1
|
Doorbar J. The E4 protein; structure, function and patterns of expression. Virology 2013; 445:80-98. [PMID: 24016539 DOI: 10.1016/j.virol.2013.07.008] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/27/2013] [Accepted: 07/08/2013] [Indexed: 01/05/2023]
Abstract
The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1^E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein's flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1^E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1^E4 gene products generally become detectable at the onset of vegetative viral genome amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1^E4, these kinases regulate one of the E1^E4 proteins main functions, the association with the cellular keratin network, and eventually also its cleavage by the protease calpain which allows assembly into amyloid-like fibres and reorganisation of the keratin network. Although the E4 proteins of different HPV types appear divergent at the level of their primary amino acid sequence, they share a recognisable modular organisation and pattern of expression, which may underlie conserved functions and regulation. Assembly into higher-order multimers and suppression of cell proliferation are common to all E4 proteins examined. Although not yet formally demonstrated, a role in virus release and transmission remains a likely function for E4.
Collapse
Affiliation(s)
- John Doorbar
- Division of Virology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom.
| |
Collapse
|
2
|
Bell I, Martin A, Roberts S. The E1circumflexE4 protein of human papillomavirus interacts with the serine-arginine-specific protein kinase SRPK1. J Virol 2007; 81:5437-48. [PMID: 17360743 PMCID: PMC1900295 DOI: 10.1128/jvi.02609-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human papillomavirus (HPV) infections of the squamous epithelium are associated with high-level expression of the E1circumflexE4 protein during the productive phase of infection. However, the precise mechanisms of how E1circumflexE4 contributes to the replication cycle of the virus are poorly understood. Here, we show that the serine-arginine (SR)-specific protein kinase SRPK1 is a novel binding partner of HPV type 1 (HPV1) E1circumflexE4. We map critical residues within an arginine-rich domain of HPV1 E1circumflexE4, and in a region known to facilitate E1circumflexE4 oligomerization, that are requisite for SRPK1 binding. In vitro kinase assays show that SRPK1 binding is associated with phosphorylation of an HPV1 E1circumflexE4 polypeptide and modulates autophosphorylation of the kinase. We show that SRPK1 is sequestered into E4 inclusion bodies in terminally differentiated cells within HPV1 warts and that colocalization between E1circumflexE4 and SRPK1 is not dependent on additional HPV1 factors. Moreover, we also identify SRPK1 binding of E1circumflexE4 proteins of HPV16 and HPV18. Our findings indicate that SRPK1 binding is a conserved function of E1circumflexE4 proteins of diverse virus types. SRPK1 influences important biochemical processes within the cell, including nuclear organization and RNA metabolism. While phosphorylation of HPV1 E4 by SRPK1 may directly influence HPV1 E4 function during the infectious cycle, the modulation and sequestration of SRPK1 by E1circumflexE4 may affect the ability of SRPK1 to phosphorylate its cellular targets, thereby facilitating the productive phase of the HPV replication cycle.
Collapse
Affiliation(s)
- Ian Bell
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
3
|
Knight GL, Turnell AS, Roberts S. Role for Wee1 in inhibition of G2-to-M transition through the cooperation of distinct human papillomavirus type 1 E4 proteins. J Virol 2006; 80:7416-26. [PMID: 16840322 PMCID: PMC1563741 DOI: 10.1128/jvi.00196-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The infectious cycle of human papillomavirus type 1 (HPV1) is accompanied by abundant expression of the full-length E1;E4 protein (17-kDa) and smaller E4 polypeptides (16-, 11-, and 10-kDa) that arise by sequential loss of N-terminal E1;E4 sequences. HPV1 E4 inhibits G(2)-to-M transition of the cell cycle. Here, we show that HPV1 E4 proteins mediate inhibition of cell division by more than one mechanism. Cells arrested by coexpression of E1;E4 (E4-17K) and a truncated protein equivalent to the 16-kDa species (E4-16K) contain inactive cyclin B1-cdk1 complexes. Inactivation of cdk1 is through inhibitory Tyr(15) phosphorylation, with cells containing elevated levels of Wee1, the kinase responsible for inhibitory cdk1 phosphorylation. Consistent with these findings, overexpression of Wee1 enhanced the extent to which E4-17K/16K-expressing cells arrest in G(2), indicating that maintenance of Wee1 activity is necessary for inhibition of cell division induced by coexpression of the two E4 proteins. Moreover, we have determined that depletion of Wee1 by small interfering RNA (siRNA) alleviates the G(2) block imposed by E4-17K/16K. In contrast however, maintenance of Wee1 activity is not necessary for G(2)-to-M inhibition mediated by E4-16K alone, as overexpression or depletion of Wee1 does not influence the G(2) arrest function of E4-16K. Cells arrested by E4-16K expression contain low levels of active cyclin B1-cdk1 complexes. We hypothesize that differential expression of HPV1 E4 proteins during the viral life cycle determines the host cell cycle status. Different mechanisms of inhibition of G(2)-to-M transition reinforce the supposition that distinct E4 functions are important for HPV replication.
