1
|
Chao TY, Cheng YY, Wang ZY, Fang TF, Chang YR, Fuh CS, Su MT, Su YW, Hsu PH, Su YC, Chang YC, Lee TY, Chou WH, Middeldorp JM, Saraste J, Chen MR. Subcellular Distribution of BALF2 and the Role of Rab1 in the Formation of Epstein-Barr Virus Cytoplasmic Assembly Compartment and Virion Release. Microbiol Spectr 2023; 11:e0436922. [PMID: 36602343 PMCID: PMC9927466 DOI: 10.1128/spectrum.04369-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Epstein-Barr virus (EBV) replicates its genome in the nucleus and undergoes tegumentation and envelopment in the cytoplasm. We are interested in how the single-stranded DNA binding protein BALF2, which executes its function and distributes predominantly in the nucleus, is packaged into the tegument of virions. At the mid-stage of virus replication in epithelial TW01-EBV cells, a small pool of BALF2 colocalizes with tegument protein BBLF1, BGLF4 protein kinase, and the cis-Golgi marker GM130 at the perinuclear viral assembly compartment (AC). A possible nuclear localization signal (NLS) between amino acids 1100 and 1128 (C29), which contains positive charged amino acid 1113RRKRR1117, is able to promote yellow fluorescent protein (YFP)-LacZ into the nucleus. In addition, BALF2 interacts with the nucleocapsid-associated protein BVRF1, suggesting that BALF2 may be transported into the cytoplasm with nucleocapsids in a nuclear egress complex (NEC)-dependent manner. A group of proteins involved in intracellular transport were identified to interact with BALF2 in a proteomic analysis. Among them, the small GTPase Rab1A functioning in bi-directional trafficking at the ER-Golgi interface is also a tegument component. In reactivated TW01-EBV cells, BALF2 colocalizes with Rab1A in the cytoplasmic AC. Expression of dominant-negative GFP-Rab1A(N124I) diminished the accumulation of BALF2 in the AC, coupling with attenuation of gp350/220 glycosylation. Virion release was significantly downregulated by expressing dominant-negative GFP-Rab1A(N124I). Overall, the subcellular distribution of BALF2 is regulated through its complex interaction with various proteins. Rab1 activity is required for proper gp350/220 glycosylation and the maturation of EBV. IMPORTANCE Upon EBV lytic reactivation, the virus-encoded DNA replication machinery functions in the nucleus, while the newly synthesized DNA is encapsidated and transported to the cytoplasm for final virus assembly. The single-stranded DNA binding protein BALF2 executing functions within the nucleus was also identified in the tegument layer of mature virions. Here, we studied the functional domain of BALF2 that contributes to the nuclear targeting and used a proteomic approach to identify novel BALF2-interacting cellular proteins that may contribute to virion morphogenesis. The GTPase Rab1, a master regulator of anterograde and retrograde endoplasmic reticulum (ER)-Golgi trafficking, colocalizes with BALF2 in the juxtanuclear concave region at the midstage of EBV reactivation. Rab1 activity is required for BALF2 targeting to the cytoplasmic assembly compartment (AC) and for gp350/220 targeting to cis-Golgi for proper glycosylation and virion release. Our study hints that EBV hijacks the bi-directional ER-Golgi trafficking machinery to complete virus assembly.
Collapse
Affiliation(s)
- Tsung-Yu Chao
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Yi-Ying Cheng
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Zi-Yun Wang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Tien-Fang Fang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Yu-Ruei Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Chi-Shane Fuh
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Mei-Tzu Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Yuan-Wei Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Chen Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Yu-Ching Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Ting-Yau Lee
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Wei-Han Chou
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Jaap M. Middeldorp
- VU University Medical Center, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| |
Collapse
|
2
|
Yu CX, Liu W, Zhao MH, Xiao H, Wang Y, Luo B. Sequence analysis of Epstein–Barr virus BALF2 gene in associated tumors and healthy individuals from southern and northern China. Future Virol 2022. [DOI: 10.2217/fvl-2021-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The purpose of this study is to investigate the polymorphism and distribution characteristics of BALF2 gene in Epstein–Barr virus (EBV)-associated tumors (gastric cancer, nasopharyngeal carcinoma and lymphoma). Materials & methods: DNA sequences of 349 EBV-related samples were analyzed by nested PCR combined with DNA sequencing. Results: According to the phylogenetic tree, BALF2 was divided into six genotypes ( BALF2-A–F). Statistically, the incidence of BALF2-E in nasopharyngeal carcinoma was higher than that in healthy people, and the incidence of BALF2-E in nasopharyngeal carcinoma in South China was higher than that in North China (p = 0.001). Conclusion: BALF2 variants in EBV-associated samples are not only tumor-specific, but also differ between northern and southern regions.
Collapse
Affiliation(s)
- Cai-xia Yu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Meng-he Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Hua Xiao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yun Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
3
|
Kondo S, Okuno Y, Murata T, Dochi H, Wakisaka N, Mizokami H, Moriyama-Kita M, Kobayashi E, Kano M, Komori T, Hirai N, Ueno T, Nakanishi Y, Endo K, Sugimoto H, Kimura H, Yoshizaki T. EBV genome variations enhance clinicopathological features of nasopharyngeal carcinoma in a non-endemic region. Cancer Sci 2022; 113:2446-2456. [PMID: 35485636 PMCID: PMC9277247 DOI: 10.1111/cas.15381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/17/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is caused by infection with Epstein–Barr virus (EBV) and endemic in certain geographic regions. EBV lytic gene, BALF2, closely associates with viral reactivation and BALF2 gene variation, the H‐H‐H strain, causes NPC in endemic region, southern China. Here, we investigate whether such EBV variations also affect NPC in a non‐endemic region, Japan. Viral genome sequencing with 47 EBV isolates of Japanese NPC were performed and compared with those of other EBV‐associated diseases from Japan or NPC in Southern China. EBV genomes of Japanese NPC are different from those of other diseases in Japan or endemic NPC; Japanese NPC was not affected by the endemic strain (the BALF2 H‐H‐H) but frequently carried the type 2 EBV or the strain with intermediate risk of endemic NPC (the BALF2 H‐H‐L). Seven single nucleotide variations were specifically associated with Japanese NPC, of which six were present in both type 1 and 2 EBV genomes, suggesting the contribution of the type 2 EBV‐derived haplotype. This observation was supported by a higher viral titer and stronger viral reactivation in NPC with either type 2 or H‐H‐L strains. Our results highlight the importance of viral strains and viral reactivation in the pathogenesis of non‐endemic NPC.
Collapse
Affiliation(s)
- Satoru Kondo
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan.,These authors contributed equally to this work
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan.,Pediatric Cancer Treatment Center, Nagoya University Hospital, Nagoya, Aichi, Japan.,These authors contributed equally to this work
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hirotomo Dochi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Naohiro Wakisaka
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Harue Mizokami
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Makiko Moriyama-Kita
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Eiji Kobayashi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Makoto Kano
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Takeshi Komori
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Nobuyuki Hirai
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Takayoshi Ueno
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Yosuke Nakanishi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Kazuhira Endo
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Hisashi Sugimoto
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University, Graduate school of Medicine, Nagoya, Aichi, Japan
| | - Tomokazu Yoshizaki
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| |
Collapse
|
4
|
Olotu FA, Soliman MES. Immunoinformatics prediction of potential B-cell and T-cell epitopes as effective vaccine candidates for eliciting immunogenic responses against Epstein-Barr virus. Biomed J 2021; 44:317-337. [PMID: 34154948 PMCID: PMC8358216 DOI: 10.1016/j.bj.2020.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The ongoing search for viable treatment options to curtail Epstein Barr Virus (EBV) pathogenicity has necessitated a paradigmatic shift towards the design of peptide-based vaccines. Potential B-cell and T-cell epitopes were predicted for nine antigenic EBV proteins that mediate epithelial cell-attachment and spread, capsid self-assembly, DNA replication and processivity. METHODS Predictive algorithms incorporated in the Immune Epitope Database (IEDB) resources were used to determine potential B-cell epitopes based on their physicochemical attributes. These were combined with a string-kernel method and an antigenicity predictive AlgPred tool to enhance accuracy in the end-point selection of highly potential antigenic EBV B-cell epitopes. NetCTL 1.2 algorithms enabled the prediction of probable T-cell epitopes which were structurally modeled and subjected to blind peptide-protein docking with HLA-A*02:01. All-atom molecular dynamics (MD) simulation and Molecular Mechanics Generalized-Born Surface Area methods were used to investigate interaction dynamics and affinities of predicted T-cell peptide-protein complexes. RESULTS Computational predictions and sequence overlapping analysis yielded 18 linear (continuous) and discontinuous (conformational) subunit epitopes from the antigenic proteins with characteristic surface accessibility, flexibility and antigenicity, and predictive scores above the threshold value (1) set. A novel site was identified on HLA-A*02:01 with preferential affinity binding for modeled BMRF2, BXLF1 and BGLF4 T-cell epitopes. Interaction dynamics and energies were also computed in addition to crucial residues that mediated complex formation and stability. CONCLUSION This study implemented an integrative meta-analytical approach to model highly probable B-cell and T-cell epitopes as potential peptide-vaccine candidates for the treatment of EBV-related diseases.
