1
|
Rollano-Peñaloza OM, Palma-Encinas V, Widell S, Mollinedo P, Rasmusson AG. The Disease Progression and Molecular Defense Response in Chenopodium Quinoa Infected with Peronospora Variabilis, the Causal Agent of Quinoa Downy Mildew. PLANTS (BASEL, SWITZERLAND) 2022; 11:2946. [PMID: 36365398 PMCID: PMC9654897 DOI: 10.3390/plants11212946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/05/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Downy mildew disease, caused by the biotrophic oomycete Peronospora variabilis, is the largest threat to the cultivation of quinoa (Chenopodium quinoa Willd.) in the Andean highlands, and occurs worldwide. However, so far, no molecular study of the quinoa-Peronospora interaction has been reported. Here, we developed tools to study downy mildew disease in quinoa at the gene expression level. P. variabilis was isolated and maintained, allowing the study of downy mildew disease progression in two quinoa cultivars under controlled conditions. Quinoa gene expression changes induced by P. variabilis were analyzed by qRT-PCR, for quinoa homologues of A. thaliana pathogen-associated genes. Overall, we observed a slower disease progression and higher tolerance in the quinoa cultivar Kurmi than in the cultivar Maniqueña Real. The quinoa orthologs of putative defense genes such as the catalase CqCAT2 and the endochitinase CqEP3 showed no changes in gene expression. In contrast, quinoa orthologs of other defense response genes such as the transcription factor CqWRKY33 and the chaperone CqHSP90 were significantly induced in plants infected with P. variabilis. These genes could be used as defense response markers to select quinoa cultivars that are more tolerant to P. variabilis infection.
Collapse
Affiliation(s)
- Oscar M. Rollano-Peñaloza
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
- Instituto de Investigaciones Químicas, Universidad Mayor de San Andrés, La Paz P.O. Box 12958, Bolivia
| | - Valeria Palma-Encinas
- Instituto de Investigaciones Químicas, Universidad Mayor de San Andrés, La Paz P.O. Box 12958, Bolivia
| | - Susanne Widell
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
| | - Patricia Mollinedo
- Instituto de Investigaciones Químicas, Universidad Mayor de San Andrés, La Paz P.O. Box 12958, Bolivia
| | | |
Collapse
|
2
|
Wetzel V, Willlems G, Darracq A, Galein Y, Liebe S, Varrelmann M. The Beta vulgaris-derived resistance gene Rz2 confers broad-spectrum resistance against soilborne sugar beet-infecting viruses from different families by recognizing triple gene block protein 1. MOLECULAR PLANT PATHOLOGY 2021; 22:829-842. [PMID: 33951264 PMCID: PMC8232027 DOI: 10.1111/mpp.13066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 05/03/2023]
Abstract
Sugar beet cultivation is dependent on an effective control of beet necrotic yellow vein virus (BNYVV, family Benyviridae), which causes tremendous economic losses in sugar production. As the virus is transmitted by a soilborne protist, the use of resistant cultivars is currently the only way to control the disease. The Rz2 gene product belongs to a family of proteins conferring resistance towards diverse pathogens in plants. These proteins contain coiled-coil and leucine-rich repeat domains. After artificial inoculation of homozygous Rz2 resistant sugar beet lines, BNYVV and beet soilborne mosaic virus (BSBMV, family Benyviridae) were not detected. Analysis of the expression of Rz2 in naturally infected plants indicated constitutive expression in the root system. In a transient assay, coexpression of Rz2 and the individual BNYVV-encoded proteins revealed that only the combination of Rz2 and triple gene block protein 1 (TGB1) resulted in a hypersensitive reaction (HR)-like response. Furthermore, HR was also triggered by the TGB1 homologues from BSBMV as well as from the more distantly related beet soilborne virus (family Virgaviridae). This is the first report of an R gene providing resistance across different plant virus families.
