1
|
Therapeutic effects of duck Tembusu virus capsid protein fused with staphylococcal nuclease protein to target Tembusu infection in vitro. Vet Microbiol 2019; 235:295-300. [PMID: 31383316 DOI: 10.1016/j.vetmic.2019.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022]
Abstract
Tembusu virus (TMUV), a member of the genus flavivirus, primarily causes egg-drop syndrome in ducks and is associated with low disease mortality but high morbidity. The commercially available live vaccines for treating TMUV currently include the main WF100, HB, and FX2010-180P strains, and efficient treatment and/or preventative measures are still urgently needed. Capsid-targeted viral inactivation (CTVI) is a conceptually powerful new antiviral strategy that is based on two proteins from the capsid protein of a virus and a crucial effector molecule. The effector molecule can destroy the viral DNA/RNA or interfere with the proper folding of key viral proteins, while the capsid protein mainly plays a role in viral integration and assembly; the fusion proteins are incorporated into virions during packaging. This study aimed to explore the potential use of this strategy in duck TMUV. Our results revealed that these fusion proteins can be expressed in susceptible BHK21 cells without cytotoxicity and possess excellent Ca2+-dependent nuclease activity, and their expression is also detectable in DF-1 cells. Compared to those in the negative controls (BHK21 and BHK21/pcDNA3.1(+) cells), the numbers of viral RNA copies in TMUV-infected BHK21/Cap-SNase and BHK21/Cap-Linker-SNase cells were reduced by 48 h, and the effect of Cap-Linker-SNase was superior to that of Cap-SNase. As anticipated, these results suggest that these fusion proteins contribute to viral resistance to treatment. Thus, CTVI might be applicable for TMUV inhibition as a novel antiviral therapeutic candidate during viral infection.
Collapse
|
2
|
Zhang X, Jia R, Zhou J, Wang M, Yin Z, Cheng A. Capsid-Targeted Viral Inactivation: A Novel Tactic for Inhibiting Replication in Viral Infections. Viruses 2016; 8:E258. [PMID: 27657114 PMCID: PMC5035972 DOI: 10.3390/v8090258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022] Open
Abstract
Capsid-targeted viral inactivation (CTVI), a conceptually powerful new antiviral strategy, is attracting increasing attention from researchers. Specifically, this strategy is based on fusion between the capsid protein of a virus and a crucial effector molecule, such as a nuclease (e.g., staphylococcal nuclease, Barrase, RNase HI), lipase, protease, or single-chain antibody (scAb). In general, capsid proteins have a major role in viral integration and assembly, and the effector molecule used in CTVI functions to degrade viral DNA/RNA or interfere with proper folding of viral key proteins, thereby affecting the infectivity of progeny viruses. Interestingly, such a capsid-enzyme fusion protein is incorporated into virions during packaging. CTVI is more efficient compared to other antiviral methods, and this approach is promising for antiviral prophylaxis and therapy. This review summarizes the mechanism and utility of CTVI and provides some successful applications of this strategy, with the ultimate goal of widely implementing CTVI in antiviral research.
Collapse
Affiliation(s)
- Xingcui Zhang
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Jiakun Zhou
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| |
Collapse
|
3
|
In vitro inhibition of Japanese encephalitis virus replication by capsid-targeted virus inactivation. Antiviral Res 2013; 97:369-75. [DOI: 10.1016/j.antiviral.2012.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/10/2012] [Accepted: 12/31/2012] [Indexed: 01/01/2023]
|
4
|
Sudol M, Fritz JL, Tran M, Robertson GP, Ealy JB, Katzman M. Evaluation of a system to screen for stimulators of non-specific DNA nicking by HIV-1 integrase: application to a library of 50,000 compounds. Antivir Chem Chemother 2011; 22:67-74. [PMID: 21984686 DOI: 10.3851/imp1857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In addition to activities needed to catalyse integration, retroviral integrases exhibit non-specific endonuclease activity that is enhanced by certain small compounds, suggesting that integrase could be stimulated to damage viral DNA before integration occurs. METHODS A non-radioactive, plate-based, solution phase, fluorescence assay was used to screen a library of 50,080 drug-like chemicals for stimulation of non-specific DNA nicking by HIV-1 integrase. RESULTS A semi-automated workflow was established and primary hits were readily identified from a graphic output. Overall, 0.6% of the chemicals caused a large increase in fluorescence (the primary hit rate) without also having visible colour that could have artifactually caused this result. None of the potential stimulators from this moderate-size library, however, passed a secondary test that included an inactive integrase mutant that assessed whether the increased fluorescence depended on the endonuclease activity of integrase. CONCLUSIONS This first attempt at identifying integrase stimulator compounds establishes the necessary logistics and workflow required. The results from this study should encourage larger scale high-throughput screening to advance the novel antiviral strategy of stimulating integrase to damage retroviral DNA.