Collapse
Affiliation(s)
- Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| |
Collapse
|
5
|
Reactivation of Epstein-Barr virus by a dual-responsive fluorescent EBNA1-targeting agent with Zn 2+-chelating function. Proc Natl Acad Sci U S A 2019; 116:26614-26624. [PMID: 31822610 PMCID: PMC6936348 DOI: 10.1073/pnas.1915372116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
EBNA1 is the only Epstein–Barr virus (EBV) latent protein responsible for viral genome maintenance and is expressed in all EBV-infected cells. Zn2+ is essential for oligomerization of the functional EBNA1. We constructed an EBNA1 binding peptide with a Zn2+ chelator to create an EBNA1-specific inhibitor (ZRL5P4). ZRL5P4 by itself is sufficient to reactivate EBV from its latent infection. ZRL5P4 is able to emit unique responsive fluorescent signals once it binds with EBNA1 and a Zn2+ ion. ZRL5P4 can selectively disrupt the EBNA1 oligomerization and cause nasopharyngeal carcinoma (NPC) tumor shrinkage, possibly due to EBV lytic induction. Dicer1 seems essential for this lytic reactivation. As can been seen, EBNA1 is likely to maintain NPC cell survival by suppressing viral reactivation. Epstein–Barr nuclear antigen 1 (EBNA1) plays a vital role in the maintenance of the viral genome and is the only viral protein expressed in nearly all forms of Epstein–Barr virus (EBV) latency and EBV-associated diseases, including numerous cancer types. To our knowledge, no specific agent against EBV genes or proteins has been established to target EBV lytic reactivation. Here we report an EBNA1- and Zn2+-responsive probe (ZRL5P4) which alone could reactivate the EBV lytic cycle through specific disruption of EBNA1. We have utilized the Zn2+ chelator to further interfere with the higher order of EBNA1 self-association. The bioprobe ZRL5P4 can respond independently to its interactions with Zn2+ and EBNA1 with different fluorescence changes. It can selectively enter the nuclei of EBV-positive cells and disrupt the oligomerization and oriP-enhanced transactivation of EBNA1. ZRL5P4 can also specifically enhance Dicer1 and PML expression, molecular events which had been reported to occur after the depletion of EBNA1 expression. Importantly, we found that treatment with ZRL5P4 alone could reactivate EBV lytic induction by expressing the early and late EBV lytic genes/proteins. Lytic induction is likely mediated by disruption of EBNA1 oligomerization and the subsequent change of Dicer1 expression. Our probe ZRL5P4 is an EBV protein-specific agent that potently reactivates EBV from latency, leading to the shrinkage of EBV-positive tumors, and our study also suggests the association of EBNA1 oligomerization with the maintenance of EBV latency.
Collapse
|
6
|
Xu M, Yao Y, Chen H, Zhang S, Cao SM, Zhang Z, Luo B, Liu Z, Li Z, Xiang T, He G, Feng QS, Chen LZ, Guo X, Jia WH, Chen MY, Zhang X, Xie SH, Peng R, Chang ET, Pedergnana V, Feng L, Bei JX, Xu RH, Zeng MS, Ye W, Adami HO, Lin X, Zhai W, Zeng YX, Liu J. Genome sequencing analysis identifies Epstein-Barr virus subtypes associated with high risk of nasopharyngeal carcinoma. Nat Genet 2019; 51:1131-1136. [PMID: 31209392 PMCID: PMC6610787 DOI: 10.1038/s41588-019-0436-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV) infection is ubiquitous worldwide and is
associated with multiple cancers, including nasopharyngeal carcinoma (NPC). The
importance of EBV viral genomic variation in NPC development and its striking
epidemic in southern China has been poorly explored. Through large-scale genome
sequencing of 270 EBV isolates and two-stage association study of EBV isolates
from China, we identified two non-synonymous EBV variants within
BALF2 strongly associated with the risk of NPC (odds ratio
(OR) = 8.69, P=9.69×10−25 for SNP
162476_C; OR = 6.14, P=2.40×10−32 for
SNP 163364_T). The cumulative effects of these variants contributed to 83% of
the overall risk of NPC in southern China. Phylogenetic analysis of the risk
variants revealed a unique origin in Asia, followed by clonal expansion in
NPC-endemic regions. Our results provide novel insights into NPC endemic in
southern China and also enable the identification of high-risk individuals for
NPC prevention. Whole-genome sequencing and association analysis of 270 Epstein-Barr
virus (EBV) isolates from China identify two non-synonymous EBV variants within
BALF2 strongly associated with the risk of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Youyuan Yao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Comprehensive Medical Oncology, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Hui Chen
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shanshan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Su-Mei Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhe Zhang
- Department of Otolaryngology/Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bing Luo
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Zhiwei Liu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Zilin Li
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tong Xiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guiping He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi-Sheng Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Zhen Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiang Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ming-Yuan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shang-Hang Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Roujun Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ellen T Chang
- Center for Health Sciences, Exponent, Menlo Park, CA, USA.,Stanford Cancer Institute, Stanford, CA, USA
| | - Vincent Pedergnana
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lin Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Olov Adami
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Weiwei Zhai
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Song H, Lim Y, Im H, Bae JM, Kang GH, Ahn J, Baek D, Kim TY, Yoon SS, Koh Y. Interpretation of EBV infection in pan-cancer genome considering viral life cycle: LiEB (Life cycle of Epstein-Barr virus). Sci Rep 2019; 9:3465. [PMID: 30837539 PMCID: PMC6401378 DOI: 10.1038/s41598-019-39706-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
We report a novel transcriptomic analysis workflow called LiEB (Life cycle of Epstein-Barr virus) to characterize distributions of oncogenic virus, Epstein-Barr virus (EBV) infection in human tumors. We analyzed 851 The Cancer Genome Atlas whole-transcriptome sequencing (WTS) data to investigate EBV infection by life cycle information using three-step LiEB workflow: 1) characterize virus infection generally; 2) align transcriptome sequences against a hybrid human-EBV genome, and 3) quantify EBV gene expression. Our results agreed with EBV infection status of public cell line data. Analysis in stomach adenocarcinoma identified EBV-positive cases involving PIK3CA mutations and/or CDKN2A silencing with biologically more determination, compared to previous reports. In this study, we found that a small number of colorectal adenocarcinoma cases involved with EBV lytic gene expression. Expression of EBV lytic genes was also observed in 3% of external colon cancer cohort upon WTS analysis. Gene set enrichment analysis showed elevated expression of genes related to E2F targeting and interferon-gamma responses in EBV-associated tumors. Finally, we suggest that interpretation of EBV life cycle is essential when analyzing its infection in tumors, and LiEB provides high capability of detecting EBV-positive tumors. Observation of EBV lytic gene expression in a subset of colon cancers warrants further research.
Collapse
Affiliation(s)
- Hyojin Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoojoo Lim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hogune Im
- Genome Opinion, Ansan, Gyeonggi-do, Republic of Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junhak Ahn
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Daehyun Baek
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Youngil Koh
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea. .,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Sternbæk L, Draborg AH, Østerlund MT, Iversen LV, Troelsen L, Theander E, Nielsen CT, Jacobsen S, Houen G. Increased antibody levels to stage-specific Epstein-Barr virus antigens in systemic autoimmune diseases reveal a common pathology. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 79:7-16. [PMID: 30727744 DOI: 10.1080/00365513.2018.1550807] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The immune responses to antigens from different stages of the Epstein-Barr virus (EBV) life cycle were investigated in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren's syndrome (SS), and systemic sclerosis (SSc) to gain knowledge of EBV's involvement in the etiology of systemic autoimmune diseases (SADs) and for an overview of the humoral immune responses against EBV. Investigations were performed by the use of ELISA. IgM, IgA, and IgG antibody binding to 11 EBV antigens: EBNA1, EBNA2, BALF5, EAD, BALF2, EA/R, VCA p18, VCA p23, gB, gp350, and gp42 were examined in serum pools from SAD patients and healthy controls (HCs). Increased antibody levels against the 11 EBV antigens in the SAD pools were seen compared to the HC pool. Specifically, SLE was characterized by strongly increased IgA to EAD both compared to HCs and other SADs, and RA was characterized by increased IgM levels to several EBV antigens. The SADs may be partly distinguished by their differential immune responses to various antigens in the EBV life cycle. All together, these findings support an association between EBV infection and SADs.
