1
|
Windsor IW, Dudley DM, O'Connor DH, Raines RT. Ribonuclease zymogen induces cytotoxicity upon HIV-1 infection. AIDS Res Ther 2021; 18:77. [PMID: 34702287 PMCID: PMC8549155 DOI: 10.1186/s12981-021-00399-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Targeting RNA is a promising yet underdeveloped modality for the selective killing of cells infected with HIV-1. The secretory ribonucleases (RNases) found in vertebrates have cytotoxic ribonucleolytic activity that is kept in check by a cytosolic ribonuclease inhibitor protein, RI. METHODS We engineered amino acid substitutions that enable human RNase 1 to evade RI upon its cyclization into a zymogen that is activated by the HIV-1 protease. In effect, the zymogen has an HIV-1 protease cleavage site between the termini of the wild-type enzyme, thereby positioning a cleavable linker over the active site that blocks access to a substrate. RESULTS The amino acid substitutions in RNase 1 diminish its affinity for RI by 106-fold and confer high toxicity for T-cell leukemia cells. Pretreating these cells with the zymogen leads to a substantial drop in their viability upon HIV-1 infection, indicating specific toxicity toward infected cells. CONCLUSIONS These data demonstrate the utility of ribonuclease zymogens as biologic prodrugs.
Collapse
Affiliation(s)
- Ian W Windsor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dawn M Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| |
Collapse
|
2
|
Evaluation of Structurally Distorted Split GFP Fluorescent Sensors for Cell-Based Detection of Viral Proteolytic Activity. SENSORS 2020; 21:s21010024. [PMID: 33374523 PMCID: PMC7793068 DOI: 10.3390/s21010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022]
Abstract
Cell-based assays are essential for virus functional characterization in fundamental and applied research. Overcoming the limitations of virus-labelling strategies while allowing functional assessment of critical viral enzymes, virus-induced cell-based biosensors constitute a powerful approach. Herein, we designed and characterized different cell-based switch-on split GFP sensors reporting viral proteolytic activity and virus infection. Crucial to these sensors is the effective-yet reversible-fluorescence off-state, through protein distortion. For that, single (protein embedment or intein-mediated cyclization) or dual (coiled-coils) distortion schemes prevent split GFP self-assembly, until virus-promoted proteolysis of a cleavable sequence. All strategies showed their applicability in detecting viral proteolysis, although with different efficiencies depending on the protease. While for tobacco etch virus protease the best performing sensor was based on coiled-coils (signal-to-noise ratio, SNR, 97), for adenovirus and lentivirus proteases it was based on GFP11 cyclization (SNR 3.5) or GFP11 embedment distortion (SNR 6.0), respectively. When stably expressed, the sensors allowed live cell biosensing of adenovirus infection, with sensor fluorescence activation 24 h post-infection. The structural distortions herein studied are highly valuable in the development of cellular biosensing platforms. Additionally highlighted, selection of the best performing strategy is highly dependent on the unique properties of each viral protease.
Collapse
|
3
|
Hu L, Hu P, Luo X, Yuan X, You ZH. Incorporating the Coevolving Information of Substrates in Predicting HIV-1 Protease Cleavage Sites. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:2017-2028. [PMID: 31056514 DOI: 10.1109/tcbb.2019.2914208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Human immunodeficiency virus 1 (HIV-1) protease (PR) plays a crucial role in the maturation of the virus. The study of substrate specificity of HIV-1 PR as a new endeavor strives to increase our ability to understand how HIV-1 PR recognizes its various cleavage sites. To predict HIV-1 PR cleavage sites, most of the existing approaches have been developed solely based on the homogeneity of substrate sequence information with supervised classification techniques. Although efficient, these approaches are found to be restricted to the ability of explaining their results and probably provide few insights into the mechanisms by which HIV-1 PR cleaves the substrates in a site-specific manner. In this work, a coevolutionary pattern-based prediction model for HIV-1 PR cleavage sites, namely EvoCleave, is proposed by integrating the coevolving information obtained from substrate sequences with a linear SVM classifier. The experiment results showed that EvoCleave yielded a very promising performance in terms of ROC analysis and f-measure. We also prospectively assessed the biological significance of coevolutionary patterns by applying them to study three fundamental issues of HIV-1 PR cleavage site. The analysis results demonstrated that the coevolutionary patterns offered valuable insights into the understanding of substrate specificity of HIV-1 PR.
Collapse
|
4
|
Román-Meléndez GD, Venkataraman T, Monaco DR, Larman HB. Protease Activity Profiling via Programmable Phage Display of Comprehensive Proteome-Scale Peptide Libraries. Cell Syst 2020; 11:375-381.e4. [PMID: 33099407 DOI: 10.1016/j.cels.2020.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/10/2020] [Accepted: 08/18/2020] [Indexed: 12/28/2022]
Abstract
Endopeptidases catalyze the internal cleavage of proteins, playing pivotal roles in protein turnover, substrate maturation, and the activation of signaling cascades. A broad range of biological functions in health and disease are controlled by proteases, yet assays to characterize their activities at a proteomic scale do not exist. To address this unmet need, we developed Sensing EndoPeptidase Activity via Release and recapture using flAnking Tag Epitopes (SEPARATE), which uses a monovalent phage display of the human proteome at a 90-aa peptide resolution. We demonstrate that SEPARATE is compatible with several human proteases from distinct catalytic classes, including caspase-1, ADAM17, and thrombin. Both well-characterized and newly identified substrates of these enzymes were detected in the assay. SEPARATE was used to discover a non-canonical caspase-1 substrate, the E3 ubiquitin ligase HUWE1, a key mediator of apoptotic cell death. SEPARATE enables efficient, unbiased assessment of endopeptidase activity by using a phage-displayed proteome. A record of this paper's Transparent Peer Review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Gabriel D Román-Meléndez
- Institute for Cell Engineering, Immunology Division, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA 21205
| | - Thiagarajan Venkataraman
- Institute for Cell Engineering, Immunology Division, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA 21205
| | - Daniel R Monaco
- Institute for Cell Engineering, Immunology Division, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA 21205
| | - H Benjamin Larman
- Institute for Cell Engineering, Immunology Division, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA 21205.
| |
Collapse
|
5
|
Lawal MM, Sanusi ZK, Govender T, Maguire GE, Honarparvar B, Kruger HG. From Recognition to Reaction Mechanism: An Overview on the Interactions between HIV-1 Protease and its Natural Targets. Curr Med Chem 2020; 27:2514-2549. [DOI: 10.2174/0929867325666181113122900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 12/28/2022]
Abstract
Current investigations on the Human Immunodeficiency Virus Protease (HIV-1
PR) as a druggable target towards the treatment of AIDS require an update to facilitate further
development of promising inhibitors with improved inhibitory activities. For the past two
decades, up to 100 scholarly reports appeared annually on the inhibition and catalytic mechanism
of HIV-1 PR. A fundamental literature review on the prerequisite of HIV-1 PR action
leading to the release of the infectious virion is absent. Herein, recent advances (both computationally
and experimentally) on the recognition mode and reaction mechanism of HIV-1 PR
involving its natural targets are provided. This review features more than 80 articles from
reputable journals. Recognition of the natural Gag and Gag-Pol cleavage junctions by this
enzyme and its mutant analogs was first addressed. Thereafter, a comprehensive dissect of
the enzymatic mechanism of HIV-1 PR on its natural polypeptide sequences from literature
was put together. In addition, we highlighted ongoing research topics in which in silico
methods could be harnessed to provide deeper insights into the catalytic mechanism of the
HIV-1 protease in the presence of its natural substrates at the molecular level. Understanding
the recognition and catalytic mechanism of HIV-1 PR leading to the release of an infective
virion, which advertently affects the immune system, will assist in designing mechanismbased
inhibitors with improved bioactivity.
