1
|
Alfadhli A, Mack A, Harper L, Berk S, Ritchie C, Barklis E. Analysis of quinolinequinone reactivity, cytotoxicity, and anti-HIV-1 properties. Bioorg Med Chem 2016; 24:5618-5625. [PMID: 27663546 DOI: 10.1016/j.bmc.2016.09.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/07/2016] [Accepted: 09/10/2016] [Indexed: 12/15/2022]
Abstract
We have analyzed a set of quinolinequinones with respect to their reactivities, cytotoxicities, and anti-HIV-1 properties. Most of the quinolinequinones were reactive with glutathione, and several acted as sulfhydryl crosslinking agents. Quinolinequinones inhibited binding of the HIV-1 matrix protein to RNA to varying degrees, and several quinolinequinones showed the capacity to crosslink HIV-1 matrix proteins in vitro, and HIV-1 structural proteins in virus particles. Cytotoxicity assays yielded quinolinequinone CC50 values in the low micromolar range, reducing the potential therapeutic value of these compounds. However, one compound, 6,7-dichloro-5,8-quinolinequinone potently inactivated HIV-1, suggesting that quinolinequinones may prove useful in the preparation of inactivated virus vaccines or for other virucidal purposes.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Andrew Mack
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Logan Harper
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Sam Berk
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Christopher Ritchie
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Eric Barklis
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| |
Collapse
|
2
|
Chalcogen bonding interactions between reducible sulfur and selenium compounds and models of zinc finger proteins. J Inorg Biochem 2016; 157:94-103. [DOI: 10.1016/j.jinorgbio.2016.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 01/07/2016] [Accepted: 01/09/2016] [Indexed: 02/04/2023]
|
3
|
Chamontin C, Yu B, Racine PJ, Darlix JL, Mougel M. MoMuLV and HIV-1 nucleocapsid proteins have a common role in genomic RNA packaging but different in late reverse transcription. PLoS One 2012; 7:e51534. [PMID: 23236513 PMCID: PMC3517543 DOI: 10.1371/journal.pone.0051534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/05/2012] [Indexed: 11/25/2022] Open
Abstract
Retroviral nucleocapsid proteins harbor nucleic acid chaperoning activities that mostly rely on the N-terminal basic residues and the CCHC zinc finger motif. Such chaperoning is essential for virus replication, notably for genomic RNA selection and packaging in virions, and for reverse transcription of genomic RNA into DNA. Recent data revealed that HIV-1 nucleocapsid restricts reverse transcription during virus assembly--a process called late reverse transcription--suggesting a regulation between RNA packaging and late reverse transcription. Indeed, mutating the HIV-1 nucleocapsid basic residues or the two zinc fingers caused a reduction in RNA incorporated and an increase in newly made viral DNA in the mutant virions. MoMuLV nucleocapsid has an N-terminal basic region similar to HIV-1 nucleocapsid but a unique zinc finger. This prompted us to investigate whether the N-terminal basic residues and the zinc finger of MoMuLV and HIV-1 nucleocapsids play a similar role in genomic RNA packaging and late reverse transcription. To this end, we analyzed the genomic RNA and viral DNA contents of virions produced by cells transfected with MoMuLV molecular clones where the zinc finger was mutated or completely deleted or with a deletion of the N-terminal basic residues of nucleocapsid. All mutant virions showed a strong defect in genomic RNA content indicating that the basic residues and zinc finger are important for genomic RNA packaging. In contrast to HIV-1 nucleocapsid-mutants, the level of viral DNA in mutant MoMuLV virions was only slightly increased. These results confirm that the N-terminal basic residues and zinc finger of MoMuLV nucleocapsid are critical for genomic RNA packaging but, in contrast to HIV-1 nucleocapsid, they most probably do not play a role in the control of late reverse transcription. In addition, these results suggest that virus formation and late reverse transcription proceed according to distinct mechanisms for MuLV and HIV-1.