Collapse
Affiliation(s)
| | - Anette H Draborg
- b Biomedical Laboratory Science Education , University College Lillebaelt , Odense , Denmark
| | - Mark T Østerlund
- c Statens Serum Institut , Section for Food-borne Infections , Copenhagen , Denmark
| | - Line V Iversen
- d Department of Dermatology , Copenhagen University Hospital , Copenhagen , Denmark
| | - Lone Troelsen
- e Department of Clinical Immunology , Rigshospitalet, Copenhagen University Hospital , Copenhagen , Denmark
| | - Elke Theander
- f Department of Rheumatology , Lund University, Skåne University Hospital , Malmö , Sweden
| | - Christoffer T Nielsen
- g Copenhagen Lupus & Vasculitis Clinic, Center for Rheumatology and Spine Disease, Rigshospitalet , Copenhagen University Hospital , Copenhagen , Denmark
| | - Søren Jacobsen
- g Copenhagen Lupus & Vasculitis Clinic, Center for Rheumatology and Spine Disease, Rigshospitalet , Copenhagen University Hospital , Copenhagen , Denmark
| | - Gunnar Houen
- h Department of Autoimmunology and Biomarkers , Statens Serum Institut , Copenhagen , Denmark
| |
Collapse
|
9
|
Mutant Cellular AP-1 Proteins Promote Expression of a Subset of Epstein-Barr Virus Late Genes in the Absence of Lytic Viral DNA Replication. J Virol 2018; 92:JVI.01062-18. [PMID: 30021895 DOI: 10.1128/jvi.01062-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) ZEBRA protein activates the EBV lytic cycle. Cellular AP-1 proteins with alanine-to-serine [AP-1(A/S)] substitutions homologous to ZEBRA(S186) assume some functions of EBV ZEBRA. These AP-1(A/S) mutants bind methylated EBV DNA and activate expression of some EBV genes. Here, we compare expression of 67 viral genes induced by ZEBRA versus expression induced by AP-1(A/S) proteins. AP-1(A/S) activated 24 genes to high levels and 15 genes to intermediate levels; activation of 28 genes by AP-1(A/S) was severely impaired. We show that AP-1(A/S) proteins are defective at stimulating viral lytic DNA replication. The impairment of expression of many late genes compared to that of ZEBRA is likely due to the inability of AP-1(A/S) proteins to promote viral DNA replication. However, even in the absence of detectable viral DNA replication, AP-1(A/S) proteins stimulated expression of a subgroup of late genes that encode viral structural proteins and immune modulators. In response to ZEBRA, expression of this subgroup of late genes was inhibited by phosphonoacetic acid (PAA), which is a potent viral replication inhibitor. However, when the lytic cycle was activated by AP-1(A/S), PAA did not reduce expression of this subgroup of late genes. We also provide genetic evidence, using the BMRF1 knockout bacmid, that these genes are true late genes in response to ZEBRA. AP-1(A/S) binds to the promoter region of at least one of these late genes, BDLF3, encoding an immune modulator.IMPORTANCE Mutant c-Jun and c-Fos proteins selectively activate expression of EBV lytic genes, including a subgroup of viral late genes, in the absence of viral DNA replication. These findings indicate that newly synthesized viral DNA is not invariably required for viral late gene expression. While viral DNA replication may be obligatory for late gene expression driven by viral transcription factors, it does not limit the ability of cellular transcription factors to activate expression of some viral late genes. Our results show that expression of all late genes may not be strictly dependent on viral lytic DNA replication. The c-Fos A151S mutation has been identified in a human cancer. c-Fos A151S in combination with wild-type c-Jun activates the EBV lytic cycle. Our data provide proof of principle that mutant cellular transcription factors could cause aberrant regulation of viral lytic cycle gene expression and play important roles in EBV-associated diseases.
Collapse
|
10
|
Goswami R, Shair KHY, Gershburg E. Molecular diversity of IgG responses to Epstein-Barr virus proteins in asymptomatic Epstein-Barr virus carriers. J Gen Virol 2017; 98:2343-2350. [PMID: 28795661 DOI: 10.1099/jgv.0.000891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous pathogen that infects over 90 % of adults. EBV is the primary etiological agent of infectious mononucleosis and is closely associated with nasopharyngeal carcinoma, gastric carcinoma, Hodgkin lymphoma and Burkitt lymphoma. Clinical serological assays for EBV diagnosis only survey a small portion of the viral proteome, which does not represent the total antigenic breadth presented to the immune system during viral infection. In this study, we have generated an expression library containing the majority of EBV ORFs, and have systematically evaluated IgG responses to those EBV proteins in sera from EBV carriers. In addition to confirming previously recognized dominant EBV antigens, this study has identified additional immunodominant antigens, and has revealed a more expansive antigenic profile of the humoral responses to EBV in asymptomatic carriers. This EBV expression library will be deposited in a public repository with the goal of disseminating this new research tool for the application of identifying potential new biomarkers for EBV-associated diseases.
Collapse
Affiliation(s)
- Ria Goswami
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794-9626, USA.,Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.,Present address: Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kathy Ho Yen Shair
- Cancer Virology Program, University of Pittsburgh Cancer Institute Hillman Cancer Center, Pittsburgh, PA 15232, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Edward Gershburg
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.,Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794-9626, USA.,Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| |
Collapse
|
11
|
The SWI/SNF Chromatin Regulator BRG1 Modulates the Transcriptional Regulatory Activity of the Epstein-Barr Virus DNA Polymerase Processivity Factor BMRF1. J Virol 2017; 91:JVI.02114-16. [PMID: 28228591 DOI: 10.1128/jvi.02114-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/14/2017] [Indexed: 12/14/2022] Open
Abstract
During the lytic phase of Epstein-Barr virus (EBV), binding of the transactivator Zta to the origin of lytic replication (oriLyt) and the BHLF1 transcript, forming a stable RNA-DNA hybrid, is required to initiate viral DNA replication. EBV-encoded viral DNA replication proteins form complexes to amplify viral DNA. BMRF1, the viral DNA polymerase accessory factor, is essential for lytic DNA replication and also known as a transcriptional regulator of the expression of BHLF1 and BALF2 (single-stranded DNA [ssDNA]-binding protein). In order to determine systematically how BMRF1 regulates viral transcription, a BMRF1 knockout bacmid was generated to analyze viral gene expression using a viral DNA microarray. We found that a subset of Rta-responsive late genes, including BcLF1, BLLF1, BLLF2, and BDLF3, were downregulated in cells harboring a BMRF1 knockout EBV bacmid (p2089ΔBMRF1). In reporter assays, BMRF1 appears to transactivate a subset of viral late promoters through distinct pathways. BMRF1 activates the BDLF3 promoter in an SP1-dependent manner. Notably, BMRF1 associates with the transcriptional regulator BRG1 in EBV-reactivated cells. BMRF1-mediated transactivation activities on the BcLF1 and BLLF1 promoters were attenuated by knockdown of BRG1. In BRG1-depleted EBV-reactivated cells, BcLF1 and BLLF1 transcripts were reduced in number, resulting in reduced virion secretion. BMRF1 and BRG1 bound to the adjacent upstream regions of the BcLF1 and BLLF1 promoters, and depletion of BRG1 attenuated the recruitment of BMRF1 onto both promoters, suggesting that BRG1 is involved in BMRF1-mediated regulation of these two genes. Overall, we reveal a novel pathway by which BMRF1 can regulate viral promoters through interaction with BRG1.IMPORTANCE The cascade of viral gene expression during Epstein-Barr virus (EBV) replication is exquisitely regulated by the coordination of the viral DNA replication machinery and cellular factors. Upon lytic replication, the EBV immediate early proteins Zta and Rta turn on the expression of early proteins that assemble into viral DNA replication complexes. The DNA polymerase accessory factor, BMRF1, also is known to transactivate early gene expression through its interaction with SP1 or Zta on specific promoters. Through a global analysis, we demonstrate that BMRF1 also turns on a subset of Rta-regulated, late structural gene promoters. Searching for BMRF1-interacting cellular partners revealed that the SWI/SNF chromatin modifier BRG1 contributes to BMRF1-mediated transactivation of a subset of late promoters through protein-protein interaction and viral chromatin binding. Our findings indicate that BMRF1 regulates the expression of more viral genes than thought previously through distinct viral DNA replication-independent mechanisms.