Collapse
Affiliation(s)
- Monsurat M. Lawal
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Zainab K. Sanusi
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Glenn E.M. Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
6
|
Windsor IW, Graff CJ, Raines RT. Circular zymogens of human ribonuclease 1. Protein Sci 2019; 28:1713-1719. [PMID: 31306518 PMCID: PMC6699097 DOI: 10.1002/pro.3686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022]
Abstract
The endogenous production of enzymes as zymogens provides a means to control catalytic activities. Here, we describe the heterologous production of ribonuclease 1 (RNase 1), which is the most prevalent secretory ribonuclease in humans, as a zymogen. In folded RNase 1, the N and C termini flank the enzymic active site. By using intein-mediated cis-splicing, we created circular proteins in which access to the active site of RNase 1 is obstructed by an amino-acid sequence that is recognized by the HIV-1 protease. Installing a sequence that does not perturb the RNase 1 fold led to only modest inactivation. In contrast, the ancillary truncation of residues from each terminus led to a substantial decrease in the catalytic activity of the zymogen with the maintenance of thermostability. For optimized zymogens, activation by HIV-1 protease led to a > 104 -fold increase in ribonucleolytic activity at a rate comparable to that for the cleavage of endogenous viral substrates. Molecular modeling indicated that these zymogens are inactivated by conformational distortion in addition to substrate occlusion. Because protease levels are elevated in many disease states and ribonucleolytic activity can be cytotoxic, RNase 1 zymogens have potential as generalizable prodrugs.
Collapse
Affiliation(s)
- Ian W. Windsor
- Department of BiochemistryUniversity of Wisconsin−MadisonMadisonWisconsin
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Crystal J. Graff
- Department of BiochemistryUniversity of Wisconsin−MadisonMadisonWisconsin
| | - Ronald T. Raines
- Department of BiochemistryUniversity of Wisconsin−MadisonMadisonWisconsin
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusetts
- Department of ChemistryUniversity of Wisconsin−MadisonMadisonWisconsin
| |
Collapse
|
7
|
Tomás HA, Mestre DA, Rodrigues AF, Guerreiro MR, Carrondo MJT, Coroadinha AS. Improved GaLV-TR Glycoproteins to Pseudotype Lentiviral Vectors: Impact of Viral Protease Activity in the Production of LV Pseudotypes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:1-8. [PMID: 31528654 PMCID: PMC6742969 DOI: 10.1016/j.omtm.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/08/2019] [Indexed: 01/03/2023]
Abstract
Lentiviral vectors (LVs) are excellent tools for gene transfer into mammalian cells. It is noteworthy that the first gene therapy treatment using LVs was approved for commercialization in 2017. The G glycoprotein from rhabdovirus vesicular stomatitis virus (VSV-G) is the glycoprotein most used to pseudotype LVs, due to its high efficiency in transducing several cell types and its resistance to viral vector purification and storage conditions. However, VSV-G expression induces cytotoxicity, which limits LV production to short periods. As alternative to VSV-G, γ-retrovirus glycoproteins (4070A derived, GaLV derived, and RD114 derived) have been used to pseudotype both γ-retroviral vectors (RVs) and LVs. These glycoproteins do not induce cytotoxicity, allowing the development of stable LV producer cells. Additionally, these LV pseudotypes present higher transduction efficiencies of hematopoietic stem cells when compared to VSV-G. Here, new 4070A-, RD114-TR-, and GaLV-TR-derived glycoproteins were developed with the aim of improving its cytoplasmic tail R-peptide cleavage and thus increase LV infectious titers. The new glycoproteins were tested in transient LV production using the wild-type or the less active T26S HIV-1 protease. The GaLV-TR-derived glycoproteins were able to overcome titer differences observed between LV production using wild-type and T26S protease. Additionally, these glycoproteins were even able to increase LV titers, evidencing its potential as an alternative glycoprotein to pseudotype LVs.
Collapse
Affiliation(s)
- Hélio A Tomás
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Daniel A Mestre
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana F Rodrigues
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Miguel R Guerreiro
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Manuel J T Carrondo
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Sofia Coroadinha
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, New University of Lisbon, Lisbon, Portugal
| |
Collapse
|
8
|
Guerreiro MR, Freitas DF, Alves PM, Coroadinha AS. Detection and Quantification of Label-Free Infectious Adenovirus Using a Switch-On Cell-Based Fluorescent Biosensor. ACS Sens 2019; 4:1654-1661. [PMID: 31117363 DOI: 10.1021/acssensors.9b00489] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reliable and fast viral detection and quantification protocols are a requirement for the advance of basic research and clinical approaches with wild type or recombinant viruses. However, available cell-based assays are either time-consuming or require labeled viral particles, which may alter virus biology or pose safety issues in clinical applications. Since adenoviruses constitute a major healthcare burden but also, when engineered, widely used vectors in vaccination and gene and oncolytic therapies, herein we developed a genetically encoded switch-on fluorescent biosensor consisting of a cyclized Green fluorescent protein-cVisensor-with an adenoviral protease cleavable site as a switch. After initial sensor optimization (35% increase in performance), whole-cell biosensors were established-by stably expressing cVisensor in mammalian cells-and used for live-cell monitoring of adenovirus infection as the intracellular biosensor is specifically activated by the viral protease. A rapid flow cytometry-based bioassay using cVisensor cells was established 48 h postinfection, showing an estimated limit of detection of 105 infectious particles/mL, in-line with previously reported flow cytometry assays requiring labeled virus, and significantly faster than standard plaque-forming assays requiring up to 14 days. cVisensor was also successfully applied in the detection of HIV-1 protease activity, validating its wider potential for the detection of other viruses. Overall, this work presents a fast and easy method for detection and quantification of label-free infectious virus, allowing the establishment of new biosensing platforms for basic research in virology and biotechnological applications of recombinant virus biopharmaceuticals.
Collapse
Affiliation(s)
- Miguel Ricardo Guerreiro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Daniela Filipa Freitas
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Paula Marques Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Ana Sofia Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, NOVA University Lisbon, Oeiras Campus, Avenida da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
9
|
Windsor IW, Palte MJ, Lukesh JC, Gold B, Forest KT, Raines RT. Sub-picomolar Inhibition of HIV-1 Protease with a Boronic Acid. J Am Chem Soc 2018; 140:14015-14018. [PMID: 30346745 PMCID: PMC6249028 DOI: 10.1021/jacs.8b07366] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Boronic acids have been typecast as moieties for covalent complexation and are employed only rarely as agents for non-covalent recognition. By exploiting the profuse ability of a boronic acid group to form hydrogen bonds, we have developed an inhibitor of HIV-1 protease with extraordinary affinity. Specifically, we find that replacing an aniline moiety in darunavir with a phenylboronic acid leads to 20-fold greater affinity for the protease. X-ray crystallography demonstrates that the boronic acid group participates in three hydrogen bonds, more than the amino group of darunavir or any other analog. Importantly, the boronic acid maintains its hydrogen bonds and its affinity for the drug-resistant D30N variant of HIV-1 protease. The BOH···OC hydrogen bonds between the boronic acid hydroxy group and Asp30 (or Asn30) of the protease are short ( rO···O = 2.2 Å), and density functional theory analysis reveals a high degree of covalency. These data highlight the utility of boronic acids as versatile functional groups in the design of small-molecule ligands.