Collapse
Affiliation(s)
| | - Bing Yu
- UMR5236 CNRS, UM1,UM2, CPBS, Montpellier, France
| | | | - Jena-Luc Darlix
- UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Illkirch, France
| | | |
Collapse
|
4
|
Adamson CS, Salzwedel K, Freed EO. Virus maturation as a new HIV-1 therapeutic target. Expert Opin Ther Targets 2010; 13:895-908. [PMID: 19534569 DOI: 10.1517/14728220903039714] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Development of novel therapeutic targets against HIV-1 is a high research priority owing to the serious clinical consequences associated with acquisition of resistance to current antiretroviral drugs. The HIV-1 structural protein Gag represents a potential new therapeutic target as it plays a central role in virus particle production yet is not targeted by any of the antiretroviral drugs approved at present. The Gag polyprotein precursor multimerizes to form immature particles that bud from the infected cell. Concomitant with virus release, the Gag precursor undergoes proteolytic processing by the viral protease to generate the mature Gag proteins, which include capsid (CA). Once liberated from the Gag polyprotein precursor, CA molecules interact to reassemble into a condensed conical core, which organizes the viral RNA genome and several viral proteins to facilitate virus replication in the next round of infection. Correct Gag proteolytic processing and core assembly are therefore essential for virus infectivity. In this review, we discuss new strategies to inhibit maturation by targeting proteolytic cleavage sites in Gag or CA-CA interactions required for core formation. The identification and development of lead maturation inhibitors are highlighted.
Collapse
Affiliation(s)
- Catherine S Adamson
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA
| | | | | |
Collapse
|
5
|
Boukhvalova MS, Prince GA, Blanco JCG. Inactivation of respiratory syncytial virus by zinc finger reactive compounds. Virol J 2010; 7:20. [PMID: 20102602 PMCID: PMC2823672 DOI: 10.1186/1743-422x-7-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 01/26/2010] [Indexed: 11/26/2022] Open
Abstract
Background Infectivity of retroviruses such as HIV-1 and MuLV can be abrogated by compounds targeting zinc finger motif in viral nucleocapsid protein (NC), involved in controlling the processivity of reverse transcription and virus infectivity. Although a member of a different viral family (Pneumoviridae), respiratory syncytial virus (RSV) contains a zinc finger protein M2-1 also involved in control of viral polymerase processivity. Given the functional similarity between the two proteins, it was possible that zinc finger-reactive compounds inactivating retroviruses would have a similar effect against RSV by targeting RSV M2-1 protein. Moreover, inactivation of RSV through modification of an internal protein could yield a safer whole virus vaccine than that produced by RSV inactivation with formalin which modifies surface proteins. Results Three compounds were evaluated for their ability to reduce RSV infectivity: 2,2'-dithiodipyridine (AT-2), tetraethylthiuram disulfide and tetramethylthiuram disulfide. All three were capable of inactivating RSV, with AT-2 being the most potent. The mechanism of action of AT-2 was analyzed and it was found that AT-2 treatment indeed results in the modification of RSV M2-1. Altered intramolecular disulfide bond formation in M2-1 protein of AT-2-treated RSV virions might have been responsible for abrogation of RSV infectivity. AT-2-inactivated RSV was found to be moderately immunogenic in the cotton rats S.hispidus and did not cause a vaccine-enhancement seen in animals vaccinated with formalin-inactivated RSV. Increasing immunogenicity of AT-2-inactivated RSV by adjuvant (Ribi), however, led to vaccine-enhanced disease. Conclusions This work presents evidence that compounds that inactivate retroviruses by targeting the zinc finger motif in their nucleocapsid proteins are also effective against RSV. AT-2-inactivated RSV vaccine is not strongly immunogenic in the absence of adjuvants. In the adjuvanted form, however, vaccine induces immunopathologic response. The mere preservation of surface antigens of RSV, therefore may not be sufficient to produce a highly-efficacious inactivated virus vaccine that does not lead to an atypical disease.
Collapse
|
6
|
Topol IA, McGrath C, Chertova E, Dasenbrock C, Lacourse WR, Eissenstat MA, Burt SK, Henderson LE, Casas-Finet JR. Experimental determination and calculations of redox potential descriptors of compounds directed against retroviral zinc fingers: Implications for rational drug design. Protein Sci 2001; 10:1434-45. [PMID: 11420445 PMCID: PMC2374108 DOI: 10.1110/ps.52601] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2000] [Revised: 04/18/2001] [Accepted: 04/23/2001] [Indexed: 10/14/2022]
Abstract
A diverse set of electrophilic compounds that react with cysteine thiolates in retroviral nucleocapsid (NC) proteins and abolish virus infectivity has been identified. Although different in chemical composition, these compounds are all oxidizing agents that lead to the ejection of Zn(II) ions bound to conserved structural motifs (zinc fingers) present in retroviral NC proteins. The reactivity of a congeneric series of aromatic disulfides toward the NC protein of the human immunodeficiency virus type 1 (HIV-1), NCp7, has been characterized by HPLC separation of starting reagents from reaction products. We calculated the absolute redox potentials of these compounds in the gas phase and in aqueous solvent, using a density functional theory method and a continuum solvation model. Pulsed polarography experiments were performed and showed a direct correlation between calculated and experimentally determined redox propensities. A dependence between protein reactivity and redox potential for a specific compound was shown: Reaction with NCp7 did not take place below a threshold value of redox potential. This relationship permits the distinction between active and nonactive compounds targeted against NCp7, and provides a theoretical basis for a scale of reactivity with retroviral zinc fingers. Our results indicate that electrophilic agents with adequate thiophilicity to react with retroviral NC fingers can now be designed using known or calculated electrochemical properties. This may assist in the design of antiretroviral compounds with greater specificity for NC protein. Such electrophilic agents can be used in retrovirus inactivation with the intent of preparing a whole-killed virus vaccine formulation that exhibits unaffected surface antigenic properties.