Collapse
Affiliation(s)
- Gillian L Knight
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
4
|
Brown DR, Kitchin D, Qadadri B, Neptune N, Batteiger T, Ermel A. The human papillomavirus type 11 E1--E4 protein is a transglutaminase 3 substrate and induces abnormalities of the cornified cell envelope. Virology 2005; 345:290-8. [PMID: 16257432 DOI: 10.1016/j.virol.2005.09.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 09/19/2005] [Indexed: 11/30/2022]
Abstract
The human papillomavirus (HPV) E1--E4 protein is detected in the cytoplasm of differentiated keratinocytes, near the cornified cell envelope. HPV does not induce lysis of the infected keratinocyte, and the normally durable cornified cell envelope that forms during keratinocyte differentiation would seemingly inhibit viral egress. HPV infection induces abnormalities of the cornified cell envelope, but the exact mechanisms involved are not well understood. We tested whether the HPV 11 E1--E4 protein, which co-localizes the cell envelope and co-purifies with cell envelope fragments, could serve as an in vitro substrate for transglutaminases. We found evidence of E1--E4 cross-linking by endogenous transglutaminases in an in situ assay using frozen sections of human foreskin, and in addition, E1--E4 protein was cross-linked by recombinant transglutaminase 3 (but not transglutaminase 1) in an in vitro cross-linking assay. We also tested whether expression of E1--E4 in differentiated keratinocytes would induce morphologic alterations of cornified cell envelopes. Differentiated keratinocytes expressing E1--E4 were disorganized and pleomorphic compared to control cells, and cell envelopes purified from E1--E4-expressing cells were small, fragmented, and rough bordered compared to the round, smooth bordered cell envelopes from control cells. We conclude from these in vitro experiments that the E1--E4 protein is cross-linked by transglutaminase 3, and that E1--E4 expression in differentiated keratinocytes induces morphologic abnormalities of the cornified cell envelope.
Collapse
Affiliation(s)
- Darron R Brown
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46077, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Knight GL, Grainger JR, Gallimore PH, Roberts S. Cooperation between different forms of the human papillomavirus type 1 E4 protein to block cell cycle progression and cellular DNA synthesis. J Virol 2004; 78:13920-33. [PMID: 15564500 PMCID: PMC533915 DOI: 10.1128/jvi.78.24.13920-13933.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranslational modification-oligomerization, phosphorylation, and proteolytic cleavage-of the human papillomavirus (HPV) E4 protein occurs as the infected keratinocytes migrate up through the suprabasal wart layers. It has been postulated that these events modify E4 function during the virus life cycle. In HPV type 1 (HPV1)-induced warts, N-terminal sequences are progressively cleaved from the full-length E4 protein (E1(wedge)E4) of 17 kDa to produce a series of polypeptides of 16, 11 and 10 kDa. Here, we have shown that in human keratinocytes, a truncated protein (E4-16K), equivalent to the 16-kDa species, mediated a G(2) arrest in the cell cycle that was dependent on a threonine amino acid in a proline-rich domain of the protein. Reconstitution of cyclin B1 expression in E4-16K cells reversed the G(2) arrest. Expression of E4-16K also induced chromosomal rereplication, and this was associated with aberrant nuclear morphology. Perturbation of the mitotic cell cycle was a biological activity specific to the truncated protein. However, coexpression of the full-length E1(wedge)E4 protein and the truncated E4-16K protein inhibited normal cellular proliferation and cellular DNA rereplication but did not prevent cells from arresting in G(2). Our findings provide the first evidence to support the hypothesis that proteolytic cleavage of the E1(wedge)E4 protein modifies its function. Also, different forms of the HPV1 E4 protein cooperate to negatively influence keratinocyte proliferation. We predict that these distinct biological activities of E4 act to support efficient amplification of the viral genome in suprabasal keratinocytes.
