and 4 group B sequences (11%) also presented a complete deletion of the first Sp1 binding site. The lack of a peri-ETS binding site was responsible for lower transcriptional activity in activated T lymphocytes, while deletion of the first Sp1 binding site lowered basal or Tat-mediated transcriptional activities, depending on the cell line. Interestingly, the HIV-2 cellular reservoir was less frequently quantifiable in patients infected by group B viruses and, when quantifiable, the reservoirs were significantly smaller than in patients infected by group A viruses. Our findings suggest that mutations observed in vivo in HIV-2 LTR sequences are associated with differences in transcriptional activity and may explain the small cellular reservoirs in patients infected by HIV-2 group B, providing new insight into the reduced pathogenicity of HIV-2 infection.IMPORTANCE Over 1 million patients are infected with HIV-2, which is often described as an attenuated retroviral infection. Patients frequently have undetectable viremia and evolve at more slowly toward AIDS than HIV-1-infected patients. Several studies have reported a smaller viral reservoir in peripheral blood mononuclear cells in HIV-2-infected patients than in HIV-1-infected patients, while others have found similar sizes of reservoirs but a reduced amount of cell-associated RNA, suggesting a block in HIV-2 transcription. Recent studies have found associations between mutations within the HIV-1 LTR and reduced transcriptional activities. Until now, mutations within the HIV-2 LTR region have scarcely been studied. We conducted this research to discover if such mutations exist in the HIV-2 LTR and their potential association with the viral reservoir and transcriptional activity. Our study indicates that transcription of HIV-2 group B proviruses may be impaired, which might explain the small viral reservoir observed in patients.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Université de Paris, IAME, UMR 1137, IINSERM, Paris, France
- Laboratoire de Virologie, AP-HP, Hôpital Bichat, Paris, France
| | - Benoit Visseaux
- Université de Paris, IAME, UMR 1137, IINSERM, Paris, France
- Laboratoire de Virologie, AP-HP, Hôpital Bichat, Paris, France
| | - Mélanie Bertine
- Université de Paris, IAME, UMR 1137, IINSERM, Paris, France
- Laboratoire de Virologie, AP-HP, Hôpital Bichat, Paris, France
| | - Lise Chauveau
- Institut Pasteur, Unité Virus et Immunité, Paris, France
| | | | - Fidéline Collin
- ISPED, UMR 897, INSERM, Université Bordeaux, Epidémiologie-Biostatistique, Bordeaux, France
| | - Florence Damond
- Université de Paris, IAME, UMR 1137, IINSERM, Paris, France
- Laboratoire de Virologie, AP-HP, Hôpital Bichat, Paris, France
| | - Sophie Matheron
- Université de Paris, IAME, UMR 1137, IINSERM, Paris, France
- Service de Maladies Infectieuses et Tropicales, AP-HP, Hôpital Bichat, Paris, France
| | - Diane Descamps
- Université de Paris, IAME, UMR 1137, IINSERM, Paris, France
- Laboratoire de Virologie, AP-HP, Hôpital Bichat, Paris, France
| | - Charlotte Charpentier
- Université de Paris, IAME, UMR 1137, IINSERM, Paris, France
- Laboratoire de Virologie, AP-HP, Hôpital Bichat, Paris, France
| |
Collapse
|
3
|
Abstract
It is generally acknowledged that the Tat protein has a pivotal role in HIV-1 replication because it stimulates transcription from the viral long terminal repeat (LTR) promoter by binding to the TAR hairpin in the nascent RNA transcript. However, a multitude of additional Tat functions have been suggested. The importance of these functions is difficult to assess in replication studies with Tat-mutated HIV-1 variants because of the dominant negative effect on viral gene expression. We therefore used an HIV-1 construct that does not depend on the Tat-TAR interaction for transcription to reevaluate whether or not Tat has a second essential function in HIV-1 replication. This HIV-rtTA variant uses the incorporated Tet-On gene expression system for activation of transcription and replicates efficiently upon complete TAR deletion. Here we demonstrated that Tat inactivation does nevertheless severely inhibit replication. Upon long-term culturing, the Tat-minus HIV-rtTA variant acquired mutations in the U3 region that improved promoter activity and reestablished replication. We showed that in the absence of a functional TAR, Tat remains important for viral transcription via Sp1 sequence elements in the U3 promoter region. Substitution of these U3 sequences with nonrelated promoter elements created a virus that replicates efficiently without Tat in SupT1 T cells. These results indicate that Tat has a versatile role in transcription via TAR and U3 elements. The results also imply that Tat has no other essential function in viral replication in cultured T cells.