Collapse
Affiliation(s)
- Malgorzata Sudol
- Department of Medicine, Penn State College of Medicine, Milton S Hershey Medical Center, Hershey, PA, USA
| | | | | | | | | | | |
Collapse
|
5
|
Inhibition of replication of classical swine fever virus in a stable cell line by the viral capsid and Staphylococcus aureus nuclease fusion protein. J Virol Methods 2010; 167:79-83. [PMID: 20304012 DOI: 10.1016/j.jviromet.2010.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 03/08/2010] [Accepted: 03/10/2010] [Indexed: 11/22/2022]
Abstract
Classical swine fever (CSF) is one of the major diseases causing serious economic losses to the swine industry. To explore the feasibility of using capsid-targeted viral inactivation (CTVI) as an antiviral strategy against CSF infection, a plasmid pcDNA-Cap-SNase was constructed for expressing a fusion protein of CSFV capsid (Cap) and Staphylococcus aureus nuclease (SNase). Under G418 selection, a mammalian cell line PK-15 expressing stably the fusion protein Cap-SNase(PK-15/Cap-SNase) could be detected by rabbit antiserum against CSFV capsid protein and had good nuclease activity in cleaving linearized plasmid DNA. The CSFV titer produced from infection of this PK-15/Cap-SNase stable cell line was reduced by an order of 10(2)-10(3.5) or 70.8% compared to that produced in control PK-15 cells. Detection of the virus by ELISA indicated that CSFV propagation was inhibited in the PK-15/Cap-SNase cell line. It was demonstrated clearly that the fusion protein Cap-SNase could inhibit effectively the production of CSFV, resulting in a reduction in infectious titers. Therefore, CTVI may be valuable therapeutic approach against CSFV.
Collapse
|
6
|
Wang YF, Wang ZH, Li Y, Zhang XJ, Sun Y, Li M, Qiu HJ. In vitro inhibition of the replication of classical swine fever virus by capsid-targeted virus inactivation. Antiviral Res 2010; 85:422-4. [DOI: 10.1016/j.antiviral.2009.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 10/13/2009] [Accepted: 10/16/2009] [Indexed: 10/20/2022]
|
7
|
Sudol M, Tran M, Nowak MG, Flanagan JM, Robertson GP, Katzman M. A nonradioactive plate-based assay for stimulators of nonspecific DNA nicking by HIV-1 integrase and other nucleases. Anal Biochem 2009; 396:223-30. [PMID: 19748478 DOI: 10.1016/j.ab.2009.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/06/2009] [Accepted: 09/09/2009] [Indexed: 11/25/2022]
Abstract
Retroviral integrase enzymes have a nonspecific endonuclease activity that is stimulated by certain compounds, suggesting that integrase could be manipulated to damage viral DNA. To identify integrase stimulator (IS) compounds as potential antiviral agents, we have developed a nonradioactive assay that is suitable for high-throughput screening. The assay uses a 49-mer oligonucleotide that is 5'-labeled with a fluorophore, 3'-tagged with a quencher, and designed to form a hairpin that mimics radioactive double-stranded substrates in gel-based nicking assays. Reactions in 384-well plates are analyzed on a real-time PCR machine after a single heat denaturation and subsequent cooling to a point between the melting temperatures of unnicked substrate and nicked products (no cycling is required). Under these conditions, unnicked DNA reforms the hairpin and quenches fluorescence, whereas completely nicked DNA yields a large signal. The assay was linear with time, stimulator concentration, and amount of integrase, and 20% concentrations of the solvent used for many chemical libraries did not interfere with the assay. The assay had an excellent Z' factor, and it reliably detected known IS compounds. This assay, which is adaptable to other nonspecific nucleases, will be useful for identifying additional IS compounds to develop the novel antiviral strategy of stimulating integrase to destroy retroviral DNA.