Collapse
Affiliation(s)
- Ian W. Windsor
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael J. Palte
- Medical Scientist Training Program, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Molecular & Cellular Pharmacology Graduate Training Program, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - John C. Lukesh
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Brian Gold
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Katrina T. Forest
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Ronald T. Raines
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Windsor IW, Raines RT. A substrate selected by phage display exhibits enhanced side-chain hydrogen bonding to HIV-1 protease. Acta Crystallogr D Struct Biol 2018; 74:690-694. [PMID: 29968678 PMCID: PMC6038388 DOI: 10.1107/s2059798318006691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/01/2018] [Indexed: 11/11/2022] Open
Abstract
Crystal structures of inactive variants of HIV-1 protease bound to peptides have revealed how the enzyme recognizes its endogenous substrates. The best of the known substrates is, however, a nonnatural substrate that was identified by directed evolution. The crystal structure of the complex between this substrate and the D25N variant of the protease is reported at a resolution of 1.1 Å. The structure has several unprecedented features, especially the formation of additional hydrogen bonds between the enzyme and the substrate. This work expands the understanding of molecular recognition by HIV-1 protease and informs the design of new substrates and inhibitors.
Collapse
Affiliation(s)
- Ian W. Windsor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Fluorogenic Assay for Inhibitors of HIV-1 Protease with Sub-picomolar Affinity. Sci Rep 2015; 5:11286. [PMID: 26261098 PMCID: PMC4531283 DOI: 10.1038/srep11286] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/14/2015] [Indexed: 11/17/2022] Open
Abstract
A fluorogenic substrate for HIV-1 protease was designed and used as the basis for a hypersensitive assay. The substrate exhibits a kcat of 7.4 s−1, KM of 15 μM, and an increase in fluorescence intensity of 104-fold upon cleavage, thus providing sensitivity that is unmatched in a continuous assay of HIV-1 protease. These properties enabled the enzyme concentration in an activity assay to be reduced to 25 pM, which is close to the Kd value of the protease dimer. By fitting inhibition data to Morrison’s equation, Ki values of amprenavir, darunavir, and tipranavir were determined to be 135, 10, and 82 pM, respectively. This assay, which is capable of measuring Ki values as low as 0.25 pM, is well-suited for characterizing the next generation of HIV-1 protease inhibitors.
Collapse
|
12
|
Meng J, Lai MT, Munshi V, Grobler J, McCauley J, Zuck P, Johnson EN, Uebele VN, Hermes JD, Adam GC. Screening of HIV-1 Protease Using a Combination of an Ultra-High-Throughput Fluorescent-Based Assay and RapidFire Mass Spectrometry. ACTA ACUST UNITED AC 2015; 20:606-15. [PMID: 25681434 DOI: 10.1177/1087057115570838] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/12/2015] [Indexed: 12/19/2022]
Abstract
HIV-1 protease (PR) represents one of the primary targets for developing antiviral agents for the treatment of HIV-infected patients. To identify novel PR inhibitors, a label-free, high-throughput mass spectrometry (HTMS) assay was developed using the RapidFire platform and applied as an orthogonal assay to confirm hits identified in a fluorescence resonance energy transfer (FRET)-based primary screen of > 1 million compounds. For substrate selection, a panel of peptide substrates derived from natural processing sites for PR was evaluated on the RapidFire platform. As a result, KVSLNFPIL, a new substrate measured to have a ~ 20- and 60-fold improvement in k cat/K m over the frequently used sequences SQNYPIVQ and SQNYPIV, respectively, was identified for the HTMS screen. About 17% of hits from the FRET-based primary screen were confirmed in the HTMS confirmatory assay including all 304 known PR inhibitors in the set, demonstrating that the HTMS assay is effective at triaging false-positives while capturing true hits. Hence, with a sampling rate of ~7 s per well, the RapidFire HTMS assay enables the high-throughput evaluation of peptide substrates and functions as an efficient tool for hits triage in the discovery of novel PR inhibitors.
Collapse
Affiliation(s)
- Juncai Meng
- Screening and Protein Sciences, Merck Research Labs, North Wales, PA, USA
| | - Ming-Tain Lai
- Department of Infectious Disease, Merck Research Labs, West Point, PA, USA
| | - Vandna Munshi
- Department of Infectious Disease, Merck Research Labs, West Point, PA, USA
| | - Jay Grobler
- Department of Infectious Disease, Merck Research Labs, West Point, PA, USA
| | - John McCauley
- Medicinal Chemistry, Merck Research Labs, West Point, PA, USA
| | - Paul Zuck
- Screening and Protein Sciences, Merck Research Labs, North Wales, PA, USA
| | - Eric N Johnson
- Screening and Protein Sciences, Merck Research Labs, North Wales, PA, USA Wuxi Apptech
| | - Victor N Uebele
- Screening and Protein Sciences, Merck Research Labs, North Wales, PA, USA
| | - Jeffrey D Hermes
- Screening and Protein Sciences, Merck Research Labs, North Wales, PA, USA
| | - Gregory C Adam
- Screening and Protein Sciences, Merck Research Labs, North Wales, PA, USA
| |
Collapse
|
13
|
Rögnvaldsson T, You L, Garwicz D. Bioinformatic approaches for modeling the substrate specificity of HIV-1 protease: an overview. Expert Rev Mol Diagn 2014; 7:435-51. [PMID: 17620050 DOI: 10.1586/14737159.7.4.435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HIV-1 protease has a broad and complex substrate specificity, which hitherto has escaped a simple comprehensive definition. This, and the relatively high mutation rate of the retroviral protease, makes it challenging to design effective protease inhibitors. Several attempts have been made during the last two decades to elucidate the enigmatic cleavage specificity of HIV-1 protease and to predict cleavage of novel substrates using bioinformatic analysis methods. This review describes the methods that have been utilized to date to address this important problem and the results achieved. The data sets used are also reviewed and important aspects of these are highlighted.
Collapse
Affiliation(s)
- Thorsteinn Rögnvaldsson
- Halmstad University, School of Information Science, Computer & Electrical Engineering, Halmstad, Sweden.
| | | | | |
Collapse
|
14
|
Dewdney TG, Wang Y, Liu Z, Sharma SK, Reiter SJ, Brunzelle JS, Kovari IA, Woster PM, Kovari LC. Ligand modifications to reduce the relative resistance of multi-drug resistant HIV-1 protease. Bioorg Med Chem 2013; 21:7430-4. [PMID: 24128815 DOI: 10.1016/j.bmc.2013.09.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/10/2013] [Accepted: 09/18/2013] [Indexed: 11/25/2022]
Abstract
Proper proteolytic processing of the HIV-1 Gag/Pol polyprotein is required for HIV infection and viral replication. This feature has made HIV-1 protease an attractive target for antiretroviral drug design for the treatment of HIV-1 infected patients. To examine the role of the P1 and P1'positions of the substrate in inhibitory efficacy of multi-drug resistant HIV-1 protease 769 (MDR 769), we performed a series of structure-function studies. Using the original CA/p2 cleavage site sequence, we generated heptapeptides containing one reduced peptide bond with an L to F and A to F double mutation at P1 and P1' (F-r-F), and an A to F at P1' (L-r-F) resulting in P1/P1' modified ligands. Here, we present an analysis of co-crystal structures of CA/p2 F-r-F, and CA/p2 L-r-F in complex with MDR 769. To examine conformational changes in the complex structure, molecular dynamic (MD) simulations were performed with MDR769-ligand complexes. MD trajectories show the isobutyl group of both the lopinavir analog and the CA/p2 L-r-F substrate cause a conformational change of in the active site of MDR 769. IC50 measurements suggest the non identical P1/P1' ligands (CA/p2 L-r-F and lopinavir analog) are more effective against MDR proteases as opposed to identical P1/P1'ligands. Our results suggest that a non identical P1/P1'composition may be more favorable for the inhibition of MDR 769 as they induce conformational changes in the active site of the enzyme resulting in disruption of the two-fold symmetry of the protease, thus, stabilizing the inhibitor in the active site.