Collapse
|
12
|
Abstract
Epstein-Barr virus (EBV) is widely distributed in the world and associated with a still increasing number of acute, chronic, malignant and autoimmune disease syndromes. Humoral immune responses to EBV have been studied for diagnostic, pathogenic and protective (vaccine) purposes. These studies use a range of methodologies, from cell-based immunofluorescence testing to antibody-diversity analysis using immunoblot and epitope analysis using recombinant or synthetic peptide-scanning. First, the individual EBV antigen complexes (VCA , MA, EA(D), EA(R) and EBNA) are defined at cellular and molecular levels, providing a historic overview. The characteristic antibody responses to these complexes in health and disease are described, and differences are highlighted by clinical examples. Options for EBV vaccination are briefly addressed. For a selected number of immunodominant proteins, in particular EBNA1, the interaction with human antibodies is further detailed at the epitope level, revealing interesting insights for structure, function and immunological aspects, not considered previously. Humoral immune responses against EBV-encoded tumour antigens LMP1, LMP2 and BARF1 are addressed, which provide novel options for targeted immunotherapy. Finally, some considerations on EBV-linked autoimmune diseases are given, and mechanisms of antigen mimicry are briefly discussed. Further analysis of humoral immune responses against EBV in health and disease in carefully selected patient cohorts will open new options for understanding pathogenesis of individual EBV-linked diseases and developing targeted diagnostic and therapeutic approaches.
Collapse
|
13
|
Uracil DNA glycosylase BKRF3 contributes to Epstein-Barr virus DNA replication through physical interactions with proteins in viral DNA replication complex. J Virol 2014; 88:8883-99. [PMID: 24872582 DOI: 10.1128/jvi.00950-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) BKRF3 shares sequence homology with members of the uracil-N-glycosylase (UNG) protein family and has DNA glycosylase activity. Here, we explored how BKRF3 participates in the DNA replication complex and contributes to viral DNA replication. Exogenously expressed Flag-BKRF3 was distributed mostly in the cytoplasm, whereas BKRF3 was translocated into the nucleus and colocalized with the EBV DNA polymerase BALF5 in the replication compartment during EBV lytic replication. The expression level of BKRF3 increased gradually during viral replication, coupled with a decrease of cellular UNG2, suggesting BKRF3 enzyme activity compensates for UNG2 and ensures the fidelity of viral DNA replication. In immunoprecipitation-Western blotting, BKRF3 was coimmuno-precipitated with BALF5, the polymerase processivity factor BMRF1, and the immediate-early transactivator Rta. Coexpression of BMRF1 appeared to facilitate the nuclear targeting of BKRF3 in immunofluorescence staining. Residues 164 to 255 of BKRF3 were required for interaction with Rta and BALF5, whereas residues 81 to 166 of BKRF3 were critical for BMRF1 interaction in glutathione S-transferase (GST) pulldown experiments. Viral DNA replication was defective in cells harboring BKRF3 knockout EBV bacmids. In complementation assays, the catalytic mutant BKRF3(Q90L,D91N) restored viral DNA replication, whereas the leucine loop mutant BKRF3(H213L) only partially rescued viral DNA replication, coupled with a reduced ability to interact with the viral DNA polymerase and Rta. Our data suggest that BKRF3 plays a critical role in viral DNA synthesis predominantly through its interactions with viral proteins in the DNA replication compartment, while its enzymatic activity may be supplementary for uracil DNA glycosylase (UDG) function during virus replication. IMPORTANCE Catalytic activities of both cellular UDG UNG2 and viral UDGs contribute to herpesviral DNA replication. To ensure that the enzyme activity executes at the right time and the right place in DNA replication forks, complex formation with other components in the DNA replication machinery provides an important regulation for UDG function. In this study, we provide the mechanism for EBV UDG BKRF3 nuclear targeting and the interacting domains of BKRF3 with viral DNA replication proteins. Through knockout and complementation approaches, we further demonstrate that in addition to UDG activity, the interaction of BKRF3 with viral proteins in the replication compartment is crucial for efficient viral DNA replication.
Collapse
|
14
|
Epstein-Barr virus in systemic autoimmune diseases. Clin Dev Immunol 2013; 2013:535738. [PMID: 24062777 PMCID: PMC3766599 DOI: 10.1155/2013/535738] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/17/2013] [Indexed: 02/07/2023]
Abstract
Systemic autoimmune diseases (SADs) are a group of connective tissue diseases with diverse, yet overlapping, symptoms and autoantibody development. The etiology behind SADs is not fully elucidated, but a number of genetic and environmental factors are known to influence the incidence of SADs. Recent findings link dysregulation of Epstein-Barr virus (EBV) with SAD development. EBV causes a persistent infection with a tight latency programme in memory B-cells, which enables evasion of the immune defence. A number of immune escape mechanisms and immune-modulating proteins have been described for EBV. These immune modulating functions make EBV a good candidate for initiation of autoimmune diseases and exacerbation of disease progression. This review focuses on systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and Sjögren's syndrome (SS) and sum up the existing data linking EBV with these diseases including elevated titres of EBV antibodies, reduced T-cell defence against EBV, and elevated EBV viral load. Together, these data suggest that uncontrolled EBV infection can develop diverse autoreactivities in genetic susceptible individuals with different manifestations depending on the genetic background and the site of reactivation.
Collapse
|
15
|
Epstein-Barr virus and systemic lupus erythematosus. Clin Dev Immunol 2012; 2012:370516. [PMID: 22811739 PMCID: PMC3395176 DOI: 10.1155/2012/370516] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/23/2012] [Accepted: 04/14/2012] [Indexed: 11/18/2022]
Abstract
The etiology of SLE is not fully established. SLE is a disease with periods of waning disease activity and intermittent flares. This fits well in theory to a latent virus infection, which occasionally switches to lytic cycle, and EBV infection has for long been suspected to be involved. This paper reviews EBV immunobiology and how this is related to SLE pathogenesis by illustrating uncontrolled reactivation of EBV as a disease mechanism for SLE. Studies on EBV in SLE patients show enlarged viral load, abnormal expression of viral lytic genes, impaired EBV-specific T-cell response, and increased levels of EBV-directed antibodies. These results suggest a role for reactivation of EBV infection in SLE. The increased level of EBV antibodies especially comprises an elevated titre of IgA antibodies, and the total number of EBV-reacting antibody isotypes is also enlarged. As EBV is known to be controlled by cell-mediated immunity, the reduced EBV-specific T-cell response in SLE patients may result in defective control of EBV causing frequent reactivation and expression of lytic cycle antigens. This gives rise to enhanced apoptosis and amplified cellular waste load resulting in activation of an immune response and development of EBV-directed antibodies and autoantibodies to cellular antigens.
Collapse
|
16
|
Lassmann H, Niedobitek G, Aloisi F, Middeldorp JM. Epstein-Barr virus in the multiple sclerosis brain: a controversial issue--report on a focused workshop held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain 2011; 134:2772-86. [PMID: 21846731 PMCID: PMC3170536 DOI: 10.1093/brain/awr197] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent epidemiological and immunological studies provide evidence for an association between Epstein-Barr virus infection and multiple sclerosis, suggesting a role of Epstein-Barr virus infection in disease induction and pathogenesis. A key question in this context is whether Epstein-Barr virus-infected B lymphocytes are present within the central nervous system and the lesions of patients with multiple sclerosis. Previous studies on this topic provided highly controversial results, showing Epstein-Barr virus reactivity in B cells in the vast majority of multiple sclerosis cases and lesions, or only exceptional Epstein-Barr virus-positive B cells in rare cases. In an attempt to explain the reasons for these divergent results, a workshop was organized under the umbrella of the European Union FP6 NeuroproMiSe project, the outcome of which is presented here. This report summarizes the current knowledge of Epstein-Barr virus biology and shows that Epstein-Barr virus infection is highly complex. There are still major controversies, how to unequivocally identify Epstein-Barr virus infection in pathological tissues, particularly in situations other than Epstein-Barr virus-driven lymphomas or acute Epstein-Barr virus infections. It further highlights that unequivocal proof of Epstein-Barr virus infection in multiple sclerosis lesions is still lacking, due to issues related to the sensitivity and specificity of the detection methods.