Collapse
Affiliation(s)
- Malgorzata Sudol
- Department of Medicine, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
8
|
Qin CF, Qin ED. Capsid-targeted viral inactivation can destroy dengue 2 virus from within in vitro. Arch Virol 2005; 151:379-85. [PMID: 16155726 DOI: 10.1007/s00705-005-0631-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 07/22/2005] [Indexed: 12/29/2022]
Abstract
Capsid-targeted viral inactivation (CTVI) has emerged as a conceptually powerful antiviral strategy that exploits viral structural proteins to target a destructive enzyme specifically into progeny virions. We have recently demonstrated the principle of CTVI against dengue virus infection and observed a modest therapeutic effect in vitro (Arch Virol 2005, 150: 659-669). Here we tested a prophylactic model of CTVI, in which mammalian cells stably expressing the dengue 2 virus capsid protein fused to a nuclease were infected with dengue virus and determined the effects on progeny virion infectivity. CTVI efficiently destroyed dengue 2 virus from within and decreased the infectious titers by 10(3)- to 10(4)-fold, suggesting that CTVI has potential in the prophylactic application for dengue virus infection.
Collapse
Affiliation(s)
- C-F Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing, P.R. China
| | | |
Collapse
|
9
|
Gong WD, Liu J, Ding J, Zhao Y, Li YH, Xue CF. Inhibition of HBV targeted ribonuclease enhanced by introduction of linker. World J Gastroenterol 2003; 9:1504-7. [PMID: 12854151 PMCID: PMC4615492 DOI: 10.3748/wjg.v9.i7.1504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct human eosinophil-derived neurotoxin(hEDN) and HBV core protein (HBVc) eukaryotic fusion expression vector with a linker (Gly4Ser)3 between them to optimize the molecule folding, which will be used to inhibit HBV replication in vitro.
METHODS: Previously constructed pcDNA3.1(-)/TR was used as a template. Linker sequence was synthesized and annealed to form dslinker, and cloned into pcDNA3.1(-)/TR to produce plasmid pcDNA3.1(-)/HBc-linker. Then the hEDN fragment was PCR amplified and inserted into pcDNA3.1(-)/HBc-linker to form pcDNA3.1(-)/TNL in which the effector molecule and the target molecule were separated by a linker sequence. pcDNA3.1(-)/TNL expression was identified by indirect immunofluorescence staining. Radioimmunoassay was used to analyse anti-HBV activity of pcDNA3.1(-)/TNL. Meanwhile, metabolism of cells was evaluated by MTT colorimetry.
RESULTS: hEDN and HBVc eukaryotic fusion expression vector with a linker (Gly4Ser)3 between them was successfully constructed. pcDNA3.1(-)/TNL was expressed in HepG2.2.15 cells efficiently. A significant decrease of HBsAg concentration from pcDNA3.1(-)/TNL transfectant was observed compared to pcDNA3.1(-)/TR (P = 0.036, P < 0.05). MTT assay suggested that there were no significant differences between groups (P = 0.08, P > 0.05).
CONCLUSION: Linker introduction enhances the inhibitory effect of HBV targeted ribonuclease significantly.
Collapse
Affiliation(s)
- Wei-Dong Gong
- Department of Pathogenic Organisms, Fourth Military Medical University, Xi'an 710033, Shaanxi Province, China
| | | | | | | | | | | |
Collapse
|
10
|
Liu J, Li YH, Xue CF, Ding J, Gong WD, Zhao Y, Huang YX. Targeted ribonuclease can inhibit replication of hepatitis B virus. World J Gastroenterol 2003; 9:295-9. [PMID: 12532452 PMCID: PMC4611332 DOI: 10.3748/wjg.v9.i2.295] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of a novel targeted ribonuclease (TN), the fusion protein of HBVc and human eosinophil-derived neurotoxin (hEDN), on the HBV replication in vitro.
METHODS: The gene encoding the targeted ribonuclease was cloned into pcDNA3.1 (-) to form recombinant eukaryotic expression vector p/TN. Control plasmids, including p/hEDN, p/HBVc, and p/TNmut in which a Lys113→Arg mutation was introduced by sequential PCR to eliminate the ribonuclease activity of hEDN, were also constructed. Liposome-mediated transfection of 2.2.15 cells by p/TN, p/TNmut, p/hEDN, p/HBVc, and pcDNA3.1 (-), or mock transfection was performed. After that, RT-PCR was used to verify the transgene expression. Morphology of the transfected cells was observed and MTT assay was performed to detect the cytotoxicity of transgene expression. Concentration of HBsAg in the supernatant of the transfected cells was measured using solid-phase radioimmunoassay.
