1
|
Hu M, Li WF, Wu T, Yang Y, Chen G, Chen T, Liu Y, Mei Y, Wu D, Wei Y, Luo T, Zhang HJ, Li YP. Identification of an Arylnaphthalene Lignan Derivative as an Inhibitor against Dengue Virus Serotypes 1 to 4 (DENV-1 to -4) Using a Newly Developed DENV-3 Infectious Clone and Replicon. Microbiol Spectr 2023; 11:e0042323. [PMID: 37378517 PMCID: PMC10434217 DOI: 10.1128/spectrum.00423-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Dengue virus (DENV) is the most widespread arbovirus, causing symptoms ranging from dengue fever to severe dengue, including hemorrhagic fever and shock syndrome. Four serotypes of DENV (DENV-1 to -4) can infect humans; however, no anti-DENV drug is available. To facilitate the study of antivirals and viral pathogenesis, here we developed an infectious clone and a subgenomic replicon of DENV-3 strains for anti-DENV drug discovery by screening a synthetic compound library. The viral cDNA was amplified from a serum sample from a DENV-3-infected individual during the 2019 epidemic; however, fragments containing the prM-E-partial NS1 region could not be cloned until a DENV-3 consensus sequence with 19 synonymous substitutions was introduced to reduce putative Escherichia coli promoter activity. Transfection of the resulting cDNA clone, plasmid DV3syn, released an infectious virus titer of 2.2 × 102 focus-forming units (FFU)/mL. Through serial passages, four adaptive mutations (4M) were identified, and addition of 4M generated recombinant DV3syn_4M, which produced viral titers ranging from 1.5 × 104 to 6.7 × 104 FFU/mL and remained genetically stable in transformant bacteria. Additionally, we constructed a DENV-3 subgenomic replicon and screened an arylnaphthalene lignan library, from which C169-P1 was identified as exhibiting inhibitory effects on viral replicon. A time-of-drug addition assay revealed that C169-P1 also impeded the internalization process of cell entry. Furthermore, we demonstrated that C169-P1 inhibited the infectivity of DV3syn_4M, as well as DENV-1, DENV-2, and DENV-4, in a dose-dependent manner. This study provides an infectious clone and a replicon for the study of DENV-3 and a candidate compound for future development against DENV-1 to -4 infections. IMPORTANCE Dengue virus (DENV) is the most prevalent mosquito-transmitted virus, and there is no an anti-dengue drug. Reverse genetic systems representative of different serotype viruses are invaluable tools for the study of viral pathogenesis and antiviral drugs. Here, we developed an efficient infectious clone of a clinical DENV-3 genotype III isolate. We successfully overcame the instability of flavivirus genome-length cDNA in transformant bacteria, an unsolved issue for construction of cDNA clones of flaviviruses, and adapted this clone to efficiently produce infectious viruses following plasmid transfection of cell culture. Moreover, we constructed a DENV-3 subgenomic replicon and screened a compound library. An arylnaphthalene lignan, C169-P1, was identified as an inhibitor of virus replication and cell entry. Finally, we demonstrated that C169-P1 exhibited a broad-spectrum antiviral effect against the infections with DENV-1 to -4. The reverse genetic systems and the compound candidate described here facilitate the study of DENV and related RNA viruses.