Collapse
|
3
|
Tian A, Miyashita S, Ando S, Takahashi H. Single Amino Acid Substitutions in the Cucumber Mosaic Virus 1a Protein Induce Necrotic Cell Death in Virus-Inoculated Leaves without Affecting Virus Multiplication. Viruses 2020; 12:v12010091. [PMID: 31941092 PMCID: PMC7019621 DOI: 10.3390/v12010091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/24/2022] Open
Abstract
When Arabidopsis thaliana ecotype Col-0 was inoculated with a series of reassortant viruses created by exchanging viral genomic RNAs between two strains of cucumber mosaic virus (CMV), CMV(Y), and CMV(H), cell death developed in the leaves inoculated with reassortant CMV carrying CMV(H) RNA1 encoding 1a protein, but not in noninoculated upper leaves. In general, cell death in virus-infected plants is a critical event for virus survival because virus multiplication is completely dependent on host cell metabolism. However, interestingly, this observed cell death did not affect either virus multiplication in the inoculated leaves or systemic spread to noninoculated upper leaves. Furthermore, the global gene expression pattern of the reassortant CMV-inoculated leaves undergoing cell death was clearly different from that in hypersensitive response (HR) cell death, which is coupled with resistance to CMV. These results indicated that the observed cell death does not appear to be HR cell death but rather necrotic cell death unrelated to CMV resistance. Interestingly, induction of this necrotic cell death depended on single amino acid substitutions in the N-terminal region surrounding the methyltransferase domain of the 1a protein. Thus, development of necrotic cell death might not be induced by non-specific damage as a result of virus multiplication, but by a virus protein-associated mechanism. The finding of CMV 1a protein-mediated induction of necrotic cell death in A. thaliana, which is not associated with virus resistance and HR cell death, has the potential to provide a new pathosystem to study the role of cell death in virus–host plant interactions.
Collapse
|
4
|
Li X, Hataya T. Construction and characterization of an infectious cDNA clone of potato virus S developed from selected populations that survived genetic bottlenecks. Virol J 2019; 16:18. [PMID: 30728059 PMCID: PMC6364481 DOI: 10.1186/s12985-019-1124-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 01/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infectious cDNA clones are a powerful tool for studies on RNA viruses using reverse genetics. Potato virus S (PVS) is a carlavirus with a worldwide distribution. Although the complete genome sequences of many PVS isolates have been reported, the construction of an infectious cDNA clone of PVS is yet to be reported. The aim of this study is the development and molecular characterization of an infectious cDNA clone of PVS. METHODS A full-length cDNA clone pPVS-H-FL-AB was constructed by connecting eight cDNA clones of PVS isolate H95. Capped RNA transcripts from pPVS-H-FL-AB and a modified clone pPVS-H-FL-H, containing the consensus genome sequence of PVS-H95, proved to be non-infectious. Therefore, a full-length cDNA clone pPVS-H-FL-β was reconstructed from PVS-H00, isolated from PVS-H95 populations by repeating a single local lesion isolation in Chenopodium quinoa three times; PVS-H00 appeared to be a selected variant that survived genetic bottlenecks. The sequence of cDNA clone pPVS-H-FL-β was determined as the genome sequence of PVS-H00 and compared with the consensus sequence of PVS-H95 genome. RESULTS All Nicotiana occidentalis plants inoculated with ≥0.2 μg capped RNA transcripts from pPVS-H-FL-β developed symptoms on upper leaves, as observed with PVS-H00 inoculation. Similar levels of viral genomic and subgenomic RNAs and coat protein were detected in systemically infected leaves. Sequence comparison of PVS-H95 and PVS-H00 revealed 370 nucleotide polymorphisms (4.4% of the entire genome sequence), causing 91 amino acid substitutions in six open reading frames (ORFs). The infectivity of chimeric RNAs derived from recombinants between the two cDNA clones revealed that the lack of infectivity of pPVS-H-FL-H transcripts was due to ORF1, which encodes replicase and harbors 80 amino acid substitutions compared with pPVS-H-FL-β. Approximately 71.3% amino acid substitutions in replicase were located within the variable region of unknown function between the putative methyltransferase and ovarian tumor-like protease domains. CONCLUSIONS This is the first report of the development of an infectious cDNA clone of PVS. Our analyses suggest that PVS population within a plant exists as quasispecies and the replicase sequence diversity of PVS obstruct the construction of a full-length infectious cDNA clone.