RESULTS: Transgenes were successfully expressed in 2.2.15 cells. No obvious cytotoxic effect of transgene expression on 2.2.15 cells was found. The HBsAg concentration in the p/TN transfected cells was reduced by 58% compared with that of mock transfected cells. No such an effect was found in all other controls.
CONCLUSION: The targeted ribonuclease can inhibit HBV replication in vitro while it has no cytotoxicity on host cells. The targeted ribonuclease may be used as a novel antiviral agent for human HBV infection.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathogenic Organism, Fourth Military Medical University, Xi'an 710033, Shaanxi Province, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Schumann G, Hermankova M, Cannon K, Mankowski JL, Boeke JD. Therapeutic effect of a Gag-nuclease fusion protein against retroviral infection in vivo. J Virol 2001; 75:7030-41. [PMID: 11435583 PMCID: PMC114431 DOI: 10.1128/jvi.75.15.7030-7041.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recently, remarkable progress has been made in developing effective combination drug therapies that can control but not cure retroviral replication. Even when effective, these drug regimens are toxic, they require demanding administration schedules, and resistant viruses can emerge. Thus the need for new gene-based therapies continues. In one such approach, capsid-targeted viral inactivation (CTVI), nucleases fused to viral coat proteins are expressed in infected cells and become incorporated during virion assembly. CTVI can eliminate infectious murine retrovirus titer in tissue culture. Here we describe transgenic mice expressing fusions of the Moloney murine leukemia virus (Mo-MuLV) Gag protein to staphylococcal nuclease. This work tests the protective effect and demonstrates in vivo proof-of-principle of CTVI in transgenic mice expressing endogenous proviral copies of Mo-MuLV. The antiviral protein-expressing mice are phenotypically normal, attesting to the lack of toxicity of the fusion protein. The Mo-MuLV infection was much less virulent in transgenic littermates than in nontransgenic littermates. Gag-nuclease expression reduced infectious titers in blood up to 10-fold, decreased splenomegaly and leukemic infiltration, and increased life spans up to 2.5-fold in transgenic relative to nontransgenic infected animals. These results suggest that gene therapies based on similar fusion proteins, designed to attack human immunodeficiency virus or other retroviruses, could provide substantial therapeutic benefits.
Collapse
Affiliation(s)
- G Schumann
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
12
|
Beterams G, Nassal M. Significant interference with hepatitis B virus replication by a core-nuclease fusion protein. J Biol Chem 2001; 276:8875-83. [PMID: 11124940 DOI: 10.1074/jbc.m006335200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hepatitis B virus (HBV), a small DNA containing virus that replicates via reverse transcription, causes acute and chronic B-type hepatitis in humans. The limited success of current therapies for chronic infection has prompted exploration of alternative strategies. Capsid-targeted viral inactivation is a conceptually powerful approach that exploits virion structural proteins to target a degradative enzyme specifically into viral particles. Its principal feasibility has been demonstrated in retroviral model systems but not yet for a medically relevant virus outside the retrovirus family. Recently, we found that C proximal fusion to the HBV capsid protein of the Ca(2+)-dependent nuclease (SN) from Staphylococcus aureus yields a chimeric protein, coreSN, that in Escherichia coli coassembles with the wild-type capsid protein into particles with internal SN domains. Here we show that, in HBV co-transfected human hepatoma cells, less than 1 coreSN protein per 10 wild-type core protein subunits reduced titers of enveloped DNA containing virions by more than 95%. The antiviral effect depends on both an enzymatically active SN and on the core domain. CoreSN does not block assembly of RNA containing nucleocapsids but interferes with proper synthesis of viral DNA inside the capsid, or leads to rapid DNA degradation. Our data suggest an intracellular nuclease activation that, owing to the characteristics of HBV morphogenesis, is nonetheless highly virus specific. HBV may therefore be particularly vulnerable to the capsid-targeted viral inactivation approach.
Collapse
Affiliation(s)
- G Beterams
- University Hospital Freiburg, Department of Internal Medicine II/Molecular Biology, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | | |
Collapse
|