Collapse
Affiliation(s)
- Mingyue Hu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, China
| | - Wan-Fei Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Tiantian Wu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yang Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guoquan Chen
- College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, China
| | - Tongling Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yongchen Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaqing Mei
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - De Wu
- Institute of Pathogenic Microbiology, Center for Disease Control and Prevention of Guangdong, Guangzhou, China
| | - Youchuan Wei
- College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, China
| | - Tingrong Luo
- College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, China
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Cloning of Maize TED Transposon into Escherichia coli Reveals the Polychromatic Sequence Landscape of Refractorily Propagated Plasmids. Int J Mol Sci 2022; 23:ijms231911993. [PMID: 36233292 PMCID: PMC9569675 DOI: 10.3390/ijms231911993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
MuDR, the founder member of the Mutator superfamily and its MURA transcripts, has been identified as toxic sequences to Escherichia coli (E. coli), which heavily hindered the elucidation of the biochemical features of MURA transposase and confined the broader application of the Mutator system in other organisms. To harness less constrained systems as alternatives, we attempted to clone TED and Jittery, two recently isolated autonomous Mutator-like elements (MULEs) from maize, respectively. Their full-length transcripts and genomic copies are successfully cloned when the incubation time for bacteria to recover from heat shock is extended appropriately prior to plating. However, during their proliferation in E. coli, TED transformed plasmids are unstable, as evidenced by derivatives from which frameshift, deletion mutations, or IS transposon insertions are readily detected. Our results suggest that neither leaky expression of the transposase nor the presence of terminal inverse repeats (TIRs) are responsible for the cloning barriers, which were once ascribed to the presence of the Shine–Dalgarno-like sequence. Instead, the internal sequence of TED (from 1250 to 2845 bp), especially the exons in this region, was the most likely causer. The findings provide novel insights into the property and function of the Mutator superfamily and shed light on the dissection of toxic effects on cloning from MULEs.
Collapse
|
3
|
Reverse genetics in virology: A double edged sword. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Lindenbach BD. Reinventing positive-strand RNA virus reverse genetics. Adv Virus Res 2022; 112:1-29. [PMID: 35840179 PMCID: PMC9273853 DOI: 10.1016/bs.aivir.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Reverse genetics is the prospective analysis of how genotype determines phenotype. In a typical experiment, a researcher alters a viral genome, then observes the phenotypic outcome. Among RNA viruses, this approach was first applied to positive-strand RNA viruses in the mid-1970s and over nearly 50 years has become a powerful and widely used approach for dissecting the mechanisms of viral replication and pathogenesis. During this time the global health importance of two virus groups, flaviviruses (genus Flavivirus, family Flaviviridae) and betacoronaviruses (genus Betacoronavirus, subfamily Orthocoronavirinae, family Coronaviridae), have dramatically increased, yet these viruses have genomes that are technically challenging to manipulate. As a result, several new techniques have been developed to overcome these challenges. Here I briefly review key historical aspects of positive-strand RNA virus reverse genetics, describe some recent reverse genetic innovations, particularly as applied to flaviviruses and coronaviruses, and discuss their benefits and limitations within the larger context of rigorous genetic analysis.
Collapse
|
5
|
Lei Y, Takeda K, Yu L. Impaired heterologous protein-protein interaction is an essential cause for non-viability of WNV/DENV recombinants. Virology 2018; 524:140-150. [PMID: 30195251 DOI: 10.1016/j.virol.2018.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
Flavivirus RNA replication starts at 3'-end, where it folds into a highly conserved stem-loop structure. We attempted to identify the viral non-structural proteins (NSPs) that might specifically interact with the 3'-stemloop (3'SL) through a genetic approach. WNV/DENV2 chimeric recombinants that contain Dengue2 (DENV2) gene(s) in West Nile virus (WNV) backbone were tested for replication competence. Three of seven recombinant viruses, containing the DENV2 NS1, NS2A, or NS4B gene and terminated with a mutated 3'SL (MutC 3'SL), were viable. Of these three, only those bearing the DENV2 NS1 and NS2A substitutions remained infectious when the MutC 3'SL was replaced by the wildtype WNV 3'SL. However, none of the seven chimeric recombinants bearing the DENV2 3'SL were viable. We then investigated the causes for failed replication of WNV/DENV2 chimeric recombinants. Proteolytic cleavage of NS polyproteins was defective by heterologous protease NS2B/3, but was efficient by homologous DENV2 NS2B/3 protease. Whereas, the heterologous polyproteins that contained DENV2 homologous protease were found to produce abnormal vesicles. WNV/DENV2 recombinants expressing the DENV2 homologous protease did not produce infectious virus either. We examined NS protein-protein interaction (PPI) and found that heterologous PPI (hPPI) between WNV and DENV2 NSPs were impaired to various degrees. Insufficient PPIs occurred mainly between heterologous NS2B and NS3; NS2B and NS4A; NS3 and NS5, correlating to those non-viability of substitution mutants. Our results indicate that impaired PPI may decrease protease activity and affect vesicle formation, and is the essential cause for non-viability of the WNV/DENV2 recombinants.