Collapse
Affiliation(s)
- Hans Lassmann
- Centre for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Wien, Austria.
| | | | | | | | | |
Collapse
|
17
|
Xu J, Wan XB, Huang XF, Chan KA, Hong MH, Wang LH, Long ZJ, Liu Q, Yan M, Lo YD, Zeng YX, Liu Q. Serologic Antienzyme Rate of Epstein-Barr Virus DNase-Specific Neutralizing Antibody Segregates TNM Classification in Nasopharyngeal Carcinoma. J Clin Oncol 2010; 28:5202-9. [DOI: 10.1200/jco.2009.25.6552] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose We investigate the value of pretreatment serologic antienzyme rate (AER) of Epstein-Barr virus (EBV) DNase-specific neutralizing antibody complementing TNM staging in prognostication of nasopharyngeal carcinoma (NPC). Patients and Methods Pretreatment serum samples from 1,303 patients with untreated NPC were collected and examined for AER. After a 10-year follow-up period, the prognoses of the patients, classified by their clinical stage with AER, were assessed by multivariate analysis. Of the 1,303 patients, 600 patients were randomly assigned to a training set to generate an AER cutoff point by receiver operating characteristic (ROC) curve analysis. AER levels were then analyzed with overall survival (OS), progression-free survival (PFS), local failure–free survival (LFFS), and distant metastasis–free survival (DMFS) in a testing set (703 patients). Another independent cohort of 464 patients was studied in a validating set. Results In the training set, the ROC analysis–generated AER cutoff point for OS was 58.0%, which was used as the cutoff point in the testing set. The subset of low AER levels predicted a significant survival advantage over the subset of high AER levels for OS, PFS, LFFS, and DMFS in the testing set. Moreover, two distinguished subgroups were segregated by an AER level of 58.0% within each clinical stage comparing prognostication of OS, PFS, LFFS, and DMFS. Importantly, AER level was revealed as the only significant independent prognostic factor for death, recurrence, and distant metastasis in the validating set. Conclusion Pretreatment serologic AER of EBV DNase-specific neutralizing antibody serves as an independent prognostic marker complementing TNM stage in NPC. Supplementing pretreatment AER with TNM staging leads to more accurate risk definition in patient subgroups.
Collapse
Affiliation(s)
- Jie Xu
- From the State Key Laboratory of Oncology in South China; Cancer Center; the Third Affiliated Hospital; Sun Yat-sen Institute of Hematology; Center for Clinical Trials and Institute of Drug Clinical Trials, Sun Yat-sen University, Guangzhou; and The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiang-Bo Wan
- From the State Key Laboratory of Oncology in South China; Cancer Center; the Third Affiliated Hospital; Sun Yat-sen Institute of Hematology; Center for Clinical Trials and Institute of Drug Clinical Trials, Sun Yat-sen University, Guangzhou; and The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xue-Fei Huang
- From the State Key Laboratory of Oncology in South China; Cancer Center; the Third Affiliated Hospital; Sun Yat-sen Institute of Hematology; Center for Clinical Trials and Institute of Drug Clinical Trials, Sun Yat-sen University, Guangzhou; and The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - K.C. Allen Chan
- From the State Key Laboratory of Oncology in South China; Cancer Center; the Third Affiliated Hospital; Sun Yat-sen Institute of Hematology; Center for Clinical Trials and Institute of Drug Clinical Trials, Sun Yat-sen University, Guangzhou; and The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ming-Huang Hong
- From the State Key Laboratory of Oncology in South China; Cancer Center; the Third Affiliated Hospital; Sun Yat-sen Institute of Hematology; Center for Clinical Trials and Institute of Drug Clinical Trials, Sun Yat-sen University, Guangzhou; and The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Li-Hui Wang
- From the State Key Laboratory of Oncology in South China; Cancer Center; the Third Affiliated Hospital; Sun Yat-sen Institute of Hematology; Center for Clinical Trials and Institute of Drug Clinical Trials, Sun Yat-sen University, Guangzhou; and The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Zi-Jie Long
- From the State Key Laboratory of Oncology in South China; Cancer Center; the Third Affiliated Hospital; Sun Yat-sen Institute of Hematology; Center for Clinical Trials and Institute of Drug Clinical Trials, Sun Yat-sen University, Guangzhou; and The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Qing Liu
- From the State Key Laboratory of Oncology in South China; Cancer Center; the Third Affiliated Hospital; Sun Yat-sen Institute of Hematology; Center for Clinical Trials and Institute of Drug Clinical Trials, Sun Yat-sen University, Guangzhou; and The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Min Yan
- From the State Key Laboratory of Oncology in South China; Cancer Center; the Third Affiliated Hospital; Sun Yat-sen Institute of Hematology; Center for Clinical Trials and Institute of Drug Clinical Trials, Sun Yat-sen University, Guangzhou; and The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Y.M. Dennis Lo
- From the State Key Laboratory of Oncology in South China; Cancer Center; the Third Affiliated Hospital; Sun Yat-sen Institute of Hematology; Center for Clinical Trials and Institute of Drug Clinical Trials, Sun Yat-sen University, Guangzhou; and The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yi-Xin Zeng
- From the State Key Laboratory of Oncology in South China; Cancer Center; the Third Affiliated Hospital; Sun Yat-sen Institute of Hematology; Center for Clinical Trials and Institute of Drug Clinical Trials, Sun Yat-sen University, Guangzhou; and The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Quentin Liu
- From the State Key Laboratory of Oncology in South China; Cancer Center; the Third Affiliated Hospital; Sun Yat-sen Institute of Hematology; Center for Clinical Trials and Institute of Drug Clinical Trials, Sun Yat-sen University, Guangzhou; and The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
18
|
Guo Q, Qian L, Guo L, Shi M, Chen C, Lv X, Yu M, Hu M, Jiang G, Guo N. Transactivators Zta and Rta of Epstein-Barr virus promote G0/G1 to S transition in Raji cells: a novel relationship between lytic virus and cell cycle. Mol Immunol 2010; 47:1783-92. [PMID: 20338640 DOI: 10.1016/j.molimm.2010.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 02/21/2010] [Indexed: 11/30/2022]
Abstract
In the present study, we show that the treatment of Epstein-Barr virus (EBV) latently infected Raji cells with TPA/SB caused the cell growth arrest. The Zta-positive cells were predominantly enriched in G0/G1 phase of cell cycle. When Zta expression reached a maximal level, a fraction of Zta expressing cell population reentered S phase. Analysis of the expression pattern of a key set of cell cycle regulators revealed that the expression of Zta and Rta substantially interfered with the cell cycle regulatory machinery in Raji cells, strongly inhibiting the expression of Rb and p53 and inducing the expression of E2F1. Down-regulation of Rb was further demonstrated to be mediated by proteasomal degradation, and p53 and p21 affected at transcription level. The data indicate that both Zta and Rta promote entry into S phase of Raji cells. The important roles of Zta and Rta in EBV lytic reactivation were also demonstrated. Our finding suggests that these two transcriptional activators may act synergistically to govern the expression of downstream early and late genes as well as cellular genes and initiation of lytic cycle and manipulation of cell cycle regulatory mechanisms require the joint and interactive contributions of Rta and Zta.
Collapse
Affiliation(s)
- Qingwei Guo
- Institute of Basic Medicine, Shandong Academy of Medical Science, Key Medical Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong Province, Jinan 250062, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rennekamp AJ, Lieberman PM. Initiation of lytic DNA replication in Epstein-Barr virus: search for a common family mechanism. Future Virol 2010; 5:65-83. [PMID: 22468146 PMCID: PMC3314400 DOI: 10.2217/fvl.09.69] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herpesviruses are a complex family of dsDNA viruses that are a major cause of human disease. All family members share highly related viral replication proteins, such as DNA polymerase, ssDNA-binding proteins and processivity factors. Consequently, it is generally thought that lytic replication occurs through a common and conserved mechanism. However, considerable evidence indicates that proteins controlling initiation of DNA replication vary greatly among the herepesvirus subfamilies. In this article, we focus on some of the known mechanisms that regulate Epstein-Barr virus lytic-cycle replication, and compare this to other herpesvirus family members. Our reading of the literature leads us to conclude that diverse viral mechanisms generate a common nucleoprotein prereplication structure that can be recognized by a highly conserved family of viral replication enzymes.