Collapse
Affiliation(s)
- Gillian L Knight
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Vincent Dr., Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | |
Collapse
|
6
|
Wang Q, Griffin H, Southern S, Jackson D, Martin A, McIntosh P, Davy C, Masterson PJ, Walker PA, Laskey P, Omary MB, Doorbar J. Functional analysis of the human papillomavirus type 16 E1=E4 protein provides a mechanism for in vivo and in vitro keratin filament reorganization. J Virol 2004; 78:821-33. [PMID: 14694114 PMCID: PMC368840 DOI: 10.1128/jvi.78.2.821-833.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-risk human papillomaviruses, such as human papillomavirus type 16 (HPV16), are the primary cause of cervical cancer. The HPV16 E1=E4 protein associates with keratin intermediate filaments and causes network collapse when expressed in epithelial cells in vitro. Here, we show that keratin association and network reorganization also occur in vivo in low-grade cervical neoplasia caused by HPV16. The 16E1=E4 protein binds to keratins directly and interacts strongly with keratin 18, a member of the type I intermediate-filament family. By contrast, 16E1=E4 bound only weakly to keratin 8, a type II intermediate-filament protein, and showed no detectable affinity for the type III protein, vimentin. The N-terminal 16 amino acids of the 16E1=E4 protein, which contains the YPLLXLL motif that is conserved among supergroup A viruses, were sufficient to target green fluorescent protein to the keratin network. When expressed in the SiHa cervical epithelial cell line, the full-length 16E1=E4 protein caused an almost total inhibition of keratin dynamics, despite the phosphorylation of keratin 18 at serine 33, which normally leads to 14-3-3-mediated keratin solubilization. Mutant 16E1=E4 proteins which lack the LLKLL motif, or which have lost amino acids from their C termini, and which were compromised in the ability to associate with keratins did not disturb normal keratin dynamics. 16E1=E4 was found to exist as dimers and hexamers, whereas a C-terminal deletion mutant (16E1=E4Delta87-92) existed as monomers and formed multimeric structures only poorly. Considered together, our results suggest that by associating with keratins through its N terminus, and by associating with itself through its C terminus, 16E1=E4 may act as a keratin cross-linker and prevent the movement of keratins between the soluble and insoluble compartments. The increase in avidity associated with multimeric binding may contribute to the ability of 16E1=E4 to sequester its cellular targets in the cytoplasm.
Collapse
Affiliation(s)
- Qian Wang
- Division of Virology, National Institute for Medical Research, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hartlieb B, Modrof J, Mühlberger E, Klenk HD, Becker S. Oligomerization of Ebola virus VP30 is essential for viral transcription and can be inhibited by a synthetic peptide. J Biol Chem 2003; 278:41830-6. [PMID: 12912982 DOI: 10.1074/jbc.m307036200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of Ebola virus (EBOV)-specific mRNA is driven by the nucleocapsid proteins NP, VP35, and L. This process is further dependent on VP30, an essential EBOV-specific transcription factor. The present study addresses the self-assembly of VP30 and the functional significance of this process for viral transcription and propagation. Essential for oligomerization of VP30 is a region spanning amino acids 94-112. Within this region a cluster of four leucine residues is of critical importance. Mutation of only one of these leucine residues resulted in oligomerization-deficient VP30 molecules that were no longer able to support EBOV-specific transcription. The essential role of homo-oligomerization for the function of VP30 was further corroborated by the finding that mixed VP30 oligomers consisting of VP30 and transcriptionally inactive VP30 mutants were impaired in their ability to support EBOV transcription. The dominant negative effect of these VP30 mutants was dependent on their ability to bind to VP30. The oligomerization of VP30 could be dose dependently inhibited by a 25-mer peptide (E30pep-wt) derived from the presumed oligomerization domain (IC50,1 mum). A control peptide (E30pep-3LA), in which three leucines were changed to alanine, had no inhibitory effect. Thus, E30pep-wt seemed to bind efficiently to VP30 and consequently blocked the oligomerization of the protein. When E30pep-wt was transfected into EBOV-infected cells, the peptide inhibited viral replication suggesting that inhibition of VP30 oligomerization represents a target for EBOV antiviral drugs.