Collapse
Affiliation(s)
- Yingfen Lei
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, MD 20852, USA; Department of Microbiology, The Fourth Military Medical University, 17 Changle Xilu, Xi'an, Shaanxi 710032, PR China
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Office of Vaccines Research and Review Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Li Yu
- Division of Viral Products, Office of Vaccines Research and Review Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
6
|
Characterization of cis-Acting RNA Elements of Zika Virus by Using a Self-Splicing Ribozyme-Dependent Infectious Clone. J Virol 2017; 91:JVI.00484-17. [PMID: 28814522 DOI: 10.1128/jvi.00484-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 07/27/2017] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) has caused significant outbreaks and epidemics in the Americas recently, raising global concern due to its ability to cause microcephaly and other neurological complications. A stable and efficient infectious clone of ZIKV is urgently needed. However, the instability and toxicity of flavivirus cDNA clones in Escherichia coli hosts has hindered the development of ZIKV infectious clones. Here, using a novel self-splicing ribozyme-based strategy, we generated a stable infectious cDNA clone of a contemporary ZIKV strain imported from Venezuela to China in 2016. The constructed clone contained a modified version of the group II self-splicing intron P.li.LSUI2 near the junction between the E and NS1 genes, which were removed from the RNA transcripts by an easy-to-establish in vitro splicing reaction. Transfection of the spliced RNAs into BHK-21 cells led to the production of infectious progeny virus that resembled the parental virus. Finally, potential cis-acting RNA elements in ZIKV genomic RNA were identified based on this novel reverse genetics system, and the critical role of 5'-SLA promoter and 5'-3' cyclization sequences were characterized by a combination of different assays. Our results provide another stable and reliable reverse genetics system for ZIKV that will help study ZIKV infection and pathogenesis, and the novel self-splicing intron-based strategy could be further expanded for the construction of infectious clones from other emerging and reemerging flaviviruses.IMPORTANCE The ongoing Zika virus (ZIKV) outbreaks have drawn global concern due to the unexpected causal link to fetus microcephaly and other severe neurological complications. The infectious cDNA clones of ZIKV are critical for the research community to study the virus, understand the disease, and inform vaccine design and antiviral screening. A panel of existing technologies have been utilized to develop ZIKV infectious clones. Here, we successfully generated a stable infectious clone of a 2016 ZIKV strain using a novel self-splicing ribozyme-based technology that abolished the potential toxicity of ZIKV cDNA clones to the E. coli host. Moreover, two crucial cis-acting replication elements (5'-SLA and 5'-CS) of ZIKV were first identified using this novel reverse genetics system. This novel self-splicing ribozyme-based reverse genetics platform will be widely utilized in future ZIKV studies and provide insight for the development of infectious clones of other emerging viruses.
Collapse
|
7
|
Kobayashi S, Yoshii K, Hirano M, Muto M, Kariwa H. A novel reverse genetics system for production of infectious West Nile virus using homologous recombination in mammalian cells. J Virol Methods 2016; 240:14-20. [PMID: 27865748 DOI: 10.1016/j.jviromet.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 11/16/2022]
Abstract
Reverse genetics systems facilitate investigation of many aspects of the life cycle and pathogenesis of viruses. However, genetic instability in Escherichia coli has hampered development of a reverse genetics system for West Nile virus (WNV). In this study, we developed a novel reverse genetics system for WNV based on homologous recombination in mammalian cells. Introduction of the DNA fragment coding for the WNV structural protein together with a DNA-based replicon resulted in the release of infectious WNV. The growth rate and plaque size of the recombinant virus were almost identical to those of the parent WNV. Furthermore, chimeric WNV was produced by introducing the DNA fragment coding for the structural protein and replicon plasmid derived from various strains. Here, we report development of a novel system that will facilitate research into WNV infection.
Collapse
Affiliation(s)
- Shintaro Kobayashi
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan.