Collapse
Affiliation(s)
- Andrew J Rennekamp
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA and The University of Pennsylvania, Biomedical Graduate Program in Cell & Molecular Biology, The School of Medicine, Philadelphia, PA 19104, USA, Tel.: +1 215 898 9523, Fax: +1 251 898 0663,
| | - Paul M Lieberman
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA, Tel.: +1 215 898 9491, Fax: +1 215 898 0663,
| |
Collapse
|
20
|
Croft NP, Shannon-Lowe C, Bell AI, Horst D, Kremmer E, Ressing ME, Wiertz EJHJ, Middeldorp JM, Rowe M, Rickinson AB, Hislop AD. Stage-specific inhibition of MHC class I presentation by the Epstein-Barr virus BNLF2a protein during virus lytic cycle. PLoS Pathog 2009; 5:e1000490. [PMID: 19557156 PMCID: PMC2695766 DOI: 10.1371/journal.ppat.1000490] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 05/27/2009] [Indexed: 01/11/2023] Open
Abstract
The gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle. Epstein-Barr virus (EBV) is carried by approximately 90% of the world's population, where it persists and is chronically shed despite a vigorous specific immune response, a key component of which are CD8+ T cells that recognize and kill infected cells. The mechanisms the virus uses to evade these responses are not clear. Recently we identified a gene encoded by EBV, BNLF2a, that when expressed ectopically in cells inhibited their recognition by CD8+ T cells. To determine the contribution of BNLF2a to evasion of EBV-specific CD8+ T cell recognition and whether EBV encoded additional immune evasion mechanisms, a recombinant EBV was constructed in which BNLF2a was deleted. We found that cells infected with the recombinant virus were better recognized by CD8+ T cells specific for targets expressed co-incidently with BNLF2a, compared to cells infected with a non-recombinant virus. However, proteins expressed at late stages of the viral infection cycle were poorly recognised by CD8+ T cells, suggesting EBV encodes additional immune evasion genes to prevent effective CD8+ T cell recognition. This study highlights the stage-specific nature of viral immune evasion mechanisms.
Collapse
Affiliation(s)
- Nathan P. Croft
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Claire Shannon-Lowe
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew I. Bell
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Daniëlle Horst
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Zentrum München, München, Germany
| | - Maaike E. Ressing
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jaap M. Middeldorp
- Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Martin Rowe
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Alan B. Rickinson
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew D. Hislop
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
A bridge crosses the active-site canyon of the Epstein-Barr virus nuclease with DNase and RNase activities. J Mol Biol 2009; 391:717-28. [PMID: 19538972 DOI: 10.1016/j.jmb.2009.06.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/29/2009] [Accepted: 06/12/2009] [Indexed: 11/24/2022]
Abstract
Epstein-Barr virus, a double-stranded DNA (dsDNA) virus, is a major human pathogen from the herpesvirus family. The nuclease is one of the lytic cycle proteins required for successful viral replication. In addition to the previously described endonuclease and exonuclease activities on single-stranded DNA and dsDNA substrates, we observed an RNase activity for Epstein-Barr virus nuclease in the presence of Mn(2+), giving a possible explanation for its role in host mRNA degradation. Its crystal structure shows a catalytic core of the D-(D/E)XK nuclease superfamily closely related to the exonuclease from bacteriophage lambda with a bridge across the active-site canyon. This bridge may reduce endonuclease activity, ensure processivity or play a role in strand separation of dsDNA substrates. As the DNA strand that is subject to cleavage is likely to make a sharp turn in front of the bridge, endonuclease activity on single-stranded DNA stretches appears to be possible, explaining the cleavage of circular substrates.
Collapse
|
22
|
Park R, Heston L, Shedd D, Delecluse HJ, Miller G. Mutations of amino acids in the DNA-recognition domain of Epstein-Barr virus ZEBRA protein alter its sub-nuclear localization and affect formation of replication compartments. Virology 2008; 382:145-62. [PMID: 18937960 DOI: 10.1016/j.virol.2008.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/31/2008] [Accepted: 09/08/2008] [Indexed: 11/18/2022]
Abstract
ZEBRA, a transcription factor and DNA replication protein encoded by the Epstein-Barr virus (EBV) BZLF1 gene, plays indispensable roles in the EBV lytic cycle. We recently described the phenotypes of 46 single amino acid substitutions introduced into the DNA-recognition region of ZEBRA [Heston, L., El-Guindy, A., Countryman, J., Dela Cruz, C., Delecluse, H.J., and Miller, G. 2006]. The 27 DNA-binding-proficient mutants exhibited distinct defects in their ability to activate expression of the kinetic classes of viral genes. Four phenotypic variants could be discerned: wild-type, defective at activating Rta, defective at activating early genes, and defective at activating late genes. Here we analyze the distribution of ZEBRA within the nucleus and the localization of EA-D (the viral DNA polymerase processivity factor), an indicator of the development of replication compartments, in representatives of each phenotypic group. Plasmids encoding wild-type (WT) and mutant ZEBRA were transfected into 293 cells containing EBV-bacmids. WT ZEBRA protein was diffusely and smoothly distributed throughout the nucleus, sparing nucleoli, and partially recruited to globular replication compartments. EA-D induced by WT ZEBRA was present diffusely in some cells and concentrated in globular replication compartments in other cells. The distribution of ZEBRA and EA-D proteins was identical to WT following transfection of K188R, a mutant with a conservative change. The distribution of S186A mutant ZEBRA protein, defective for activation of Rta and EA-D, was identical to WT, except that the mutant ZEBRA was never found in globular compartments. Co-expression of Rta with S186A mutant rescued diffuse EA-D but not globular replication compartments. The most striking observation was that several mutant ZEBRA proteins defective in activating EA-D (R179A, K181A and A185V) and defective in activating lytic viral DNA replication and late genes (Y180E and K188A) were localized to numerous punctate foci. The speckled appearance of R179A and Y180E was more regular and clearly defined in EBV-positive than in EBV-negative 293 cells. The Y180E late-mutant induced EA-D, but prevented EA-D from localizing to globular replication compartments. These results show that individual amino acids within the basic domain influence localization of the ZEBRA protein and its capacity to induce EA-D to become located in mature viral replication compartments. Furthermore, these mutant ZEBRA proteins delineate several stages in the processes of nuclear re-organization which accompany lytic EBV replication.
Collapse
Affiliation(s)
- Richard Park
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
23
|
Paramita DK, Fachiroh J, Artama WT, van Benthem E, Haryana SM, Middeldorp JM. Native early antigen of Epstein-Barr virus, a promising antigen for diagnosis of nasopharyngeal carcinoma. J Med Virol 2007; 79:1710-21. [PMID: 17854043 DOI: 10.1002/jmv.20987] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Epstein-Barr virus (EBV) early antigen (EA) complex consists of multiple proteins with relevance for diagnosis of acute, chronic and malignant EBV related diseases, including nasopharyngeal carcinoma (NPC). In a recent study, it was found that the molecular diversity of EBV-specific IgG and IgA antibody responses in NPC patients and demonstrated that these reflect independent B-cell triggering leading to distinct EBV antigen-recognition profiles. The fine-specificity of NPC-related IgG and IgA responses was explored further against defined recombinant and synthetic EBV-EA antigens using immunofluorescence, immunoblot and ELISA techniques and determined their diagnostic value in a large panel of sera from NPC (n = 154), non-NPC tumor patients (n = 133), acute mononucleosis patients (n = 70) and healthy EBV carriers (n = 259). Individual recombinant EBV-EA markers yielded sensitivity/specificity values not exceeding 86%, whereas selected EA-specific peptide epitopes were rather poorly recognized by IgG and IgA antibodies in NPC sera. Surprisingly, we found that a "low salt" native EA-protein extract reproducibly prepared from purified nuclei of EA-induced HH514 cells, and containing characteristic EA(D)-polypeptides, such as p47-54 (BMRF1), p138 (BALF2), p55-DNAse (BGLF5), and p65-TK (BXLF1), but without viral capsid (VCA) or nuclear antigen (EBNA) reactivity, gave highest sensitivity (90.4%) and specificity (95.5%) values for NPC diagnosis in both IgG and IgA ELISA. The data support further the notion that EBV-EA reactive IgG and IgA antibodies in NPC patients are directed against distinct conformational and-in part-linear epitopes on EBV-specific proteins, barely recognized in other EBV-related syndromes. The use of a defined native EBV EA-specific antigen opens the way to further improve serological diagnosis of NPC.
Collapse
Affiliation(s)
- Dewi K Paramita
- Department of Histology and Cell Biology, Faculty of Medicine Gadjah Mada University, Yogyakarta, Indonesia
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Epstein–Barr virus (EBV) is a gammaherpesvirus with a 172kb genome and many genes encoding enzymes for lytic viral DNA replication. Recent observations indicate that an S-phase-like environment and the activated DNA repair system are required for viral lytic DNA replication. The virally encoded DNA replication-associated enzymes are then expressed in two clusters, suggesting their participation at different stages of replication. Simultaneously, EBV-encoded regulatory proteins may modulate cell-cycle control to enhance virus replication efficiency. The interactions among proteins in the viral replication complex and cellular proteins may either generate structural specificities for replication proteins or stabilize the protein complexes. During infection, EBV has evolved several strategies to overcome the host defense mechanism, such as interfering with innate immunity and withdrawing into a latent state. This review discusses the latest progress in viral control of lytic replication and the interactions among viral lytic replication compartment and cellular machineries. The possible contribution of EBV lytic gene products to human malignancy is also discussed.
