1
|
Abstract
Although the viral Rev protein is necessary for HIV replication, its main function in the viral replication cycle has been controversial. Reinvestigating the effect of Rev on the HIV-1 RNA distribution in various cell lines and primary cells revealed that Rev enhanced cytoplasmic levels of the unspliced HIV-1 RNA, mostly 3- to 12-fold, while encapsidation of the RNA and viral infectivity could be stimulated >1,000-fold. Although this clearly questions the general notion that the nuclear export of viral RNAs is the major function of Rev, mechanistically encapsidation seems to be linked to nuclear export, since the tethering of the nuclear export factor TAP to the HIV-1 RNA also enhanced encapsidation. Interference with the formation of an inhibitory ribonucleoprotein complex in the nucleus could lead to enhanced accessibility of the cytoplasmic HIV-1 RNA for translation and encapsidation. This might explain why Rev and tethered TAP exert the same pattern of pleiotropic effects.
Collapse
|
2
|
Smagulova F, Maurel S, Morichaud Z, Devaux C, Mougel M, Houzet L. The highly structured encapsidation signal of MuLV RNA is involved in the nuclear export of its unspliced RNA. J Mol Biol 2005; 354:1118-28. [PMID: 16289115 DOI: 10.1016/j.jmb.2005.10.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2005] [Revised: 10/03/2005] [Accepted: 10/05/2005] [Indexed: 11/22/2022]
Abstract
The encapsidation signal (Psi) of retroviruses is located in the 5' UTR of the viral genomic unspliced transcript and is highly structured. In the Psi of murine leukaemia virus (MuLV), four stem-loops, called A, B, C and D, promote dimerization and encapsidation of the MuLV unspliced RNA into virions. Through analysis of Psi-deleted transcripts, we found that the AB and CD motifs independently enhanced the cytoplasmic accumulation of RNAs. Furthermore, we showed that over-expression of the Psi sequence in the infected cells led to a competition with the nuclear export of unspliced MuLV transcripts, revealing a new function for these stem-loops in the transport of viral intron-containing RNAs from the nucleus to the cytoplasm.
Collapse
MESH Headings
- 5' Untranslated Regions
- Active Transport, Cell Nucleus
- Animals
- Capsid/metabolism
- Cell Fractionation
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- Dimerization
- Fluorescent Dyes
- In Situ Hybridization, Fluorescence
- Indoles
- Introns
- Mice
- Microscopy, Fluorescence
- Moloney murine leukemia virus/chemistry
- Moloney murine leukemia virus/genetics
- Mutation
- NIH 3T3 Cells
- Nucleic Acid Conformation
- RNA Splicing
- RNA, Ribosomal/analysis
- RNA, Ribosomal/chemistry
- RNA, Small Nucleolar/analysis
- RNA, Small Nucleolar/metabolism
- RNA, Transfer/analysis
- RNA, Transfer/chemistry
- RNA, Viral/analysis
- RNA, Viral/chemistry
- RNA, Viral/isolation & purification
- RNA, Viral/metabolism
- Transfection
- Virion/chemistry
- Virion/genetics
- Virus Replication/genetics
Collapse
Affiliation(s)
- Fatima Smagulova
- CNRS UMR5121-UM1, IFR122, Institut de Biologie, 34960 Montpellier, France
| | | | | | | | | | | |
Collapse
|
3
|
Perales C, Carrasco L, González ME. Regulation of HIV-1 env mRNA translation by Rev protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1743:169-75. [PMID: 15777852 DOI: 10.1016/j.bbamcr.2004.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 07/20/2004] [Accepted: 09/24/2004] [Indexed: 11/21/2022]
Abstract
We have examined the effect of Rev on the regulation of the expression of RRE containing mRNAs when they were synthesised in the nucleus or directly in the cytoplasm. In the nuclear expression system, Rev enhanced env mRNA transport by about 1.6-fold, while translation of this mRNA was increased more than a 100-fold. These findings indicate that the target of Rev activity is located mainly at the translational level. Synthesis of Env using a recombinant vaccinia virus system, which synthesised env mRNA directly in the cytoplasm, is also enhanced by Rev. Finally, RRE functioning was examined using a luciferase mRNA bearing this element. Rev stimulated the synthesis of Luciferase both when the luc mRNA was made in the nucleus or in cytoplasm. Our results indicate that the effect of Rev on env mRNA transport is low compared with the enhancement of translation of this mRNA.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
4
|
Marcello A, Lusic M, Pegoraro G, Pellegrini V, Beltram F, Giacca M. Nuclear organization and the control of HIV-1 transcription. Gene 2004; 326:1-11. [PMID: 14729258 DOI: 10.1016/j.gene.2003.10.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The regulation of transcription of the human immunodeficiency virus (HIV) is a complex event of significant pathological relevance, which recapitulates general concepts of cellular transcription with some peculiarities. The viral promoter is embedded in a chromatin structure that exerts powerful repression on transcription; activation of gene expression relies on the combined activity of a series of cellular factors that respond to different external stimuli, and on the function of a single viral regulatory protein, the Tat transactivator. Transcriptional activation is consequent to both chromatin remodeling and to the recruitment of elongation-competent RNA polymerase II complexes onto the integrated promoter, two events that require the coordinate, but transient, assembly of different protein complexes. Application of optical imaging techniques now allows us to appreciate the spatial and temporal evolvement of these reactions in vivo. The picture that is emerging is not only descriptive, but also relevant to the understanding of the regulation of the process. In particular, it appears that the confinement of biomolecules within specific subcellular compartments represents a way to control and coordinate the assembly of functional complexes that regulate viral gene expression.