Collapse
Affiliation(s)
- Tamaria G Dewdney
- Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Serrano S, Callís M, Vilanova M, Benito A, Laurents DV, Ribó M, Bruix M. (1)H, (13)C and (15)N resonance assignments of the Onconase FL-G zymogen. BIOMOLECULAR NMR ASSIGNMENTS 2013; 7:13-15. [PMID: 22392335 DOI: 10.1007/s12104-012-9367-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 02/20/2012] [Indexed: 05/31/2023]
Abstract
Onconase(®) FL-G zymogen is a 120 residue protein produced by circular permutation of the native Onconase(®) sequence. In this construction, the wild type N- and C-termini are linked by a 16 residue segment and new N- and C-termini are generated at wild type positions R73 and S72. This novel segment linking the native N- and C-termini is designed to obstruct Onconase's(®) active site and encloses a cleavage site for the HIV-1 protease. As a first step towards the resolution of its 3D structure and the study of its structure-function relationships, we report here the nearly complete NMR (1)H, (13)C and (15)N resonance chemical shift assignments at pH 5.2 and 35°C (BMRB deposit no 17973). The results presented here clearly show that the structure of the wild type Onconase(®) is conserved in the FL-G zymogen.
Collapse
Affiliation(s)
- Soraya Serrano
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Towards tricking a pathogen's protease into fighting infection: the 3D structure of a stable circularly permuted onconase variant cleavedby HIV-1 protease. PLoS One 2013; 8:e54568. [PMID: 23349931 PMCID: PMC3548804 DOI: 10.1371/journal.pone.0054568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/12/2012] [Indexed: 11/19/2022] Open
Abstract
Onconase® is a highly cytotoxic amphibian homolog of Ribonuclease A. Here, we describe the construction of circularly permuted Onconase® variants by connecting the N- and C-termini of this enzyme with amino acid residues that are recognized and cleaved by the human immunodeficiency virus protease. Uncleaved circularly permuted Onconase® variants are unusually stable, non-cytotoxic and can internalize in human T-lymphocyte Jurkat cells. The structure, stability and dynamics of an intact and a cleaved circularly permuted Onconase® variant were determined by Nuclear Magnetic Resonance spectroscopy and provide valuable insight into the changes in catalytic efficiency caused by the cleavage. The understanding of the structural environment and the dynamics of the activation process represents a first step toward the development of more effective drugs for the treatment of diseases related to pathogens expressing a specific protease. By taking advantage of the protease’s activity to initiate a cytotoxic cascade, this approach is thought to be less susceptible to known resistance mechanisms.
Collapse
|
17
|
Delhalle S, Schmit JC, Chevigné A. Phages and HIV-1: from display to interplay. Int J Mol Sci 2012; 13:4727-4794. [PMID: 22606007 PMCID: PMC3344243 DOI: 10.3390/ijms13044727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/26/2012] [Accepted: 03/30/2012] [Indexed: 11/16/2022] Open
Abstract
The complex hide-and-seek game between HIV-1 and the host immune system has impaired the development of an efficient vaccine. In addition, the high variability of the virus impedes the long-term control of viral replication by small antiviral drugs. For more than 20 years, phage display technology has been intensively used in the field of HIV-1 to explore the epitope landscape recognized by monoclonal and polyclonal HIV-1-specific antibodies, thereby providing precious data about immunodominant and neutralizing epitopes. In parallel, biopanning experiments with various combinatorial or antibody fragment libraries were conducted on viral targets as well as host receptors to identify HIV-1 inhibitors. Besides these applications, phage display technology has been applied to characterize the enzymatic specificity of the HIV-1 protease. Phage particles also represent valuable alternative carriers displaying various HIV-1 antigens to the immune system and eliciting antiviral responses. This review presents and summarizes the different studies conducted with regard to the nature of phage libraries, target display mode and biopanning procedures.
Collapse
Affiliation(s)
- Sylvie Delhalle
- Laboratory of Retrovirology, CRP-Sante, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg; E-Mails: (J.-C.S.); (A.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +352-26970211; Fax: +352-26970221
| | - Jean-Claude Schmit
- Laboratory of Retrovirology, CRP-Sante, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg; E-Mails: (J.-C.S.); (A.C.)
- Service National des Maladies Infectieuses, Centre Hospitalier Luxembourg, 4, rue E. Barblé, L-1210 Luxembourg, Luxembourg
| | - Andy Chevigné
- Laboratory of Retrovirology, CRP-Sante, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg; E-Mails: (J.-C.S.); (A.C.)
| |
Collapse
|
18
|
Callahan BP, Stanger MJ, Belfort M. Protease activation of split green fluorescent protein. Chembiochem 2011; 11:2259-63. [PMID: 20945451 DOI: 10.1002/cbic.201000453] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Brian P Callahan
- Wadsworth Center, NYS Department of Health, Albany, NY 12201-2002, USA
| | | | | |
Collapse
|
19
|
Granieri L, Baret JC, Griffiths AD, Merten CA. High-throughput screening of enzymes by retroviral display using droplet-based microfluidics. ACTA ACUST UNITED AC 2010; 17:229-35. [PMID: 20338514 DOI: 10.1016/j.chembiol.2010.02.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 01/19/2010] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
Abstract
During the last 25 years, display techniques such as phage display have become very powerful tools for protein engineering, especially for the selection of monoclonal antibodies. However, while this method is extremely efficient for affinity-based selections, its use for the selection and directed evolution of enzymes is still very restricted. Furthermore, phage display is not suited for the engineering of mammalian proteins that require posttranslational modifications such as glycosylation or membrane anchoring. To circumvent these limitations, we have developed a system in which structurally complex mammalian enzymes are displayed on the surface of retroviruses and encapsulated into droplets of a water-in-oil emulsion. These droplets are made and manipulated using microfluidic devices and each droplet serves as an independent reaction vessel. Compartmentalization of single retroviral particles in droplets allows efficient coupling of genotype and phenotype. Using tissue plasminogen activator (tPA) as a model enzyme, we show that, by monitoring the enzymatic reaction in each droplet (by fluorescence), quantitative measurement of tPA activity in the presence of different concentrations of the endogenous inhibitor PAI-1 can be made on-chip. On-chip fluorescence-activated droplet sorting allowed the processing of 500 samples per second and the specific collection of retroviruses displaying active wild-type tPA from a model library with a 1000-fold excess of retroviruses displaying a non-active control enzyme. During a single selection cycle, a more than 1300-fold enrichment of the active wild-type enzyme was demonstrated.