Collapse
Affiliation(s)
- I A Topol
- Advanced Biomedical Computing Center, Scientific Applications International Corporation Frederick, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jewell NA, Mansky LM. In the beginning: genome recognition, RNA encapsidation and the initiation of complex retrovirus assembly. J Gen Virol 2000; 81:1889-1899. [PMID: 10900025 DOI: 10.1099/0022-1317-81-8-1889] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Nancy A Jewell
- Molecular, Cellular, and Developmental Biology Graduate Program, Ohio State University, USA2
| | - Louis M Mansky
- Department of Molecular Virology, Immunology, and Medical Genetics, Center for Retrovirus Research, and Comprehensive Cancer Center, Ohio State University Medical Center, 2078 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA1
| |
Collapse
|
8
|
McDermott J, Karanjia S, Love Z, Barklis E. Crosslink analysis of N-terminal, C-terminal, and N/B determining regions of the Moloney murine leukemia virus capsid protein. Virology 2000; 269:190-200. [PMID: 10725211 DOI: 10.1006/viro.2000.0212] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To analyze contacts made by Moloney murine leukemia virus (M-MuLV) capsid (CA) proteins in immature and mature virus particles, we have employed a cysteine-specific crosslinking approach that permits the identification of retroviral Gag protein interactions at particular residues. For analysis, single cysteine creation mutations were made in the context of protease-deficient or protease-competent parental constructs. Cysteine creation mutations were chosen near the N- and C-termini of CA and at a site adjacent to the M-MuLV Glu-Ala Fv1 N/B host range determination sequence. Analysis of immature virions showed that PrGag proteins were crosslinked at C-terminal CA residues to form dimers while crosslinking of particle-associated N-terminal and N/B region mutant proteins did not yield dimers, but showed evidence of linking to an unknown 140- to 160-kDa partner. Analysis of mature virions demonstrated that both N- and C-terminal CA residues participated in dimer formation, suggesting that processed CA N- and C-termini are free to establish interprotein associations. Interestingly, N/B region mutant residues in mature virus particles did not crosslink to form dimers, but showed a novel crosslinked band, consistent with an interaction between the N/B tropism determining region and a cellular protein of 45-55 kDa.
Collapse
Affiliation(s)
- J McDermott
- Vollum Institute and Department of Microbiology, Oregon Health Sciences University, Portland, OR 97201-3098, USA
| | | | | | | |
Collapse
|
9
|
Abstract
The Gag proteins of HIV-1, like those of other retroviruses, are necessary and sufficient for the assembly of virus-like particles. The roles played by HIV-1 Gag proteins during the life cycle are numerous and complex, involving not only assembly but also virion maturation after particle release and early postentry steps in virus replication. As the individual Gag domains carry out their diverse functions, they must engage in interactions with themselves, other Gag proteins, other viral proteins, lipid, nucleic acid (DNA and RNA), and host cell proteins. This review briefly summarizes our current understanding of how HIV-1 Gag proteins function in the virus life cycle.
Collapse
Affiliation(s)
- E O Freed
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0460, USA.
| |
Collapse
|
10
|
Rein A, Henderson LE, Levin JG. Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. Trends Biochem Sci 1998; 23:297-301. [PMID: 9757830 DOI: 10.1016/s0968-0004(98)01256-0] [Citation(s) in RCA: 317] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Retrovirus particles contain a small, basic protein, the nucleocapsid (NC) protein, that possesses 'nucleic acid chaperone' activity--that is, the NC protein can catalyze the rearrangement of a nucleic acid molecule into the conformation that has the maximal number of base pairs. The molecular mechanism that underlies this effect is not understood. Because the chaperone activity is apparently crucial during the infectious process, NC is a potential target for antiviral therapy.
Collapse
Affiliation(s)
- A Rein
- Retroviral Genetics Section, NCI-Frederick Cancer Research and Development Center, Frederick, MD 21702, USA.
| | | | | |
Collapse
|