Collapse
Affiliation(s)
- Xin Li
- Laboratory of Pathogen-Plant Interactions, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Tatsuji Hataya
- Laboratory of Pathogen-Plant Interactions, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| |
Collapse
|
5
|
Zhang Y, Pei X, Zhang C, Lu Z, Wang Z, Jia S, Li W. De novo foliar transcriptome of Chenopodium amaranticolor and analysis of its gene expression during virus-induced hypersensitive response. PLoS One 2012; 7:e45953. [PMID: 23029338 PMCID: PMC3461033 DOI: 10.1371/journal.pone.0045953] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 08/23/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The hypersensitive response (HR) system of Chenopodium spp. confers broad-spectrum virus resistance. However, little knowledge exists at the genomic level for Chenopodium, thus impeding the advanced molecular research of this attractive feature. Hence, we took advantage of RNA-seq to survey the foliar transcriptome of C. amaranticolor, a Chenopodium species widely used as laboratory indicator for pathogenic viruses, in order to facilitate the characterization of the HR-type of virus resistance. METHODOLOGY AND PRINCIPAL FINDINGS Using Illumina HiSeq™ 2000 platform, we obtained 39,868,984 reads with 3,588,208,560 bp, which were assembled into 112,452 unigenes (3,847 clusters and 108,605 singletons). BlastX search against the NCBI NR database identified 61,698 sequences with a cut-off E-value above 10(-5). Assembled sequences were annotated with gene descriptions, GO, COG and KEGG terms, respectively. A total number of 738 resistance gene analogs (RGAs) and homology sequences of 6 key signaling proteins within the R proteins-directed signaling pathway were identified. Based on this transcriptome data, we investigated the gene expression profiles over the stage of HR induced by Tobacco mosaic virus and Cucumber mosaic virus by using digital gene expression analysis. Numerous candidate genes specifically or commonly regulated by these two distinct viruses at early and late stages of the HR were identified, and the dynamic changes of the differently expressed genes enriched in the pathway of plant-pathogen interaction were particularly emphasized. CONCLUSIONS To our knowledge, this study is the first description of the genetic makeup of C. amaranticolor, providing deep insight into the comprehensive gene expression information at transcriptional level in this species. The 738 RGAs as well as the differentially regulated genes, particularly the common genes regulated by both TMV and CMV, are suitable candidates which merit further functional characterization to dissect the molecular mechanisms and regulatory pathways of the HR-type of virus resistance in Chenopodium.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xinwu Pei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Chao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Zifeng Lu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, People's Republic of China
| | - Zhixing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Shirong Jia
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Weimin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
6
|
Kang WH, Seo JK, Chung BN, Kim KH, Kang BC. Helicase domain encoded by Cucumber mosaic virus RNA1 determines systemic infection of Cmr1 in pepper. PLoS One 2012; 7:e43136. [PMID: 22905216 PMCID: PMC3419664 DOI: 10.1371/journal.pone.0043136] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/17/2012] [Indexed: 11/24/2022] Open
Abstract
The Cmr1 gene in peppers confers resistance to Cucumber mosaic virus isolate-P0 (CMV-P0). Cmr1 restricts the systemic spread of CMV strain-Fny (CMV-Fny), whereas this gene cannot block the spread of CMV isolate-P1 (CMV-P1) to the upper leaves, resulting in systemic infection. To identify the virulence determinant of CMV-P1, six reassortant viruses and six chimeric viruses derived from CMV-Fny and CMV-P1 cDNA clones were used. Our results demonstrate that the C-terminus of the helicase domain encoded by CMV-P1 RNA1 determines susceptibility to systemic infection, and that the helicase domain contains six different amino acid substitutions between CMV-Fny and CMV-P1(.) To identify the key amino acids of the helicase domain