Collapse
Affiliation(s)
- Lucia Granieri
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67083 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
20
|
Generation of infectious feline immunodeficiency virus (FIV) encoding FIV/human immunodeficiency virus chimeric protease. J Virol 2010; 84:6799-809. [PMID: 20410281 DOI: 10.1128/jvi.00294-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline immunodeficiency virus (FIV) and human immunodeficiency virus type 1 (HIV-1) proteases (PRs) share only 23% amino acid identity and exhibit distinct specificities yet have very similar 3-dimensional structures. Chimeric PRs in which HIV residues were substituted in structurally equivalent positions in FIV PR were prepared in order to study the molecular basis of PR specificity. Previous in vitro analyses showed that such substitutions dramatically altered the inhibitor specificity of mutant PRs but changed the rate and specificity of Gag cleavage so that chimeric FIVs were not infectious. Chimeric PRs encoding combinations of the I37V, N55M, M56I, V59I, L97T, I98P, Q99V, and P100N mutations were cloned into FIV Gag-Pol, and those constructs that best approximated the temporal cleavage pattern generated by wild-type FIV PR, while maintaining HIV-like inhibitor specificity, were selected. Two mutations, M56I and L97T, were intolerant to change and caused inefficient cleavage at NC-p2. However, a mutant PR with six substitutions (I37V, N55M, V59I, I98P, Q99V, and P100N) was selected and placed in the context of full-length FIV-34TF10. This virus, termed YCL6, had low-level infectivity ex vivo, and after passage, progeny that exhibited a higher growth rate emerged. The residue at the position of one of the six mutations, I98P, further mutated on passage to either P98H or P98S. Both PRs were sensitive to the HIV-1 PR inhibitors lopinavir (LPV) and darunavir (DRV), as well as to the broad-based inhibitor TL-3, with 50% inhibitory concentrations (IC(50)) of 30 to 40 nM, consistent with ex vivo results obtained using mutant FIVs. The chimeras offer an infectivity system with which to screen compounds for potential as broad-based PR inhibitors, define structural parameters that dictate specificity, and investigate pathways for drug resistance development.
Collapse
|
21
|
Huitema C, Eltis LD. A fluorescent protein-based biological screen of proteinase activity. JOURNAL OF BIOMOLECULAR SCREENING 2010; 15:224-9. [PMID: 20086215 DOI: 10.1177/1087057109357790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A cell-based fluorescent protein reporter assay for proteinase activity amenable to high-throughput applications was developed. This assay is based on Förster resonance energy transfer (FRET) between 2 variants of the green fluorescent protein connected by a short cleavable linker and expressed in Escherichia coli as tagged proteins. A library to assay proteinase specificity was generated by randomizing a portion of the linker using PCR. The library could be grown in microplates, allowing cells to be lysed in situ and substrate cleavage to be monitored through loss of FRET signal using a plate reader. Progress curves were generated to estimate cleavage efficiency, facilitating the identification of well-cleaved substrates. The polyhistidine-tagged fluorescent substrates could then be purified and used for further characterization. To establish the general utility of the screen, it was used to demonstrate that the cysteine proteinase of the hepatitis A virus, 3C(pro), prefers Ile, Val, or Leu at the P(4) position of the cleavage sequence and Gly, Ser, or Ala at the P'(1) position. The assay can also be used to screen small-molecule libraries for inhibitors.
Collapse
Affiliation(s)
- Carly Huitema
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
22
|
Engineering an artificial zymogen by alternate frame protein folding. Proc Natl Acad Sci U S A 2010; 107:2824-9. [PMID: 20133757 DOI: 10.1073/pnas.0907668107] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alternate frame folding (AFF) is a novel mechanism by which allostery can be introduced into a protein where none may have existed previously. We employ this technology to convert the cytotoxic ribonuclease barnase into an artificial zymogen that is activated by HIV-1 protease. The AFF modification entails partial duplication of the polypeptide chain and mutation of a key catalytic residue in one of the duplicated segments. The resulting molecule can fold in one of two "frames" to yield the wild-type structure or a circularly permuted form in which the positions of the N- and C-termini are exchanged with a surface loop. It cannot take on both structures simultaneously because each competes for a shared amino acid sequence. An HIV-1 protease recognition sequence is inserted into one of the surface loops in the nonpermuted frame, and cleavage induces a shift from the nonpermuted fold to the permuted fold. Using the AFF mechanism, we were able to suppress k(cat)/K(M) by 250-fold in the proenzyme relative to wild-type barnase. HIV-1 protease cleavage subsequently increases k(cat)/K(M) by 130-fold. AFF is significant because it is general and can in principle be used to control activity of many enzymes, including those whose functions are not regulated by any existing mechanism.
Collapse
|
23
|
Li X, Hu H, Shu L. Predicting human immunodeficiency virus protease cleavage sites in nonlinear projection space. Mol Cell Biochem 2010; 339:127-33. [PMID: 20054614 DOI: 10.1007/s11010-009-0376-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 12/21/2009] [Indexed: 11/30/2022]
Abstract
HIV-1 protease has a broad and complex substrate specificity. The discovery of an accurate, robust, and rapid method for predicting the cleavage sites in proteins by HIV protease would greatly expedite the search for inhibitors of HIV protease. During the last two decades, various methods have been developed to explore the specificity of HIV protease cleavage activity. However, because little advancement has been made in the understanding of HIV-1 protease cleavage site specificity, not much progress has been reported in either extracting effective methods or maintaining high prediction accuracy. In this article, a theoretical framework is developed, based on the kernel method for dimensionality reduction and prediction for HIV-1 protease cleavage site specificity. A nonlinear dimensionality reduction kernel method, based on manifold learning, is proposed to reduce the high dimensions of protease specificity. A support vector machine is applied to predict the protease cleavage. Superior performance in comparison to that previously published in literature is obtained using numerical simulations showing that the basic specificities of the HIV-1 protease are maintained in reduction feature space, and by combining the nonlinear dimensionality reduction algorithm with a support vector machine classifier.
Collapse
Affiliation(s)
- Xuehua Li
- School of Applied Mathematics, University of Electronic Science and Technology of China, 610054 Chengdu, People's Republic of China.
| | | | | |
Collapse
|
24
|
Liu Z, Lin S, Tan MT. Sparse support vector machines with Lp penalty for biomarker identification. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2010; 7:100-107. [PMID: 20150672 DOI: 10.1109/tcbb.2008.17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The development of high-throughput technology has generated a massive amount of high-dimensional data, and many of them are of discrete type. Robust and efficient learning algorithms such as LASSO [1] are required for feature selection and overfitting control. However, most feature selection algorithms are only applicable to the continuous data type. In this paper, we propose a novel method for sparse support vector machines (SVMs) with L_(p) (p < 1) regularization. Efficient algorithms (LpSVM) are developed for learning the classifier that is applicable to high-dimensional data sets with both discrete and continuous data types. The regularization parameters are estimated through maximizing the area under the ROC curve (AUC) of the cross-validation data. Experimental results on protein sequence and SNP data attest to the accuracy, sparsity, and efficiency of the proposed algorithm. Biomarkers identified with our methods are compared with those from other methods in the literature. The software package in Matlab is available upon request.