Collapse
Affiliation(s)
- Bettina Hartlieb
- Institut für Virologie der Philipps-Universität Marburg, Robert-Koch-Strasse 17, 35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
8
|
Roberts S, Hillman ML, Knight GL, Gallimore PH. The ND10 component promyelocytic leukemia protein relocates to human papillomavirus type 1 E4 intranuclear inclusion bodies in cultured keratinocytes and in warts. J Virol 2003; 77:673-84. [PMID: 12477870 PMCID: PMC140640 DOI: 10.1128/jvi.77.1.673-684.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human papillomavirus type 1 (HPV1) E4 protein is associated with cytoplasmic and nuclear inclusions in productively infected keratinocytes. Here we have used transient expression of HPV1 E4 (also known as E1E4) protein in keratinocytes to reproduce formation of E4 inclusions. Immunofluorescence analysis showed that progressive formation of inclusions correlated with diminished colocalization between E4 and keratin intermediate filaments (IFs). Our results support a model in which the HPV1 E4-keratin IF association is transient, occurring only at an early stage of inclusion formation. We also demonstrate that E4 induces relocation of the promyelocytic leukemia protein (PML) from multiple intranuclear speckles (ND10 bodies) to the periphery of nuclear E4 inclusions and that this activity is specific to full-length E4 protein. Analysis of HPV1-induced warts demonstrated that nuclear PML-E4 inclusions were present in productively infected keratinocytes, indicating that reorganization of PML occurs during the virus's replication cycle. It has been suggested that ND10 bodies are the sites for papillomavirus genome replication and virion assembly. Our finding that E4 induces reorganization of ND10 bodies in vitro and in vivo is further strong evidence that these domains play an important role in the papillomavirus life cycle. This study indicates that HPV1 is analogous to other DNA viruses that disrupt or reorganize ND10 domains, possibly to increase efficiency of virus infection. We hypothesize that HPV1 E4-induced reorganization of PML is necessary for efficient replication of the virus during the virus-producing phase.
Collapse
Affiliation(s)
- Sally Roberts
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, United Kingdom.
| | | | | | | |
Collapse
|
9
|
Peh WL, Middleton K, Christensen N, Nicholls P, Egawa K, Sotlar K, Brandsma J, Percival A, Lewis J, Liu WJ, Doorbar J. Life cycle heterogeneity in animal models of human papillomavirus-associated disease. J Virol 2002; 76:10401-16. [PMID: 12239317 PMCID: PMC136551 DOI: 10.1128/jvi.76.20.10401-10416.2002] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Animal papillomaviruses are widely used as models to study papillomavirus infection in humans despite differences in genome organization and tissue tropism. Here, we have investigated the extent to which animal models of papillomavirus infection resemble human disease by comparing the life cycles of 10 different papillomavirus types. Three phases in the life cycles of all viruses were apparent using antibodies that distinguish between early events, the onset of viral genome amplification, and the expression of capsid proteins. The initiation of these phases follows a highly ordered pattern that appears important for the production of virus particles. The viruses examined included canine oral papillomavirus, rabbit oral papillomavirus (ROPV), cottontail rabbit papillomavirus (CRPV), bovine papillomavirus type 1, and human papillomavirus types 1, 2, 11, and 16. Each papillomavirus type showed a distinctive gene expression pattern that could be explained in part by differences in tissue tropism, transmission route, and persistence. As the timing of life cycle events affects the accessibility of viral antigens to the immune system, the ideal model system should resemble human mucosal infection if vaccine design is to be effective. Of the model systems examined here, only ROPV had a tissue tropism and a life cycle organization that resembled those of the human mucosal types. ROPV appears most appropriate for studies of the life cycles of mucosal papillomavirus types and for the development of prophylactic vaccines. The persistence of abortive infections caused by CRPV offers advantages for the development of therapeutic vaccines.