determining systemic infection with CMV-P1, we then constructed amino acid substitution mutants. Of the mutants tested, amino acid residues at positions 865, 896, 957, and 980 in the 1a protein sequence of CMV-P1 affected the systemic infection. Virus localization studies with GFP-tagged CMV clones and in situ localization of virus RNA revealed that these four amino acid residues together form the movement determinant for CMV-P1 movement from the epidermal cell layer to mesophyll cell layers. Quantitative real-time PCR revealed that CMV-P1 and a chimeric virus with four amino acid residues of CMV-P1 accumulated more genomic RNA in inoculated leaves than did CMV-Fny, indicating that those four amino acids are also involved in virus replication. These results demonstrate that the C-terminal region of the helicase domain is responsible for systemic infection by controlling virus replication and cell-to-cell movement. Whereas four amino acids are responsible for acquiring virulence in CMV-Fny, six amino acid (positions at 865, 896, 901, 957, 980 and 993) substitutions in CMV-P1 were required for complete loss of virulence in 'Bukang'.
Collapse
Affiliation(s)
- Won-Hee Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jang-Kyun Seo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Bong Nam Chung
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon, Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
7
|
Chowdhury SR, Savithri HS. Interaction of Sesbania mosaic virus movement protein with the coat protein--implications for viral spread. FEBS J 2010; 278:257-72. [PMID: 21122074 DOI: 10.1111/j.1742-4658.2010.07943.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sesbania mosaic virus (SeMV) is a single-stranded positive-sense RNA plant virus belonging to the genus Sobemovirus. The movement protein (MP) encoded by SeMV ORF1 showed no significant sequence similarity with MPs of other genera, but showed 32% identity with the MP of Southern bean mosaic virus within the Sobemovirus genus. With a view to understanding the mechanism of cell-to-cell movement in sobemoviruses, the SeMV MP gene was cloned, over-expressed in Escherichia coli and purified. Interaction of the recombinant MP with the native virus (NV) was investigated by ELISA and pull-down assays. It was observed that SeMV MP interacted with NV in a concentration- and pH-dependent manner. Analysis of N- and C-terminal deletion mutants of the MP showed that SeMV MP interacts with the NV through the N-terminal 49 amino acid segment. Yeast two-hybrid assays confirmed the in vitro observations, and suggested that SeMV might belong to the class of viruses that require MP and NV/coat protein for cell-to-cell movement.
Collapse
|
8
|
|
9
|
Choi SK, Palukaitis P, Min BE, Lee MY, Choi JK, Ryu KH. Cucumber mosaic virus 2a polymerase and 3a movement proteins independently affect both virus movement and the timing of symptom development in zucchini squash. J Gen Virol 2005; 86:1213-1222. [PMID: 15784915 DOI: 10.1099/vir.0.80744-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The basis for differences in the timing of systemic symptom elicitation in zucchini squash between a pepper strain of Cucumber mosaic virus (Pf-CMV) and a cucurbit strain (Fny-CMV) was analysed. The difference in timing of appearance of systemic symptoms was shown to map to both RNA 2 and RNA 3 of Pf-CMV, with pseudorecombinant viruses containing either RNA 2 or RNA 3 from Pf-CMV showing an intermediate rate of systemic symptom development compared with those containing both or neither Pf-CMV RNAs. Symptom phenotype was shown to map to two single-nucleotide changes, both in codons for Ile at aa 267 and 168 (in Fny-CMV RNAs 2 and 3, respectively) to Thr (in Pf-CMV RNAs 2 and 3). The differential rate of symptom development was shown to be due to differences in the rates of cell-to-cell movement in the inoculated cotyledons, as well as differences in the rate of egress of the virus from the inoculated leaves. These data indicate that both the CMV 3a movement protein and the CMV 2a polymerase protein affect the rate of movement of CMV in zucchini squash and that these two proteins function independently of each other in their interactions with the host, facilitating virus movement.