Collapse
|
4
|
Gatignol A. Transcription of HIV: Tat and cellular chromatin. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2007; 55:137-59. [PMID: 17586314 DOI: 10.1016/s1054-3589(07)55004-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Anne Gatignol
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research,, Department of Microbiology & Immunology and Experimental Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
5
|
Abstract
Since the advent of the HIV-1 pandemic, a close association between HIV-1 infection and the development of selected types of cancers has been brought to light. The discovery of Kaposi sarcoma-associated herpesvirus (KSHV) has led to significant advances in uncovering the virological and molecular mechanisms involved in the pathogenesis of AIDS-related malignancies. Extensive evidence indicates that HIV-1 trans-activating protein Tat plays an oncogenic role in the development of KSHV-associated neoplasms. Comprehensive knowledge of the functions of Tat-1 together with the KSHV genes will contribute to a better understanding of the pathogenesis of virus-associated cancers and the interaction of viruses with their hosts.
Collapse
Affiliation(s)
- Y Aoki
- Development, Astellas Pharma Inc., 17-1 Hasune 3-Chome, Itabashi-ku, 174-8612, Japan.
| | | |
Collapse
|
6
|
Yang M, Peng H, Hay J, Ruyechan WT. Promoter activation by the varicella-zoster virus major transactivator IE62 and the cellular transcription factor USF. J Virol 2006; 80:7339-53. [PMID: 16840315 PMCID: PMC1563731 DOI: 10.1128/jvi.00309-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The varicella-zoster virus major transactivator, IE62, can activate expression from homologous and heterologous promoters. High levels of IE62-mediated activation appear to involve synergy with cellular transcription factors. The work presented here focuses on functional interactions of IE62 with the ubiquitously expressed cellular factor USF. We have found that USF can synergize with IE62 to a similar extent on model minimal promoters and the complex native ORF28/29 regulatory element, neither of which contains a consensus IE62 binding site. Using Gal4 fusion constructs, we have found that the activation domain of USF1 is necessary and sufficient for synergistic activation with IE62. We have mapped the regions of USF and IE62 required for direct physical interaction. Deletion of the required region within IE62 does not ablate synergistic activation but does influence its efficiency depending on promoter architecture. Both proteins stabilize/increase binding of TATA binding protein/TFIID to promoter elements. These findings suggest a novel mechanism for the observed synergistic activation which requires neither site-specific IE62 binding to the promoter nor a direct physical interaction with USF.
Collapse
Affiliation(s)
- Min Yang
- Department of Microbiology and Immunology, 138 Farber Hall, University at Buffalo, Buffalo, NY 14214-3000, USA
| | | | | | | |
Collapse
|
7
|
Loregian A, Bortolozzo K, Boso S, Sapino B, Betti M, Biasolo MA, Caputo A, Palú G. The Sp1 transcription factor does not directly interact with the HIV-1 Tat protein. J Cell Physiol 2003; 196:251-7. [PMID: 12811817 DOI: 10.1002/jcp.10271] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The role of Sp1 in regulating the trans-activating activity of the human immunodeficiency virus type 1 (HIV-1) Tat protein has not yet been clearly defined. In fact, studies on the physical and functional interaction between Sp1 and Tat have yielded contradictory results. Here we investigated whether a physical interaction between Sp1 and Tat indeed occurs, exploiting both biochemical and genetic techniques that allow detection of direct protein-protein interactions. Studies performed with the yeast two-hybrid system indicate that Sp1 does not directly interact with the HIV-1 Tat protein. Control experiments demonstrated that both proteins are functionally expressed in the yeast cells. In vitro binding assays further confirmed that Sp1 does not physically bind Tat. These data suggest that in vivo Tat and Sp1 most likely take part of a multicomponent complex and thus encourage the search of the molecule(s) which mediate Tat-Sp1 interaction.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Gatignol A, Jeang KT. Tat as a transcriptional activator and a potential therapeutic target for HIV-1. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:209-27. [PMID: 10987092 DOI: 10.1016/s1054-3589(00)48007-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- A Gatignol
- U529 INSERM, Institut Cochin de Génétique Moléculaire, Paris, France
| | | |
Collapse
|
9
|
Rana TM, Jeang KT. Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA. Arch Biochem Biophys 1999; 365:175-85. [PMID: 10328810 DOI: 10.1006/abbi.1999.1206] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV-1 trans-activator of transcription (Tat) is an unusual transcriptional activator in being an RNA-binding protein rather than a DNA-binding protein. Recent findings have greatly advanced our understanding of the transcriptional function(s) of this protein. Here we review how Tat interacts with trans-activation responsive RNA and how this interaction contributes to transcription. We discuss the biological implications of recent studies showing an association of Tat with cellular kinases(s) and protein acetylases. Evidence for nontranscriptional activities of the Tat protein is also summarized.