Collapse
Affiliation(s)
- Chih-Chung Lu
- Graduate Institute of Microbiology, No 1, Jen-Ai Rd, 1st Section, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Ru Chen
- Graduate Institute of Microbiology, No 1, Jen-Ai Rd, 1st Section, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
Amon W, White RE, Farrell PJ. Epstein–Barr virus origin of lytic replication mediates association of replicating episomes with promyelocytic leukaemia protein nuclear bodies and replication compartments. J Gen Virol 2006; 87:1133-1137. [PMID: 16603513 DOI: 10.1099/vir.0.81589-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epstein–Barr virus (EBV) establishes a latent persistence from which it can be reactivated to undergo lytic replication. Late lytic-cycle gene expression is linked to lytic DNA replication, as it is sensitive to the same inhibitors that block lytic replication, and it has recently been shown that the viral origin of lytic replication (ori lyt) is required in cis for late-gene expression. During the lytic cycle, the viral genome forms replication compartments, which are usually adjacent to promyelocytic leukaemia protein (PML) nuclear bodies. A tetracycline repressor DNA-binding domain–enhanced green fluorescent protein fusion was used to visualize replicating plasmids carrying a tetracycline operator sequence array. ori lyt mediated the production of plasmid replication compartments that were associated with PML nuclear bodies. Plasmids carrying ori lyt and EBV itself were visualized in the same cells and replicated in similar regions of the nucleus, further supporting the validity of the plasmids for studying late-gene regulation.
Collapse
Affiliation(s)
- Wolfgang Amon
- Department of Virology, Imperial College Faculty of Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Robert E White
- Department of Virology, Imperial College Faculty of Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Paul J Farrell
- Department of Virology, Imperial College Faculty of Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
26
|
Liao G, Huang J, Fixman ED, Hayward SD. The Epstein-Barr virus replication protein BBLF2/3 provides an origin-tethering function through interaction with the zinc finger DNA binding protein ZBRK1 and the KAP-1 corepressor. J Virol 2005; 79:245-56. [PMID: 15596820 PMCID: PMC538732 DOI: 10.1128/jvi.79.1.245-256.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Herpesviruses encode a set of core proteins essential for lytic replication of their genomes. Three of these proteins form a tripartite helix-primase complex that, in the case of Epstein-Barr virus (EBV), consists of the helicase BBLF4, the primase BSLF1, and the linker protein BBLF2/3. BBLF2/3 and its homologs in the other herpesviruses remain relatively poorly characterized. To better understand the contribution to replication made by BBLF2/3, a yeast two-hybrid screen was performed with BBLF2/3 as the bait protein. This screen identified as interactors a number of cell replication-related proteins such as DNA polymerase beta and subunits of DNA polymerase delta along with the EBV-encoded DNase BGLF5. The screen also identified the DNA binding zinc finger protein ZBRK1 and the ZBRK1 corepressor KAP-1 as BBLF2/3 interactors. Interaction between BBLF2/3 and ZBRK1 and KAP-1 was confirmed in coimmunoprecipitation assays. A binding site for ZBRK1 in the EBV oriLyt enhancer was identified by electrophoretic mobility shift assay. ZBRK1, KAP-1, and the ZBRK1 binding protein BRCA1 were shown by indirect immunofluorescence to be present in replication compartments in lytically induced D98-HR1 cells, and additionally, chromatin immunoprecipitation assays determined that these proteins associated with oriLyt DNA. Replication of an oriLyt plasmid and a variant oriLyt (DeltaZBRK1) plasmid was examined in lytically induced D98-HR1 cells. Exogenous ZBRK1, KAP-1, or BRCA1 increased the efficiency of oriLyt replication, while deletion of the ZBRK1 binding site impaired replication. These experiments identify ZBRK1 as another cell protein that, through BBLF2/3, provides a tethering point on oriLyt for the EBV replication complex. The data also suggest that BBLF2/3 may serve as a contact interface for cell proteins involved in replication of EBV oriLyt.
Collapse
Affiliation(s)
- Gangling Liao
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | |
Collapse
|
27
|
Liu MT, Hu HP, Hsu TY, Chen JY. Site-directed mutagenesis in a conserved motif of Epstein-Barr virus DNase that is homologous to the catalytic centre of type II restriction endonucleases. J Gen Virol 2003; 84:677-686. [PMID: 12604820 DOI: 10.1099/vir.0.18739-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequence alignment of human herpesvirus DNases revealed that they share several conserved regions. One of these, the conserved motif D203...E225XK227 (D.EXK) in the sequence of Epstein-Barr virus (EBV) DNase, has a striking similarity to the catalytic sites of some other nucleases, including type II restriction endonucleases, lambda exonuclease and MutH. The predicted secondary structures of these three residues were shown to resemble the three catalytic residues of type II restriction endonucleases. Site-directed mutagenesis was carried out to replace each of the acidic residues near the motif by residues with different properties. All substitutions of D203, E225 and K227 were shown to cause significant reductions in nuclease activity. Six other acidic residues, within the conserved regions, were also replaced by Asn or Gln. Five of these six variants retained nuclease activity and mutant D195N alone lost nuclease activity. The four charged residues, D195, D203, E225 and K227, of EBV DNase were found to be important for nuclease activity. Biochemical analysis indicated that the preference for divalent cations was altered from Mg2+ to Mn2+ for mutant E225D. The DNA-binding abilities of D203E, E225D and E225Q were shown to be similar to that of wild-type. However, K227 mutants were found to have variable DNA-binding abilities: K227G and K227N mutants retained, K227E and K227D had reduced and K227R lost DNA-binding ability. Comparison of the biochemical properties of the corresponding substitutions among EBV DNase and type II restriction enzymes indicated that the D...EXK motif is most likely the putative catalytic centre of EBV DNase.
Collapse
Affiliation(s)
- Ming-Tsan Liu
- National Health Research Institutes, 3F No. 109, Section 6, Min-Chuan East Road, Taipei 114, Taiwan
| | - Hsien-Ping Hu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Tsuey-Ying Hsu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Jen-Yang Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- National Health Research Institutes, 3F No. 109, Section 6, Min-Chuan East Road, Taipei 114, Taiwan
| |
Collapse
|
28
|
Middeldorp JM, Brink AATP, van den Brule AJC, Meijer CJLM. Pathogenic roles for Epstein-Barr virus (EBV) gene products in EBV-associated proliferative disorders. Crit Rev Oncol Hematol 2003; 45:1-36. [PMID: 12482570 DOI: 10.1016/s1040-8428(02)00078-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with a still growing spectrum of clinical disorders, ranging from acute and chronic inflammatory diseases to lymphoid and epithelial malignancies. Based on a combination of in vitro and in vivo findings, EBV is thought to contribute in the pathogenesis of these diseases. The different EBV gene expression patterns in the various disorders, suggest different EBV-mediated pathogenic mechanisms. In the following pages, an overview of the biology of EBV-infection is given and functional aspects of EBV-proteins are discussed and their putative role in the various EBV-associated disorders is described. EBV gene expression patterns and possible pathogenic mechanisms are discussed. In addition, expression of the cellular genes upregulated by EBV in vitro is discussed, and a comparison with the in vivo situation is made.
Collapse
Affiliation(s)
- Jaap M Middeldorp
- Department of Pathology, Vrije Universiteit Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
29
|
Hsiang CY. Pseudorabies virus DNA-binding protein stimulates the exonuclease activity and regulates the processivity of pseudorabies virus DNase. Biochem Biophys Res Commun 2002; 293:1301-8. [PMID: 12054518 DOI: 10.1016/s0006-291x(02)00375-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The pseudorabies virus (PRV) DNase is an alkaline exonuclease and endonuclease, which exhibits an Escherichia coli RecBCD-like catalytic function. The PRV DNA-binding protein (DBP) promotes the renaturation of complementary single strands of DNA, which is an essential function for recombinase. To investigate the functional and physical interactions between PRV DBP and DNase, these proteins were purified to homogeneity. PRV DBP stimulated the DNase activity, especially the exonuclease activity, in a dose-dependent fashion. Acetylation of DBP by acetic anhydride resulted in a loss of DNA-binding ability and a 60% inhibition of the DNase activity, suggesting that DNA-binding ability of PRV DBP was required for stimulating the DNase activity. PRV DNase behaved in a processive mode; however, it was converted into a distributive mode in the presence of DBP, implying that PRV DBP stimulated the dissociation of DNase from DNA substrates. The physical interaction between DBP and DNase was further analyzed by enzyme-linked immunosorbent assay, and a significant interaction was observed. Thus, these results suggested that PRV DBP interacted with PRV DNase and regulated the DNase activity in vitro.