Collapse
Affiliation(s)
- Seung Kook Choi
- Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, Korea
| | | | - Byoung Eun Min
- Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, Korea
| | - Mi Yeon Lee
- Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, Korea
| | - Jang Kyung Choi
- Division of Biological Environment, Kangwon National University, Chuncheon 200-701, Korea
| | - Ki Hyun Ryu
- Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, Korea
| |
Collapse
|
10
|
Canto T, Palukaitis P. Subcellular distribution of mutant movement proteins of Cucumber mosaic virus fused to green fluorescent proteins. J Gen Virol 2005; 86:1223-1228. [PMID: 15784916 DOI: 10.1099/vir.0.80351-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The subcellular distribution of the movement proteins (MPs) of nine alanine-scanning mutants of Cucumber mosaic virus (CMV), fused to the green fluorescent protein (GFP) and expressed from CMV, was determined by confocal microscopy of infected epidermal cells of Nicotiana tabacum and Nicotiana benthamiana, as well as infected N. benthamiana protoplasts. Only those mutant MPs that were functional for movement in all host species tested localized to plasmodesmata of infected epidermal cells and to tubules extending from the surface of infected protoplasts, as for wild-type CMV 3a MP. Various mutant MPs that were either conditionally functional for movement or dysfunctional for movement did not localize to plasmodesmata and did not form tubules on the surface of infected protoplasts. Rather, they showed distribution to different extents throughout the infected cells, including the cytoplasm, nucleus or the plasma membrane. The CMV 3a MP also did not associate with microtubules.
Collapse
Affiliation(s)
- Tomas Canto
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Peter Palukaitis
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
11
|
Abstract
Research on the molecular biology of cucumoviruses and their plant-virus interactions has been very extensive in the last decade. Cucumovirus genome structures have been analyzed, giving new insights into their genetic variability, evolution, and taxonomy. A new viral gene has been discovered, and its role in promoting virus infection has been delineated. The localization and various functions of each viral-encoded gene product have been established. The particle structures of Cucumber mosaic virus (CMV) and Tomato aspermy virus have been determined. Pathogenicity domains have been mapped, and barriers to virus infection have been localized. The movement pathways of the viruses in some hosts have been discerned, and viral mutants affecting the movement processes have been identified. Host responses to viral infection have been characterized, both temporally and spatially. Progress has been made in determining the mechanisms of replication, gene expression, and transmission of CMV. The pathogenicity determinants of various satellite RNAs have been characterized, and the importance of secondary structure in satellite RNA-mediated interactions has been recognized. Novel plant genes specifying resistance to infection by CMV have been identified. In some cases, these genes have been mapped, and one resistance gene to CMV has been isolated and characterized. Pathogen-derived resistance has been demonstrated against CMV using various segments of the CMV genome, and the mechanisms of some of these forms of resistances have been analyzed. Finally, the nature of synergistic interactions between CMV and other viruses has been characterized. This review highlights these various achievements in the context of the previous work on the biology of cucumoviruses and their interactions with plants.