Collapse
Affiliation(s)
- Alessandro Marcello
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34012 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Sánchez-Velar N, Udofia EB, Yu Z, Zapp ML. hRIP, a cellular cofactor for Rev function, promotes release of HIV RNAs from the perinuclear region. Genes Dev 2003; 18:23-34. [PMID: 14701878 PMCID: PMC314270 DOI: 10.1101/gad.1149704] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human immunodeficiency virus Rev facilitates the cytoplasmic accumulation of viral RNAs that contain a Rev binding site. A human Rev-interacting protein (hRIP) was originally identified based on its ability to interact with the Rev nuclear export signal (NES) in yeast two-hybrid assays. To date, however, the function of hRIP and a role for hRIP in Rev-directed RNA export have remained elusive. Here we ablate hRIP activity with a dominant-negative mutant or RNA interference and analyze Rev function by RNA in situ hybridization. We find, unexpectedly, that in the absence of functional hRIP, Rev-directed RNAs mislocalize and aberrantly accumulate at the nuclear periphery, where hRIP is localized. In contrast, in the absence of Rev or the Rev cofactor CRM1, Rev-directed RNAs remain nuclear. We further show that the RNA mislocalization pattern resulting from loss of hRIP activity is highly specific to Rev function: the intracellular distribution of cellular poly(A)(+) mRNA, nuclear proteins, and, most important, NES-containing proteins, are unaffected. Thus, hRIP is an essential cellular Rev cofactor, which acts at a previously unanticipated step in HIV-1 RNA export: movement of RNAs from the nuclear periphery to the cytoplasm.
Collapse
Affiliation(s)
- Nuria Sánchez-Velar
- University of Massachusetts Medical School, Program in Molecular Medicine and the UMASS Center for AIDS Research (CFAR), Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
6
|
Affiliation(s)
- A Michienzi
- Molecular Biology Department, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | |
Collapse
|
7
|
Bell P, Montaner LJ, Maul GG. Accumulation and intranuclear distribution of unintegrated human immunodeficiency virus type 1 DNA. J Virol 2001; 75:7683-91. [PMID: 11462040 PMCID: PMC115003 DOI: 10.1128/jvi.75.16.7683-7691.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2001] [Accepted: 05/09/2001] [Indexed: 12/12/2022] Open
Abstract
The RNA genome of human immunodeficiency virus type 1 (HIV-1) is converted into DNA after infection in order to integrate into the host cell DNA. However, a large number of these reverse-transcribed genomes remain unintegrated in the nucleus of infected cells. Currently, there are no data available about the intranuclear distribution pattern of unintegrated HIV-1 DNA in relation to nuclear structures as observed on the single-cell level. In the present study, we investigated the intranuclear fate of unintegrated viral DNA in cell lines expressing CD4 and coreceptors (HOS-CD4.CCR5 and U373-MAGI-CXCR4(CEM)) infected with HIV-1 (strain 89.6). We used a novel approach to distinguish in situ unintegrated from integrated viral DNA by performing fluorescent in situ hybridization on cells in which stress-induced chromosome condensation had been induced, a procedure that contracts chromosomes independent of the cell cycle. Cells infected for 15 h accumulated large amounts of HIV-1 DNA which was located between the condensed chromosome strands, allowing the identification of this viral DNA as unintegrated. In contrast, in HeLa/LAV, a cell line carrying integrated HIV-1 genomes, the great majority of viral DNA colocalized with the cellular DNA. We show that unintegrated HIV-1 DNA does not evenly distribute within the host cell nucleus but tends to aggregate into clusters containing many copies of the viral genomes. The formation of these DNA clusters was independent of viral DNA replication and thus appeared to result solely from multiple infections. The DNA aggregates remained in the nuclei of infected cells for at least 25 h after the infection was stopped. The emergence of transcription sites, which most likely denote sites of the integrated provirus, lagged clearly behind the accumulation of viral DNA. These