Collapse
Affiliation(s)
- Chien-Yun Hsiang
- Department of Microbiology, China Medical College, 91 Hsueh-Shih Road, Taichung 404, Taiwan.
| |
Collapse
|
30
|
Affiliation(s)
- T Tsurumi
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| |
Collapse
|
31
|
Liao G, Wu FY, Hayward SD. Interaction with the Epstein-Barr virus helicase targets Zta to DNA replication compartments. J Virol 2001; 75:8792-802. [PMID: 11507224 PMCID: PMC115124 DOI: 10.1128/jvi.75.18.8792-8802.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zta has a dual role in the Epstein-Barr virus (EBV) lytic cycle, acting as a key regulator of EBV lytic gene expression and also being essential for lytic viral DNA replication. Zta's replication function is mediated in part through interactions with the core viral replication proteins. We now show interaction between Zta and the helicase (BBLF4) and map the binding region to within amino acids (aa) 22 to 86 of the Zta activation domain. In immunofluorescence assays, green fluorescent protein (GFP)-tagged BBLF4 localized to the cytoplasm of transfected cells. Cotransfection of Zta resulted in translocation of BBLF4-GFP into the nucleus indicating interaction between these two proteins. However, Zta with a deletion of aa 24 to 86 was unable to mediate nuclear translocation of BBLF4-GFP. Results obtained with Zta variants carrying deletions across the aa 24 to 86 region indicated more than one contact site for BBLF4 within this domain, and this was reinforced by the behavior of the four-point mutant Zta (m22/26,74/75), which was severely impaired for BBLF4 interaction. Binding of BBLF4 to Zta was confirmed using GST affinity assays. In both cotransfection-replication assays and replication assays performed in EBV-positive P3HR1 cells, the Zta (m22/26,74/75) mutant was replication defective. In Zta-transfected D98-HR1 cells, replication compartments could be detected by immunofluorescence staining using anti-BMRF1 monoclonal antibody. Cells transfected with Zta variants that were defective for helicase binding still formed replication compartments, but Zta was excluded from these compartments. These experiments reveal a role for the Zta-helicase interaction in targeting Zta to sites of viral DNA replication.
Collapse
Affiliation(s)
- G Liao
- Oncology Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, USA
| | | | | |
Collapse
|
32
|
Lee W, Hwang YH, Lee SK, Subramanian C, Robertson ES. An Epstein-Barr virus isolated from a lymphoblastoid cell line has a 16-kilobase-pair deletion which includes gp350 and the Epstein-Barr virus nuclear antigen 3A. J Virol 2001; 75:8556-68. [PMID: 11507201 PMCID: PMC115101 DOI: 10.1128/jvi.75.18.8556-8568.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with human cancers, including nasopharyngeal carcinoma, Burkitt's lymphoma, gastric carcinoma and, somewhat controversially, breast carcinoma. EBV infects and efficiently transforms human primary B lymphocytes in vitro. A number of EBV-encoded genes are critical for EBV-mediated transformation of human B lymphocytes. In this study we show that an EBV-infected lymphoblastoid cell line obtained from the spontaneous outgrowth of B cells from a leukemia patient contains a deletion, which involves a region of approximately 16 kbp. This deletion encodes major EBV genes involved in both infection and transformation of human primary B lymphocytes and includes the glycoprotein gp350, the entire open reading frame of EBNA3A, and the amino-terminal region of EBNA3B. A fusion protein created by this deletion, which lies between the BMRF1 early antigen and the EBNA3B latent antigen, is truncated immediately downstream of the junction 21 amino acids into the region of the EBNA3B sequence, which is out of frame with respect to the EBNA3B protein sequence, and indicates that EBNA3B is not expressed. The fusion is from EBV coordinate 80299 within the BMRF1 sequence to coordinate 90998 in the EBNA3B sequence. Additionally, we have shown that there is no detectable induction in viral replication observed when SNU-265 is treated with phorbol esters, and no transformants were detected when supernatant is used to infect primary B lymphocytes after 8 weeks in culture. Therefore, we have identified an EBV genome with a major deletion in critical genes involved in mediating EBV infection and the transformation of human primary B lymphocytes that is incompetent for replication of this naturally occurring EBV isolate.
Collapse
Affiliation(s)
- W Lee
- Department of Biological Sciences, Myongji University, Yongin Kyunggi-do, Korea
| | | | | | | | | |
Collapse
|
33
|
Kira T, Grill SP, Dutschman GE, Lin JS, Qu F, Choi Y, Chu CK, Cheng YC. Anti-Epstein-Barr virus (EBV) activity of beta-L-5-iododioxolane uracil is dependent on EBV thymidine kinase. Antimicrob Agents Chemother 2000; 44:3278-84. [PMID: 11083627 PMCID: PMC90192 DOI: 10.1128/aac.44.12.3278-3284.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
beta-L-5-Iododioxolane uracil was shown to have potent anti-Epstein-Barr virus (EBV) activity (50% effective concentration = 0.03 microM) with low cytotoxicity (50% cytotoxic concentration = 1,000 microM). It exerts its antiviral activity by suppressing replicative EBV DNA and viral protein synthesis. This compound is phosphorylated in cells where the EBV is replicating but not in cells where the EBV is latent. EBV-specific thymidine kinase could phosphorylate beta-L-5-iododioxolane uracil to the monophosphate metabolite. The K(m) of beta-L-5-iododioxolane uracil with EBV thymidine kinase was estimated to be 5.5 microM, which is similar to that obtained with thymidine but about fivefold higher than that obtained with 2' fluoro-5-methyl-beta-L-arabinofuranosyl uracil, the first L-nucleoside analogue discovered to have anti-EBV activity. The relative V(max) is seven times higher than that of thymidine. The anti-EBV activity of beta-L-5-iododioxolane uracil and its intracellular phosphorylation could be inhibited by 5'-ethynylthymidine, a potent EBV thymidine kinase inhibitor. The present study suggests that beta-L-5-iododioxolane uracil exerts its action after phosphorylation; therefore, EBV thymidine kinase is critical for the antiviral action of this drug.
Collapse
Affiliation(s)
- T Kira
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Fujii K, Yokoyama N, Kiyono T, Kuzushima K, Homma M, Nishiyama Y, Fujita M, Tsurumi T. The Epstein-Barr virus pol catalytic subunit physically interacts with the BBLF4-BSLF1-BBLF2/3 complex. J Virol 2000; 74:2550-7. [PMID: 10684269 PMCID: PMC111743 DOI: 10.1128/jvi.74.6.2550-2557.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Epstein-Barr virus (EBV)-encoded replication proteins that account for the basic reactions at the replication fork are thought to be the EBV Pol holoenzyme, consisting of the BALF5 Pol catalytic and the BMRF1 Pol accessory subunits, the putative helicase-primase complex, comprising the BBLF4, BSLF1, and BBLF2/3 proteins, and the BALF2 single-stranded DNA-binding protein. Immunoprecipitation analyses using anti-BSLF1 or anti-BBLF2/3 protein-specific antibody with clarified lysates of B95-8 cells in a viral productive cycle suggested that the EBV Pol holoenzyme physically interacts with the BBLF4-BSLF1-BBLF2/3 complex to form a large complex. Although the complex was stable in 500 mM NaCl and 1% NP-40, the BALF5 protein became dissociated in the presence of 0.1% sodium dodecyl sulfate. Experiments using lysates from insect cells superinfected with combinations of recombinant baculoviruses capable of expressing each of viral replication proteins showed that not the BMRF1 Pol accessory subunit but rather the BALF5 Pol catalytic subunit directly interacts with the BBLF4-BSLF1-BBLF2/3 complex. Furthermore, double infection with pairs of recombinant viruses revealed that each component of the BBLF4-BSLF1-BBLF2/3 complex makes contact with the BALF5 Pol catalytic subunit. The interactions of the EBV DNA polymerase with the EBV putative helicase-primase complex warrant particular attention because they are thought to coordinate leading- and lagging-strand DNA synthesis at the replication fork.
Collapse
Affiliation(s)
- K Fujii
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | |
Collapse
|