Collapse
Affiliation(s)
- T M Rana
- Department of Pharmacology, Robert Wood Johnson (Rutgers) Medical School, 675 Hoes Lane, Piscataway, New Jersey, 08854, USA
| | | |
Collapse
|
10
|
Fogel S, Guittaut M, Legrand A, Monsigny M, Hébert E. The tat protein of HIV-1 induces galectin-3 expression. Glycobiology 1999; 9:383-7. [PMID: 10089212 DOI: 10.1093/glycob/9.4.383] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Animal lectins play important roles in a variety of biological processes via their recognition of glycoconjugates. Galectin-3 is a beta-galactoside-binding lectin whose expression is associated with various pathological processes including human T lymphotropic virus (HTLV)-I-infection of human T cell lines and human immunodeficiency virus (HIV) infection of T-lymphoblastic Molt-3 cell line. In the case of HIV-infected cells, it has been suggested that the increase in galectin-3 expression could be related to the expression of the viral regulatory gene tat. These results prompt us to perform more extensive analyses of the relationship between galectin-3 and HIV-1 Tat expressions. In this study, we found that Tat protein expression induces an upregulation of galectin-3 in several human cell lines. In co-transfection experiments, the 5'-regulatory sequences of the galectin-3 gene were significantly upregulated by expression vectors encoding the Tat protein. Analysis performed with 5'-regulatory deleted sequences suggested that galectin-3 induction by Tat is dependent on activation of the Sp-1 binding transcription factor.
Collapse
Affiliation(s)
- S Fogel
- Glycobiology, Centre de Biophysique Moléculaire, UPR no. 4301 du CNRS conventionnée avec l'Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cédex 2, France
| | | | | | | | | |
Collapse
|
11
|
Berkhout B, Verhoef K, van Wamel JL, Back NK. Genetic instability of live, attenuated human immunodeficiency virus type 1 vaccine strains. J Virol 1999; 73:1138-45. [PMID: 9882315 PMCID: PMC103934 DOI: 10.1128/jvi.73.2.1138-1145.1999] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Live, attenuated viruses have been the most successful vaccines in monkey models of human immunodeficiency virus type 1 (HIV-1) infection. However, there are several safety concerns about using such an anti-HIV vaccine in humans, including reversion of the vaccine strain to virulence and recombination with endogenous retroviral sequences to produce new infectious and potentially pathogenic viruses. Because testing in humans would inevitably carry a substantial risk, we set out to test the genetic stability of multiply deleted HIV constructs in perpetuated tissue culture infections. The Delta3 candidate vaccine strain of HIV-1 contains deletions in the viral long terminal repeat (LTR) promoter and the vpr and nef genes. This virus replicates with delayed kinetics, but a profound enhancement of virus replication was observed after approximately 2 months of culturing. Analysis of the revertant viral genome indicated that the three introduced deletions were maintained but a 39-nucleotide sequence was inserted in the LTR promoter region. This insert was formed by duplication of the region encoding three binding sites for the Sp1 transcription factor. The duplicated Sp1 region was demonstrated to increase the LTR promoter activity, and a concomitant increase in the virus replication rate was measured. In fact, duplication of the Sp1 sites increased the fitness of the Delta3 virus (Vpr/Nef/U3) to levels higher than that of the singly deleted DeltaVpr virus. These results indicate that deleted HIV-1 vaccine strains can evolve into fast-replicating variants by multiplication of remaining sequence motifs, and their safety is therefore not guaranteed. This insight may guide future efforts to develop more stable anti-HIV vaccines.
Collapse
Affiliation(s)
- B Berkhout
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|