Collapse
Affiliation(s)
- Zhenqiu Liu
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Preventive Medicine, Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
25
|
Perrin D, Frémaux C, Shutes A. Capillary microfluidic electrophoretic mobility shift assays: application to enzymatic assays in drug discovery. Expert Opin Drug Discov 2009; 5:51-63. [DOI: 10.1517/17460440903493431] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Kontijevskis A, Petrovska R, Yahorava S, Komorowski J, Wikberg JES. Proteochemometrics mapping of the interaction space for retroviral proteases and their substrates. Bioorg Med Chem 2009; 17:5229-37. [PMID: 19539482 DOI: 10.1016/j.bmc.2009.05.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 04/01/2009] [Accepted: 05/17/2009] [Indexed: 10/20/2022]
Abstract
Understanding the complex interactions of retroviral proteases with their ligands is an important scientific challenge in efforts to achieve control of retroviral infections. Development of drug resistance because of high mutation rates and extensive polymorphisms causes major problems in treating the deadly diseases these viruses cause, and prompts efforts to identify new strategies. Here we report a comprehensive analysis of the interaction of 63 retroviral proteases from nine different viral species with their substrates and inhibitors based on publicly available data from the past 17years of retroviral research. By correlating physico-chemical descriptions of retroviral proteases and substrates to their biological activities we constructed a highly statistically valid 'proteochemometric' model for the interactome of retroviral proteases. Analysis of the model indicated amino acid positions in retroviral proteases with the highest influence on ligand activity and revealed general physicochemical properties essential for tight binding of substrates across multiple retroviral proteases. Hexapeptide inhibitors developed based on the discovered general properties effectively inhibited HIV-1 proteases in vitro, and some exhibited uniformly high inhibitory activity against all HIV-1 proteases mutants evaluated. A generalized proteochemometric model for retroviral proteases interactome has been created and analysed in this study. Our results demonstrate the feasibility of using the developed general strategy in the design of inhibitory peptides that can potentially serve as templates for drug resistance-improved HIV retardants.
Collapse
Affiliation(s)
- Aleksejs Kontijevskis
- Department of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, SE-75124, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
27
|
Van Damme P, Vandekerckhove J, Gevaert K. Disentanglement of protease substrate repertoires. Biol Chem 2008; 389:371-81. [PMID: 18208357 DOI: 10.1515/bc.2008.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Identification of protease substrates and detailed characterization of processed sites are essential for understanding the biological function of proteases. Because of inherent complexity reasons, this however remains a formidable analytical challenge, illustrated by the fact that the majority of the more than 500 human proteases are uncharacterized to date. Recently, in addition to conventional genetic and biochemical approaches, diverse quantitative peptide-centric proteomics approaches, some of which selectively recover N-terminal peptides, have emerged. These latter proteomic technologies in particular allow the identification of natural protease substrates and delineation of cleavage sites in a complex, natural background of thousands of different proteins. We here review current biochemical, genetic and proteomic methods for global analysis of substrates of proteases and discuss selected applications.
Collapse
Affiliation(s)
- Petra Van Damme
- Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), B-9000 Ghent, Belgium
| | | | | |
Collapse
|
28
|
Schlick P, Skern T. Investigating human immunodeficiency virus-1 proteinase specificity at positions P4 to P2 using a bacterial screening system. Anal Biochem 2008; 377:162-9. [DOI: 10.1016/j.ab.2008.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 02/28/2008] [Accepted: 03/10/2008] [Indexed: 11/27/2022]
|
29
|
Liu Z, Tan M. ROC-Based Utility Function Maximization for Feature Selection and Classification with Applications to High-Dimensional Protease Data. Biometrics 2008; 64:1155-61. [DOI: 10.1111/j.1541-0420.2008.01015.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Kim H, Zhang Y, Heo YS, Oh HB, Chen SS. Specificity rule discovery in HIV-1 protease cleavage site analysis. Comput Biol Chem 2007; 32:71-8. [PMID: 18006382 DOI: 10.1016/j.compbiolchem.2007.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 08/28/2007] [Accepted: 09/09/2007] [Indexed: 10/22/2022]
Abstract
Several machine learning algorithms have recently been applied to modeling the specificity of HIV-1 protease. The problem is challenging because of the three issues as follows: (1) datasets with high dimensionality and small number of samples could misguide classification modeling and its interpretation; (2) symbolic interpretation is desirable because it provides us insight to the specificity in the form of human-understandable rules, and thus helps us to design effective HIV inhibitors; (3) the interpretation should take into account complexity or dependency between positions in sequences. Therefore, it is necessary to investigate multivariate and feature-selective methods to model the specificity and to extract rules from the model. We have tested extensively various machine learning methods, and we have found that the combination of neural networks and decompositional approach can generate a set of effective rules. By validation to experimental results for the HIV-1 protease, the specificity rules outperform the ones generated by frequency-based, univariate or black-box methods.
Collapse
Affiliation(s)
- Hyeoncheol Kim
- Department of Computer Science Education, Korea University, Seoul, Republic of Korea.
| | | | | | | | | |
Collapse
|
31
|
Torbeev VY, Kent SBH. Convergent chemical synthesis and crystal structure of a 203 amino acid "covalent dimer" HIV-1 protease enzyme molecule. Angew Chem Int Ed Engl 2007; 46:1667-70. [PMID: 17397076 DOI: 10.1002/anie.200604087] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vladimir Yu Torbeev
- Department of Chemistry, Institute for Biophysical Dynamics, Gordon Center for Integrative Science, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | |
Collapse
|
32
|
Kontijevskis A, Wikberg JES, Komorowski J. Computational proteomics analysis of HIV-1 protease interactome. Proteins 2007; 68:305-12. [PMID: 17427231 DOI: 10.1002/prot.21415] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HIV-1 protease is a small homodimeric enzyme that ensures maturation of HIV virions by cleaving the viral precursor Gag and Gag-Pol polyproteins into structural and functional elements. The cleavage sites in the viral polyproteins share neither sequence homology nor binding motif and the specificity of the HIV-1 protease is therefore only partially understood. Using an extensive data set collected from 16 years of HIV proteome research we have here created a general and predictive rule-based model for HIV-1 protease specificity based on rough sets. We demonstrate that HIV-1 protease specificity is much more complex than previously anticipated, which cannot be defined based solely on the amino acids at the substrate's scissile bond or by any other single substrate amino acid position only. Our results show that the combination of at least three particular amino acids is needed in the substrate for a cleavage event to occur. Only by combining and analyzing massive amounts of HIV proteome data it was possible to discover these novel and general patterns of physico-chemical substrate cleavage determinants. Our study is an example how computational biology methods can advance the understanding of the viral interactomes.
Collapse
|
33
|
Ensemblator: An ensemble of classifiers for reliable classification of biological data. Pattern Recognit Lett 2007. [DOI: 10.1016/j.patrec.2006.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Torbeev V, Kent S. Convergent Chemical Synthesis and Crystal Structure of a 203 Amino Acid “Covalent Dimer” HIV-1 Protease Enzyme Molecule. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604087] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
|
36
|
Scholle MD, Kriplani U, Pabon A, Sishtla K, Glucksman MJ, Kay BK. Mapping protease substrates by using a biotinylated phage substrate library. Chembiochem 2006; 7:834-8. [PMID: 16628754 DOI: 10.1002/cbic.200500427] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe a bacteriophage M13 substrate library encoding the AviTag (BirA substrate) and combinatorial heptamer peptides displayed at the N terminus of the mature form of capsid protein III. Phages are biotinylated efficiently (> or = 50%) when grown in E. coli cells coexpressing BirA, and such viral particles can be immobilized on a streptavidin-coated support and released by protease cleavage within the combinatorial peptide. We have used this library to map the specificity of human Factor Xa and a neuropeptidase, neurolysin (EC3.4.24.16). Validation by analysis of isolated peptide substrates has revealed that neurolysin recognizes the motif hydrophobic-X-Pro-Arg-hydrophobic, where Arg-hydrophobic is the scissile bond.