Collapse
Affiliation(s)
- Peter Palukaitis
- Gene Expression Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom
| | | |
Collapse
|
12
|
Kim SH, Kalinina NO, Andreev I, Ryabov EV, Fitzgerald AG, Taliansky ME, Palukaitis P. The C-terminal 33 amino acids of the cucumber mosaic virus 3a protein affect virus movement, RNA binding and inhibition of infection and translation. J Gen Virol 2004; 85:221-230. [PMID: 14718637 DOI: 10.1099/vir.0.19583-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The capsid protein (CP) of Cucumber mosaic virus (CMV) is required for cell-to-cell movement, mediated by the 3a movement protein (MP). Deletion of the C-terminal 33 amino acids of the CMV 3a MP (in the mutant designated 3aDeltaC33 MP) resulted in CP-independent cell-to-cell movement, but not long-distance movement. RNA-binding studies done in vitro using isolated bacterially expressed MP showed that the 3aDeltaC33 MP bound RNA more strongly, with fewer regions sensitive to RNase and formed cooperatively bound complexes at lower ratios of protein : RNA than the wild-type (wt) 3a MP. Analysis of the architecture of the complexes by atomic force microscopy showed that the wt 3a MP formed a single type of complex with RNA, resembling beads on a string. By contrast, the 3aDeltaC33 MP formed several types of complexes, including complexes with virtually no MP bound or thicker layers of MP bound to the RNA. Assays showed that protein-RNA complexes containing high levels of either MP inhibited the infectivity and in vitro translatability of viral RNAs. The 3aDeltaC33 MP inhibited these processes at lower ratios of protein : RNA than the wt 3a MP, consistent with its stronger binding properties. The apparent contradiction between these inhibition data and the CP-independent cell-to-cell movement of CMV expressing the 3aDeltaC33 MP is discussed.
Collapse
Affiliation(s)
- Sang Hyon Kim
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Natalia O Kalinina
- A.N. Belozersky Institute of Physico-chemical Biology, Moscow State University, Moscow 119899, Russia
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Igor Andreev
- Dept of Electronic Engineering and Physics, University of Dundee, Dundee DD1 4NH, UK
| | - Eugene V Ryabov
- Horticulture Research International-East Malling, ME19 6BJ, UK
| | | | | | - Peter Palukaitis
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
13
|
Tao X, Zhou X, Li G, Yu J. Two amino acids on 2a polymerase of Cucumber mosaic virus co-determine hypersensitive response on legumes. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2003; 46:40-8. [PMID: 20213360 DOI: 10.1007/bf03182683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2002] [Indexed: 10/19/2022]
Abstract
The hypersensitive response (HR) is one of the most important defense responses during the incompatible interaction between plant and pathogen. The viral determinant of HR on legumes induced by Cucumber mosaic virus (CMV) was studied, and our previous results showed that 243 nucleotides on 2a polymerase gene of CMV were involved in the induction of HR on legumes. With further analysis of the nucleotides and amino acids in this region, the amino acids Phe and Ala at positions 631 and 641 in the 2a polymerase of CMV-Fny, a legume local necrotic strain, were specifically exchanged to Tyr and Ser, respectively and simultaneously, in the 2a polymerase of CMV-P1, a legume systemic infecting strain, and three point mutants were constructed. The point mutant Fny-F/Y (Phe631 to Tyr) induced large necrotic lesions instead of pinpoint lesions, and the size of lesions could enlarge from initial sites. The point mutant Fny-A/S (Ala641 to Ser) induced similar symptoms as CMV-Fny. The double-point mutant Fny-FA/YS (Phe631 to Tyr and Ala641 to Ser) infected the legumes systemically without HR. These data indicate that the induction of HR on legumes is co-determined by two amino acids at positions 631 and 641 in CMV 2a polymerase.
Collapse
Affiliation(s)
- Xiaorong Tao
- Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China
| | | | | | | |
Collapse
|
14
|
Canto T, Palukaitis P. Novel N gene-associated, temperature-independent resistance to the movement of tobacco mosaic virus vectors neutralized by a cucumber mosaic virus RNA1 transgene. J Virol 2002; 76:12908-16. [PMID: 12438616 PMCID: PMC136687 DOI: 10.1128/jvi.76.24.12908-12916.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2002] [Accepted: 09/05/2002] [Indexed: 11/20/2022] Open
Abstract
The N gene conditions for resistance to Tobacco mosaic virus (TMV) but only below 28 degrees C. However, a TMV-based vector expressing green fluorescent protein (TMV-GFP) showed only limited movement at 33 degrees C in tobacco plants harboring the N gene and other genes cointrogressed from Nicotiana glutinosa. TMV-GFP moved efficiently in tobacco plants that either lacked these genes or that contained the N gene but were transgenic for RNA1 of Cucumber mosaic virus. These findings identified novel temperature-independent resistance to the movement of TMV-GFP which could be neutralized by a different viral transgene. Using the N gene and nahG gene-transgenic tobacco, we show that this novel resistance is manifested specifically by the N gene itself and operates via a pathway independent of salicylic acid.