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Minato Hirano
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Memi Muto
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
8
|
Yamshchikov V, Manuvakhova M, Rodriguez E, Hébert C. Development of a human live attenuated West Nile infectious DNA vaccine: Identification of a minimal mutation set conferring the attenuation level acceptable for a human vaccine. Virology 2016; 500:122-129. [PMID: 27816638 DOI: 10.1016/j.virol.2016.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 10/20/2022]
Abstract
For the development of a human West Nile (WN) infectious DNA (iDNA) vaccine, we created highly attenuated chimeric virus W1806 with the serological identity of highly virulent WN-NY99. Earlier, we attempted to utilize mutations found in the E protein of the SA14-14-2 vaccine to bring safety of W1806 to the level acceptable for human use (Yamshchikov et al., 2016). Here, we analyzed effects of the SA14-14-2 changes on growth properties and neurovirulence of W1806. A set including the E138K, K279M, K439R and G447D changes was identified as the perspective subset for satisfying the target safety profile without compromising immunogenicity of the vaccine candidate. The genetic stability of the attenuated phenotype was found to be unsatisfactory being dependent on a subset of attenuating changes incorporated in W1806. Elucidation of underlying mechanisms influencing selection of pathways for restoration of the envelope protein functionality will facilitate resolution of the emerged genetic stability issue.
Collapse
Affiliation(s)
| | | | - Efrain Rodriguez
- 2000 9th Avenue South, Southern Research, Birmingham, AL 35205, USA
| | - Charles Hébert
- 2000 9th Avenue South, Southern Research, Birmingham, AL 35205, USA
| |
Collapse
|
9
|
Szentpáli-Gavallér K, Lim SM, Dencső L, Bányai K, Koraka P, Osterhaus ADME, Martina BEE, Bakonyi T, Bálint Á. In Vitro and in Vivo Evaluation of Mutations in the NS Region of Lineage 2 West Nile Virus Associated with Neuroinvasiveness in a Mammalian Model. Viruses 2016; 8:v8020049. [PMID: 26907325 PMCID: PMC4776204 DOI: 10.3390/v8020049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 12/25/2022] Open
Abstract
West Nile virus (WNV) strains may differ significantly in neuroinvasiveness in vertebrate hosts. In contrast to genetic lineage 1 WNVs, molecular determinants of pathogenic lineage 2 strains have not been experimentally confirmed so far. A full-length infectious clone of a neurovirulent WNV lineage 2 strain (578/10; Central Europe) was generated and amino acid substitutions that have been shown to attenuate lineage 1 WNVs were introduced into the nonstructural proteins (NS1 (P250L), NS2A (A30P), NS3 (P249H) NS4B (P38G, C102S, E249G)). The mouse neuroinvasive phenotype of each mutant virus was examined following intraperitoneal inoculation of C57BL/6 mice. Only the NS1-P250L mutation was associated with a significant attenuation of virulence in mice compared to the wild-type. Multiplication kinetics in cell culture revealed significantly lower infectious virus titres for the NS1 mutant compared to the wild-type, as well as significantly lower amounts of positive and negative stranded RNA.
Collapse
Affiliation(s)
| | - Stephanie M Lim
- Viroscience Laboratory, Erasmus Medical Centre, 3015CN, Rotterdam, The Netherlands.
| | - László Dencső
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, H-1143, Budapest, Hungary.
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1143, Budapest, Hungary.
| | - Penelope Koraka
- Viroscience Laboratory, Erasmus Medical Centre, 3015CN, Rotterdam, The Netherlands.
| | | | - Byron E E Martina
- Viroscience Laboratory, Erasmus Medical Centre, 3015CN, Rotterdam, The Netherlands.
| | - Tamás Bakonyi
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science, Szent István University, H-1143, Budapest, Hungary.