Collapse
Affiliation(s)
- Michael D Scholle
- Combinatorial Biology Unit, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | | | | | | | | |
Collapse
|
37
|
MppS: An ensemble of support vector machine based on multiple physicochemical properties of amino acids. Neurocomputing 2006. [DOI: 10.1016/j.neucom.2006.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
|
39
|
|
40
|
Affiliation(s)
- John W Kehoe
- Biosciences Division, Argonne National Laboratory, Building 202, Argonne, Illinois 60439, USA
| | | |
Collapse
|
41
|
You L, Garwicz D, Rögnvaldsson T. Comprehensive bioinformatic analysis of the specificity of human immunodeficiency virus type 1 protease. J Virol 2005; 79:12477-86. [PMID: 16160175 PMCID: PMC1211560 DOI: 10.1128/jvi.79.19.12477-12486.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2004] [Accepted: 07/01/2005] [Indexed: 11/20/2022] Open
Abstract
Rapidly developing viral resistance to licensed human immunodeficiency virus type 1 (HIV-1) protease inhibitors is an increasing problem in the treatment of HIV-infected individuals and AIDS patients. A rational design of more effective protease inhibitors and discovery of potential biological substrates for the HIV-1 protease require accurate models for protease cleavage specificity. In this study, several popular bioinformatic machine learning methods, including support vector machines and artificial neural networks, were used to analyze the specificity of the HIV-1 protease. A new, extensive data set (746 peptides that have been experimentally tested for cleavage by the HIV-1 protease) was compiled, and the data were used to construct different classifiers that predicted whether the protease would cleave a given peptide substrate or not. The best predictor was a nonlinear predictor using two physicochemical parameters (hydrophobicity, or alternatively polarity, and size) for the amino acids, indicating that these properties are the key features recognized by the HIV-1 protease. The present in silico study provides new and important insights into the workings of the HIV-1 protease at the molecular level, supporting the recent hypothesis that the protease primarily recognizes a conformation rather than a specific amino acid sequence. Furthermore, we demonstrate that the presence of 1 to 2 lysine residues near the cleavage site of octameric peptide substrates seems to prevent cleavage efficiently, suggesting that this positively charged amino acid plays an important role in hindering the activity of the HIV-1 protease.
Collapse
Affiliation(s)
- Liwen You
- School of Information Science, Computer and Electrical Engineering, Halmstad University, Halmstad, Sweden
| | | | | |
Collapse
|
42
|
Yu M, Than K, Colegate S, Shiell B, Michalski WP, Prowse S, Wang LF. Peptide mimotopes of phomopsins: identification, characterization and application in an immunoassay. Mol Divers 2005; 9:233-40. [PMID: 15789570 DOI: 10.1007/s11030-005-3126-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Peptide mimotopes of plant-associated toxins offer the potential for improving analytical and diagnostic methodologies as well as providing candidates for potential protective vaccines against plant poisoning diseases. Monoclonal antibody (mAb) C3C11, which recognizes the antimicrotubule phomopsin mycotoxins, was used to isolate peptide mimics of phomopsin A from a random 15-mer phage display peptide library. A total of 46 clones were isolated that showed specific reactivity with the mAb. Amino acid sequence analysis revealed four different types of mimotope sequences, all of which contained a common motif V-A-L/V-C. Of the 46 clones isolated, 44 contained the motif V-A-L-C while 2 contained the V-A-V-C motif. All four types of phage clones inhibited the reactivity of the mAb with phomopsin A in a competition ELISA. The clone with the mimotope sequence CTVALCNMYFGAKLD demonstrated the strongest binding. It was further shown that synthetic peptides containing these mimotope amino acid sequences were able to inhibit the mAb-phomopsin A interaction, indicating that the peptide mimotopes were responsible for the specific binding, independent of the phage framework. The results also suggest that the mimotope peptides bind to mAb C3C11 at the same site as phomopsin A. The application of recombinant phage particles carrying phomopsin mimotopes in immunoassay was evaluated and the results demonstrated approximately 100-fold increase in sensitivity in comparison with a conventional immunoassay using a chemically linked phomopsin-horseradish peroxidase conjugate.
Collapse
Affiliation(s)
- Meng Yu
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia.
| | | | | | | | | | | | | |
Collapse
|
43
|
Devroe E, Silver PA, Engelman A. HIV-1 incorporates and proteolytically processes human NDR1 and NDR2 serine-threonine kinases. Virology 2005; 331:181-9. [PMID: 15582665 DOI: 10.1016/j.virol.2004.10.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/11/2004] [Accepted: 10/12/2004] [Indexed: 01/11/2023]
Abstract
Mammalian genomes encode two related serine-threonine kinases, nuclear Dbf2 related (NDR)1 and NDR2, which are homologous to the Saccharomyces cerevisiae Dbf2 kinase. Recently, a yeast genetic screen implicated the Dbf2 kinase in Ty1 retrotransposition. Since several virion-incorporated kinases regulate the infectivity of human immunodeficiency virus type 1 (HIV-1), we speculated that the human NDR1 and NDR2 kinases might play a role in the HIV-1 life cycle. Here we show that the NDR1 and NDR2 kinases were incorporated into HIV-1 particles. Furthermore, NDR1 and NDR2 were cleaved by the HIV-1 protease (PR), both within virions and within producer cells. Truncation at the PR cleavage site altered NDR2 subcellular localization and inhibited NDR1 and NDR2 enzymatic activity. These studies identify two new virion-associated host cell enzymes and suggest a novel mechanism by which HIV-1 alters the intracellular environment of human cells.
Collapse
Affiliation(s)
- Eric Devroe
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
44
|
Support Vector Machines for HIV-1 Protease Cleavage Site Prediction. PATTERN RECOGNITION AND IMAGE ANALYSIS 2005. [DOI: 10.1007/11492542_51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Gerencer M, Burek V. Identification of HIV-1 protease cleavage site in human C1-inhibitor. Virus Res 2004; 105:97-100. [PMID: 15325085 DOI: 10.1016/j.virusres.2004.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 03/09/2004] [Accepted: 04/22/2004] [Indexed: 11/15/2022]
Abstract
We have investigated the ability of HIV-1 protease to cleave human complement proteins of the classical complement pathway: C1q, C2 and C4 as well as the regulatory protein, C1-inhibitor. Purified complement proteins were incubated with recombinant HIV-1 protease in vitro and analyzed by SDS-PAGE and immunoblotting assay. The only cleavage site was found in N-terminal region of C1-inhibitor, and it was located between residues Leu-32 and Phe-33 as determined by amino acid sequence analysis of the 85 kDa proteolytic fragment after 12 Edman degradation cycles. The HIV-1 protease cleavage sites were not found in C1q, C2 and C4 protein. HIV-1 protease-susceptible site in N-terminal region of C1-inhibitor is very close to the cleavage sites of some other proteases that are able to induce N-terminal proteolysis of the protein.