Collapse
Affiliation(s)
- Tomas Canto
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom
| | | |
Collapse
|
15
|
Kim SH, Palukaitis P, Park YI. Phosphorylation of cucumber mosaic virus RNA polymerase 2a protein inhibits formation of replicase complex. EMBO J 2002; 21:2292-300. [PMID: 11980726 PMCID: PMC125983 DOI: 10.1093/emboj/21.9.2292] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 2a (polymerase) protein of cucumber mosaic virus (CMV) was shown to be phosphorylated both in vivo and in vitro. In vitro assays using 2a protein mutants and tobacco protein kinases showed that the 2a protein has at least three phosphorylation sites, one of which is located within the N-terminal 126 amino acid region. This region is essential and sufficient for interaction with the CMV 1a protein. When phosphorylated in vitro, the 2a protein N-terminal region failed to interact with the 1a protein. Since the 1a-2a interaction is essential for the replication of CMV, this suggests that phosphorylation of the N-terminal region of the 2a protein negatively modulates the interaction in vivo, and may have a regulatory role acting directly in viral infection.
Collapse
Affiliation(s)
- Sang Hyon Kim
- Division of Life Sciences, and Graduate School of Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Korea and Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK Corresponding author e-mail:
| | - Peter Palukaitis
- Division of Life Sciences, and Graduate School of Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Korea and Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK Corresponding author e-mail:
| | - Young In Park
- Division of Life Sciences, and Graduate School of Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Korea and Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK Corresponding author e-mail:
| |
Collapse
|
16
|
Cooper B. Collateral gene expression changes induced by distinct plant viruses during the hypersensitive resistance reaction in Chenopodium amaranticolor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 26:339-49. [PMID: 11439122 DOI: 10.1046/j.1365-313x.2001.01030.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Hypersensitive reactions to plant diseases are typically mediated by R genes. Many R genes that have been cloned only confer resistance to a particular pathogen. However, Chenopodium spp. have multivirus hypersensitive resistance, thus making the understanding of this broad-spectrum resistance mechanism attractive. Using tobacco mosaic virus (TMV) tagged with green fluorescent protein to follow infection over time, cDNA-AFLP to find genes up-regulated during virus infection in C. amaranticolor and quantitative RT-PCR to accurately measure gene expression at different time points, the first dissection of this significant defense response pathway is presented. The detected disease-expressed sequences in C. amaranticolor (DESCA) are similar to those that encode p450 monooxegenases, hypersensitivity-related genes, cellulases, ABC transporters, receptor-like kinases, serine/threonine kinases, phosphoribosylanthranilate transferases and hypothetical R genes, many of which are associated with pathogen defense in other plants. The expressions of these DESCA genes are also induced by infection with the taxonomically distinct tobacco rattle virus (TRV) in C. amaranticolor. In particular, DESCA1, one of the gene fragments from C. amaranticolor that lacks similarity to any other sequence in the GenBank database, is induced at least 200 fold 4 d after infection (dai) by both TMV and TRV. The potential role of DESCA genes in a C. amaranticolor multivirus defense response with regard to their levels and time of gene expression is discussed.