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, A-1210, Vienna, Austria.
| | - Ádám Bálint
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, H-1143, Budapest, Hungary.
| |
Collapse
|
10
|
Abstract
WNV infectious clones are valuable tools for elucidating WNV biology. Nevertheless, relatively few infectious WNV clones have been generated because their construction is hampered by the instability of flaviviral genomes. More recently, advances in cloning techniques as well as the development of several two-plasmid WNV infectious clone systems have facilitated the generation of WNV infectious clones. Here we described a protocol for recovering WNV from a two-plasmid system. In this approach, large quantities of these constructs are digested with restriction enzymes to produce complementary restriction sites at the 3' end of the upstream fragment and the 5' end of the downstream fragment. These fragments are then annealed to produce linear template for in vitro transcription to synthesize infectious RNA. The resulting RNA is transfected into cells and after several days WNV is recovered in the culture supernatant. This method can be used to generate virus from infectious clones encoding high- and low-pathogenicity strains of WNV, as well as chimeric virues.
Collapse
|
11
|
Pavitrakar DV, Ayachit VM, Mundhra S, Bondre VP. Development and characterization of reverse genetics system for the Indian West Nile virus lineage 1 strain 68856. J Virol Methods 2015; 226:31-9. [DOI: 10.1016/j.jviromet.2015.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
|
12
|
Yamshchikov V, Manuvakhova M, Rodriguez E. Development of a human live attenuated West Nile infectious DNA vaccine: Suitability of attenuating mutations found in SA14-14-2 for WN vaccine design. Virology 2015; 487:198-206. [PMID: 26545140 DOI: 10.1016/j.virol.2015.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 01/21/2023]
Abstract
Direct attenuation of West Nile (WN) virus strain NY99 for the purpose of vaccine development is not feasible due to its high virulence and pathogenicity. Instead, we created highly attenuated chimeric virus W1806 with the serological identity of NY99. To further attenuate W1806, we investigated effects of mutations found in Japanese encephalitis virus vaccine SA14-14-2. WN viruses carrying all attenuating mutations lost infectivity in mammalian, but not in mosquito cells. No single reversion restored infectivity in mammalian cells, although increased infectivity in mosquito cells was observed. To identify a subset of mutations suitable for further attenuation of W1806, we analyzed effects of E138K and K279M changes on virulence, growth properties, and immunogenicity of derivatized W956, from which chimeric W1806 inherited its biological properties and attenuation profile. Despite strong dominant attenuating effect, introduction of only two mutations was not sufficient for attenuating W1806 to the safety level acceptable for human use.
Collapse
Affiliation(s)
| | - Marina Manuvakhova
- Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, United States
| | - Efrain Rodriguez
- Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, United States
| |
Collapse
|
13
|
Yamshchikov V. Development of a human live attenuated West Nile infectious DNA vaccine: conceptual design of the vaccine candidate. Virology 2015; 484:59-68. [PMID: 26071925 DOI: 10.1016/j.virol.2015.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/21/2015] [Accepted: 04/28/2015] [Indexed: 11/19/2022]
Abstract
West Nile virus has become an important epidemiological problem attracting significant attention of health authorities, mass media, and the public. Although there are promising advancements toward addressing the vaccine need, the perspectives of the commercial availability of the vaccine remain uncertain. To a large extent this is due to lack of a sustained interest for further commercial development of the vaccines already undergoing the preclinical and clinical development, and a predicted insignificant cost effectiveness of mass vaccination. There is a need for a safe, efficacious and cost effective vaccine, which can improve the feasibility of a targeted vaccination program. In the present report, we summarize the background, the rationale, and the choice of the development pathway that we selected for the design of a live attenuated human West Nile vaccine in a novel infectious DNA format.
Collapse
Affiliation(s)
- Vladimir Yamshchikov
- Southern Research, Division of Drug Discovery, Birmingham, Alabama, United States.
| |
Collapse
|
14
|
Santos JJDS, Cordeiro MT, Bertani GR, Marques ETDA, Gil LHVG. Construction and characterisation of a complete reverse genetics system of dengue virus type 3. Mem Inst Oswaldo Cruz 2015; 108:983-91. [PMID: 24402142 PMCID: PMC4005542 DOI: 10.1590/0074-0276130298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/12/2013] [Indexed: 11/27/2022] Open
Abstract
Dengue virulence and fitness are important factors that determine disease outcome.