Collapse
Affiliation(s)
- Marijan Gerencer
- Tissue typing Centre, Department of Cellular Immunology, University Hospital KBC, HR-10000 Zagreb, Kispaticeva 12, Croatia.
| | | |
Collapse
|
46
|
Lin YC, Beck Z, Morris GM, Olson AJ, Elder JH. Structural basis for distinctions between substrate and inhibitor specificities for feline immunodeficiency virus and human immunodeficiency virus proteases. J Virol 2003; 77:6589-600. [PMID: 12767979 PMCID: PMC156162 DOI: 10.1128/jvi.77.12.6589-6600.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used feline immunodeficiency virus (FIV) protease (PR) as a mutational framework to define determinants for the observed substrate and inhibitor specificity distinctions between FIV and human immunodeficiency virus (HIV) PRs. Multiple-substitution mutants were constructed by replacing the residues in and around the active site of FIV PR with the structurally equivalent residues of HIV-1 PR. Mutants included combinations of three critical regions (FIV numbering, with equivalent HIV numbering in superscript): I37(32)V in the active core region; N55(46)M, M56(47)I, and V59(50)I in the flap region; and L97(80)T, I98(81)P, Q99(82)V, P100(83)N, and L101(84)I in the 90s loop region. Significant alterations in specificity were observed, consistent with the involvement of these residues in determining the substrate-inhibitor specificity distinctions between FIV and HIV PRs. Two previously identified residues, I35 and I57 of FIV PR, were intolerant to substitution and yielded inactive PRs. Therefore, we attempted to recover the activity by introducing secondary mutations. The addition of G62(53)F and K63(54)I, located at the top of the flap and outside the active site, compensated for the activity lost in the I57(48)G substitution mutants. An additional two substitutions, D105(88)N and N88(74)T, facilitated recovery of activity in mutants that included the I35(30)D substitution. Determination of K(i) values of potent HIV-1 PR inhibitors against these mutants showed that inhibitor specificity paralleled that of HIV-1 PR. The findings indicate that maintenance of both substrate and inhibitor specificity is a function of interactions between residues both inside and outside the active site. Thus, mutations apparently peripheral to the active site can have a dramatic influence on inhibitor efficacy.
Collapse
Affiliation(s)
- Ying-Chuan Lin
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
The field of combinatorial peptide chemistry has emerged as a powerful tool in the study of many biological systems. This review focuses on combinatorial peptide library methodology, which includes biological library methods, spatially addressable parallel library methods, library methods requiring deconvolution, the "one-bead one-compound" library method, and affinity chromatography selection method. These peptide libraries have successfully been employed to study a vast array of cell surface receptors, as well as have been useful in identifying protein kinase substrates and inhibitors. In recent immunobiological applications, peptide libraries have proven monumental in the definition of MHC anchor residues, in lymphocyte epitope mapping, and in the development of peptide vaccines. Peptides identified from such libraries, when presented in a chemical microarray format, may prove useful in immunodiagnostics. Combinatorial peptide libraries offer a high-throughput approach to study limitless biological targets. Peptides discovered from such studies may be therapeutically and diagnostically useful agents.
Collapse
Affiliation(s)
- Ruiwu Liu
- UC Davis Cancer Center, Division of Hematology/Oncology, and Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | | | | |
Collapse
|
48
|
Fehér A, Weber IT, Bagossi P, Boross P, Mahalingam B, Louis JM, Copeland TD, Torshin IY, Harrison RW, Tözsér J. Effect of sequence polymorphism and drug resistance on two HIV-1 Gag processing sites. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4114-20. [PMID: 12180988 DOI: 10.1046/j.1432-1033.2002.03105.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The HIV-1 proteinase (PR) has proved to be a good target for antiretroviral therapy of AIDS, and various PR inhibitors are now in clinical use. However, there is a rapid selection of viral variants bearing mutations in the proteinase that are resistant to clinical inhibitors. Drug resistance also involves mutations of the nucleocapsid/p1 and p1/p6 cleavage sites of Gag, both in vitro and in vivo. Cleavages at these sites have been shown to be rate limiting steps for polyprotein processing and viral maturation. Furthermore, these sites show significant sequence polymorphism, which also may have an impact on virion infectivity. We have studied the hydrolysis of oligopeptides representing these cleavage sites with representative mutations found as natural variations or that arise as resistant mutations. Wild-type and five drug resistant PRs with mutations within or outside the substrate binding site were tested. While the natural variations showed either increased or decreased susceptibility of peptides toward the proteinases, the resistant mutations always had a beneficial effect on catalytic efficiency. Comparison of the specificity changes obtained for the various substrates suggested that the maximization of the van der Waals contacts between substrate and PR is the major determinant of specificity: the same effect is crucial for inhibitor potency. The natural nucleocapsid/p1 and p1/p6 sites do not appear to be optimized for rapid hydrolysis. Hence, mutation of these rate limiting cleavage sites can partly compensate for the reduced catalytic activity of drug resistant mutant HIV-1 proteinases.
Collapse
Affiliation(s)
- Anita Fehér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Phage display substrate enables rapid determination of protease specificity by exposing vast numbers of recombinant peptides to a given protease. Peptides released through specific cleavage are amplified in an expression system. Phage display substrate has been widely exploited and developed further. The number of proteases (from various sources) characterized by this approach testifies to its power. To conserve their advantage over chemical methods, however, phage libraries must be constructed accordingly. The current phenomenal progress in genomics steadily increases the number of protease to be studied. Phage display substrate should prove a powerful method to exploit this wealth of new knowledge.
Collapse
|
50
|
Dauber DS, Ziermann R, Parkin N, Maly DJ, Mahrus S, Harris JL, Ellman JA, Petropoulos C, Craik CS. Altered substrate specificity of drug-resistant human immunodeficiency virus type 1 protease. J Virol 2002; 76:1359-68. [PMID: 11773410 PMCID: PMC135855 DOI: 10.1128/jvi.76.3.1359-1368.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2001] [Accepted: 10/29/2001] [Indexed: 11/20/2022] Open
Abstract
Resistance to human immunodeficiency virus type 1 protease (HIV PR) inhibitors results primarily from the selection of multiple mutations in the protease region. Because many of these mutations are selected for the ability to decrease inhibitor binding in the active site, they also affect substrate binding and potentially substrate specificity. This work investigates the substrate specificity of a panel of clinically derived protease inhibitor-resistant HIV PR variants. To compare protease specificity, we have used positional-scanning, synthetic combinatorial peptide libraries as well as a select number of individual substrates. The subsite preferences of wild-type HIV PR determined by using the substrate libraries are consistent with prior reports, validating the use of these libraries to compare specificity among a panel of HIV PR variants. Five out of seven protease variants demonstrated subtle differences in specificity that may have significant impacts on their abilities to function in viral maturation. Of these, four variants demonstrated up to fourfold changes in the preference for valine relative to alanine at position P2 when tested on individual peptide substrates. This change correlated with a common mutation in the viral NC/p1 cleavage site. These mutations may represent a mechanism by which severely compromised, drug-resistant viral strains can increase fitness levels. Understanding the altered substrate specificity of drug-resistant HIV PR should be valuable in the design of future generations of protease inhibitors as well as in elucidating the molecular basis of regulation of proteolysis in HIV.
Collapse
Affiliation(s)
- Deborah S Dauber
- Graduate Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|