Collapse
Affiliation(s)
- B Cooper
- Torrey Mesa Research Institute, 3115 Merryfield Row, San Diego, CA 92121, USA.
| |
Collapse
|
17
|
Hajimorad MR, Hill JH. Rsv1-mediated resistance against soybean mosaic virus-N is hypersensitive response-independent at inoculation site, but has the potential to initiate a hypersensitive response-like mechanism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:587-98. [PMID: 11332723 DOI: 10.1094/mpmi.2001.14.5.587] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rsv1, a single dominant gene in soybean PI 96983, confers resistance to most strains of Soybean mosaic virus (SMV), including strain G2. The phenotypic response includes the lack of symptoms and virus recovery from mechanically inoculated leaves. To study the resistance mechanism, SMV-N (an isolate of strain G2) was introduced into PI 96983 by grafting. Hypersensitive response (HR)-like lesions occurred on the stems, petioles, and leaf veins, and virus was recovered from these lesions. The response demonstrated the cytological and histological characteristics of HR as well as elevated transcription of a soybean salicylic acid-inducible, pathogenesis-related (PR-1) protein gene. Mechanical inoculation of PI 96983 primary leaves with a high level of SMV-N virions caused no symptoms or up regulation of the PR-1 protein gene transcript. Furthermore, inoculation with infectious viral RNA did not alter the resistance phenotype. The data suggest that interaction of SMV-N with Rsv1 has the potential to induce an HR-like defense reaction. Rsv1-mediated resistance in the inoculated leaf, however, is HR-independent and operates after virion disassembly.
Collapse
Affiliation(s)
- M R Hajimorad
- Department of Plant Pathology, Iowa State University, Ames 50011, USA.
| | | |
Collapse
|
18
|
Li Q, Ryu KH, Palukaitis P. Cucumber mosaic virus-plant interactions: identification of 3a protein sequences affecting infectivity, cell-to-cell movement, and long-distance movement. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:378-85. [PMID: 11277435 DOI: 10.1094/mpmi.2001.14.3.378] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mutants of the Cucumber mosaic virus (CMV) movement protein (MP) were generated and analyzed for their effects on virus movement and pathogenicity in vivo. Similar to the wild-type MP, mutants M1, M2, and M3, promoted virus movement in eight plant species. Mutant M3 showed some differences in pathogenicity in one host species. Mutant M8 showed some host-specific alterations in movement in two hypersensitive hosts of CMV. Mutant M9 showed altered pathogenicity on three hosts and was temperature sensitive for long-distance movement, demonstrating that cell-to-cell and long-distance movement are distinct movement functions for CMV. Four mutants (M4, M5, M6, and M7) were debilitated from movement in all hosts tested. Mutants M4, M5, and M6 could be complemented in trans by the wild-type MP expressed transgenically, although not by each other or by mutant M9 (at the restrictive temperature). Mutant M7 showed an inability to be complemented in trans. From these mutants, different aspects of the CMV movement process could be defined and specific roles for particular sequence domains assigned. The broader implications of these functions are discussed.
Collapse
Affiliation(s)
- Q Li
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
19
|
Callaway A, Giesman-Cookmeyer D, Gillock ET, Sit TL, Lommel SA. The multifunctional capsid proteins of plant RNA viruses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2001; 39:419-460. [PMID: 11701872 DOI: 10.1146/annurev.phyto.39.1.419] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This article summarizes studies of viral coat (capsid) proteins (CPs) of RNA plant viruses. In addition, we discuss and seek to interpret the knowledge accumulated to data. CPs are named for their primary function; to encapsidate viral genomic nucleic acids. However, encapsidation is only one feature of an extremely diverse array of structural, functional, and ecological roles played during viral infection and spread. Herein, we consider the evolution of viral CPs and their multitude of interactions with factors encoded by the virus, host plant, or viral vector (biological transmission agent) that influence the infection and epidemiological facets of plant disease. In addition, applications of today's understanding of CPs in the protection of crops from viral infection and use in the manufacture of valuable compounds are considered.
Collapse
Affiliation(s)
- A Callaway
- Department of Plant Pathology, North Carolina State University, Box 7616, Raleigh, North Carolina 27695-7616, USA.
| | | | | | | | | |
Collapse
|