However, dengue virus (DENV) molecular biology and pathogenesis are not completely
elucidated. New insights on those mechanisms have been facilitated by the development
of reverse genetic systems in the past decades. Unfortunately, instability of
flavivirus genomes cloned in Escherichia coli has been a major
problem in these systems. Here, we describe the development of a complete reverse
genetics system, based on the construction of an infectious clone and replicon for a
low passage DENV-3 genotype III of a clinical isolate. Both constructs were assembled
into a newly designed yeast- E. coli shuttle vector by homologous
recombination technique and propagated in yeast to prevent any possible genome
instability in E. coli . RNA transcripts derived from the infectious
clone are infectious upon transfection into BHK-21 cells even after repeated passages
of the plasmid in yeast. Transcript-derived DENV-3 exhibited growth kinetics,
focus formation size comparable to original DENV-3 in mosquito
C6/36 cell culture. In vitro characterisation of DENV-3 replicon confirmed its
identity and ability to replicate transiently in BHK-21 cells. The reverse genetics
system reported here is a valuable tool that will facilitate further molecular
studies in DENV replication, virus attenuation and pathogenesis.
Collapse
|
15
|
Flavivirus reverse genetic systems, construction techniques and applications: a historical perspective. Antiviral Res 2014; 114:67-85. [PMID: 25512228 PMCID: PMC7173292 DOI: 10.1016/j.antiviral.2014.12.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Abstract
The study of flaviviruses, which cause some of the most important emerging tropical and sub-tropical human arbovirus diseases, has greatly benefited from the use of reverse genetic systems since its first development for yellow fever virus in 1989. Reverse genetics technology has completely revolutionized the study of these viruses, making it possible to manipulate their genomes and evaluate the direct effects of these changes on their biology and pathogenesis. The most commonly used reverse genetics system is the infectious clone technology. Whilst flavivirus infectious clones provide a powerful tool, their construction as full-length cDNA molecules in bacterial vectors can be problematic, laborious and time consuming, because they are often unstable, contain unwanted induced substitutions and may be toxic for bacteria due to viral protein expression. The incredible technological advances that have been made during the past 30years, such as the use of PCR or new sequencing methods, have allowed the development of new approaches to improve preexisting systems or elaborate new strategies that overcome these problems. This review summarizes the evolution and major technical breakthroughs in the development of flavivirus reverse genetics technologies and their application to the further understanding and control of these viruses and their diseases.
Collapse
|
16
|
Santos JJS, Cordeiro MT, Bertani GR, Marques ETA, Gil LHVG. A two-plasmid strategy for engineering a dengue virus type 3 infectious clone from primary Brazilian isolate. AN ACAD BRAS CIENC 2014; 86:1749-59. [PMID: 25590713 DOI: 10.1590/0001-3765201420130332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 05/05/2014] [Indexed: 11/22/2022] Open
Abstract
Dengue infections represent one of the most prevalent arthropod-borne diseases worldwide, causing a wide spectrum of clinical outcomes. Engineered infectious clone is an important tool to study Dengue virus (DENV) biology. Functional full-length cDNA clones have been constructed for many positive-strand RNA viruses and have provided valuable tools for studying the molecular mechanisms involved in viral genome replication, virion assembly, virus pathogenesis and vaccine development. We report herein the successful development of an infectious clone from a primary Brazilian isolate of dengue virus 3 (DENV3) of the genotype III. Using a two-plasmid strategy, DENV3 genome was divided in two parts and cloned separately into a yeast-bacteria shuttle vector. All plasmids were assembled in yeast by homologous recombination technique and a full-length template for transcription was obtained by in vitro ligation of the two parts of the genome. Transcript-derived DENV3 is infectious upon transfection into BHK-21 cells and in vitro characterization confirmed its identity. Growth kinetics of transcript-derived DENV3 was indistinguishable from wild type DENV3. This system is a powerful tool that will help shed light on molecular features of DENV biology, as the relationship of specific mutations and DENV pathogenesis.