transcription foci could not be linked to unintegrated DNA molecules, suggesting that this DNA type is unable to transcribe, at least at levels comparable to those of integrated DNA. Neither unintegrated HIV-1 DNA nor transcription foci nor integrated DNA was observed to associate with nuclear domain 10 (ND10), a nuclear structure known to represent the site where several DNA viruses replicate and transcribe. Also, HIV-1 does not modify ND10 at early or late times of infection. There was no specific association of HIV-1 transcripts with splicing factor SC35 domains, in contrast to what has been reported for a number of both cellular and viral genes. Surprisingly, unintegrated HIV-1 DNA was found to accumulate within or in close association with SC35 domains, demonstrating a specific distribution of the viral DNA within the host cell nucleus. Taken together, our results demonstrate that unintegrated proviral HIV-1 DNA does not randomly localize within infected cells but preferentially aggregates in the nucleus within SC35 domains.
Collapse
Affiliation(s)
- P Bell
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
8
|
Michienzi A, Cagnon L, Bahner I, Rossi JJ. Ribozyme-mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV-1 RNA. Proc Natl Acad Sci U S A 2000; 97:8955-60. [PMID: 10922055 PMCID: PMC16803 DOI: 10.1073/pnas.97.16.8955] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The HIV regulatory proteins Tat and Rev have a nucleolar localization property in human cells. However, no functional role has been attributed to this localization. Recently it has been demonstrated that expression of Rev induces nucleolar relocalization of some protein factors involved in Rev export. Because the function of Rev is to bind HIV RNA and facilitate transport of singly spliced and unspliced RNA to the cytoplasm, it is likely that the nucleolus plays a critical role in HIV-1 RNA export. As a test for trafficking of HIV-1 RNAs into the nucleolus, a hammerhead ribozyme that specifically cleaves HIV-1 RNA was inserted into the body of the U16 small nucleolar RNA, resulting in accumulation of the ribozyme within the nucleoli of human cells. HeLa CD4(+) and T cells expressing this nucleolar localized ribozyme exhibit dramatically suppressed HIV-1 replication. The results presented here suggest a trafficking of HIV-1 RNA through the nucleoli of human cells, thus posing a different paradigm for lentiviral RNA processing.
Collapse
Affiliation(s)
- A Michienzi
- Department of Molecular Biology, Beckman Research Institute of the City of Hope, and Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010-3011, USA
| | | | | | | |
Collapse
|
9
|
Kotsopoulou E, Kim VN, Kingsman AJ, Kingsman SM, Mitrophanous KA. A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. J Virol 2000; 74:4839-52. [PMID: 10775623 PMCID: PMC112007 DOI: 10.1128/jvi.74.10.4839-4852.2000] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus (HIV) genome is AU rich, and this imparts a codon bias that is quite different from the one used by human genes. The codon usage is particularly marked for the gag, pol, and env genes. Interestingly, the expression of these genes is dependent on the presence of the Rev/Rev-responsive element (RRE) regulatory system, even in contexts other than the HIV genome. The Rev dependency has been explained in part by the presence of RNA instability sequences residing in these coding regions. The requirement for Rev also places a limitation on the development of HIV-based vectors, because of the requirement to provide an accessory factor. We have now synthesized a complete codon-optimized HIV-1 gag-pol gene. We show that expression levels are high and that expression is Rev independent. This effect is due to an increase in the amount of gag-pol mRNA. Provision of the RRE in cis did not lower protein or RNA levels or stimulate a Rev response. Furthermore we have used this synthetic gag-pol gene to produce HIV vectors that now lack all of the accessory proteins. These vectors should now be safer than murine leukemia virus-based vectors.
Collapse
Affiliation(s)
- E Kotsopoulou
- Retrovirus Molecular Biology Group, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|