Collapse
Affiliation(s)
- Woei Ling Peh
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Doorbar J, Elston RC, Napthine S, Raj K, Medcalf E, Jackson D, Coleman N, Griffin HM, Masterson P, Stacey S, Mengistu Y, Dunlop J. The E1E4 protein of human papillomavirus type 16 associates with a putative RNA helicase through sequences in its C terminus. J Virol 2000; 74:10081-95. [PMID: 11024137 PMCID: PMC102047 DOI: 10.1128/jvi.74.21.10081-10095.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2000] [Accepted: 07/20/2000] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) infects cervical epithelium and is associated with the majority of cervical cancers. The E1E4 protein of HPV16 but not those of HPV1 or HPV6 was found to associate with a novel member of the DEAD box protein family of RNA helicases through sequences in its C terminus. This protein, termed E4-DBP (E4-DEAD box protein), has a molecular weight of 66,000 (66K) and can shuttle between the nucleus and the cytoplasm. It binds to RNA in vitro, including the major HPV16 late transcript (E1E4. L1), and has an RNA-independent ATPase activity which can be partially inhibited by E1E4. E4-DBP was detectable in the cytoplasm of cells expressing HPV16 E1E4 (in vivo and in vitro) and could be immunoprecipitated as an E1E4 complex from cervical epithelial cell lines. In cell lines lacking cytoplasmic intermediate filaments, loss of the leucine cluster-cytoplasmic anchor region of HPV16 E1wedgeE4 resulted in both proteins colocalizing exclusively to the nucleoli. Two additional HPV16 E1E4-binding proteins, of 80K and 50K, were identified in pull-down experiments but were not recognized by antibodies to E4-DBP or the conserved DEAD box motif. Sequence analysis of E4-DBP revealed homology in its E4-binding region with three Escherichia coli DEAD box proteins involved in the regulation of mRNA stability and degradation (RhlB, SrmB, and DeaD) and with the Rrp3 protein of Saccharomyces cerevisiae, which is involved in ribosome biogenesis. The synthesis of HPV16 coat proteins occurs after E1E4 expression and genome amplification and is regulated at the level of mRNA stability and translation. Identification of E4-DBP as an HPV16 E1E4-associated protein indicates a possible role for E1E4 in virus synthesis.
Collapse
Affiliation(s)
- J Doorbar
- Division of Virology, National Institute for Medical Research, Mill Hill, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Phelps WC, Barnes JA, Lobe DC. Molecular targets for human papillomaviruses: prospects for antiviral therapy. Antivir Chem Chemother 1998; 9:359-77. [PMID: 9875390 DOI: 10.1177/095632029800900501] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A substantial medical need exists for the development of antiviral medicines for the treatment of diseases associated with infection by human papillomaviruses (HPVs). HPVs are associated with various benign and malignant lesions including benign genital condyloma, common skin warts, laryngeal papillomas and anogenital cancer. Since treatment options are limited and typically not very satisfactory, the development of safe and effective antiviral drugs for HPV could have substantial clinical impact. In the last few years, exciting advances have been made in our understanding of papillomavirus replication and the effects that the virus has on growth of the host cell. Although still somewhat rudimentary, techniques have been developed for limited virion production in vitro offering the promise of more rapid advances in the dissection and understanding of the virus life cycle. Of the 8-10 HPV gene products that are made during infection, only one encodes enzymatic activities, the E1 helicase. Successful antiviral therapies have traditionally targeted viral enzymes such as polymerases, kinases and proteases. In contrast, macromolecular interactions which mediate the functions of E6, E7 and E2 are thought to be more difficult targets for small molecule therapy.
Collapse
Affiliation(s)
- W C Phelps
- Department of Virology, Glaxo Wellcome Inc, Research Triangle Park, North Carolina 27709-3398, USA.
| | | | | |
Collapse
|