Collapse
Affiliation(s)
- Jefferson J S Santos
- Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães, FIOCRUZ, Recife, PE, Brasil
| | - Marli T Cordeiro
- Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães, FIOCRUZ, Recife, PE, Brasil
| | - Giovani R Bertani
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Ernesto T A Marques
- Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães, FIOCRUZ, Recife, PE, Brasil
| | - Laura H V G Gil
- Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães, FIOCRUZ, Recife, PE, Brasil
| |
Collapse
|
17
|
RNA virus reverse genetics and vaccine design. Viruses 2014; 6:2531-50. [PMID: 24967693 PMCID: PMC4113782 DOI: 10.3390/v6072531] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/22/2022] Open
Abstract
RNA viruses are capable of rapid spread and severe or potentially lethal disease in both animals and humans. The development of reverse genetics systems for manipulation and study of RNA virus genomes has provided platforms for designing and optimizing viral mutants for vaccine development. Here, we review the impact of RNA virus reverse genetics systems on past and current efforts to design effective and safe viral therapeutics and vaccines.
Collapse
|
18
|
Zemla A, Kostova T, Gorchakov R, Volkova E, Beasley DWC, Cardosa J, Weaver SC, Vasilakis N, Naraghi-Arani P. GeneSV - an Approach to Help Characterize Possible Variations in Genomic and Protein Sequences. Bioinform Biol Insights 2014; 8:1-16. [PMID: 24453480 PMCID: PMC3893053 DOI: 10.4137/bbi.s13076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 01/13/2023] Open
Abstract
A computational approach for identification and assessment of genomic sequence variability (GeneSV) is described. For a given nucleotide sequence, GeneSV collects information about the permissible nucleotide variability (changes that potentially preserve function) observed in corresponding regions in genomic sequences, and combines it with conservation/variability results from protein sequence and structure-based analyses of evaluated protein coding regions. GeneSV was used to predict effects (functional vs. non-functional) of 37 amino acid substitutions on the NS5 polymerase (RdRp) of dengue virus type 2 (DENV-2), 36 of which are not observed in any publicly available DENV-2 sequence. 32 novel mutants with single amino acid substitutions in the RdRp were generated using a DENV-2 reverse genetics system. In 81% (26 of 32) of predictions tested, GeneSV correctly predicted viability of introduced mutations. In 4 of 5 (80%) mutants with double amino acid substitutions proximal in structure to one another GeneSV was also correct in its predictions. Predictive capabilities of the developed system were illustrated on dengue RNA virus, but described in the manuscript a general approach to characterize real or theoretically possible variations in genomic and protein sequences can be applied to any organism.
Collapse
Affiliation(s)
- Adam Zemla
- Computing Application and Research Department, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Tanya Kostova
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory
| | - Rodion Gorchakov
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA. ; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609. ; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Evgeniya Volkova
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA. ; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609. ; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - David W C Beasley
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA. ; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609. ; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA. ; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Jane Cardosa
- Sentinext Therapeutics Sdn Bhd, Penang, Malaysia
| | - Scott C Weaver
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA. ; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609. ; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Nikos Vasilakis
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA. ; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609. ; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Pejman Naraghi-Arani
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| |
Collapse
|
19
|
Replication cycle and molecular biology of the West Nile virus. Viruses 2013; 6:13-53. [PMID: 24378320 PMCID: PMC3917430 DOI: 10.3390/v6010013] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 12/27/2022] Open
Abstract
West Nile virus (WNV) is a member of the genus Flavivirus in the family Flaviviridae. Flaviviruses replicate in the cytoplasm of infected cells and modify the host cell environment. Although much has been learned about virion structure and virion-endosomal membrane fusion, the cell receptor(s) used have not been definitively identified and little is known about the early stages of the virus replication cycle. Members of the genus Flavivirus differ from members of the two other genera of the family by the lack of a genomic internal ribosomal entry sequence and the creation of invaginations in the ER membrane rather than double-membrane vesicles that are used as the sites of exponential genome synthesis. The WNV genome 3' and 5' sequences that form the long distance RNA-RNA interaction required for minus strand initiation have been identified and contact sites on the 5' RNA stem loop for NS5 have been mapped. Structures obtained for many of the viral proteins have provided information relevant to their functions. Viral nonstructural protein interactions are complex and some may occur only in infected cells. Although interactions between many cellular proteins and virus components have been identified, the functions of most of these interactions have not been delineated.
Collapse
|
20
|
Increased early RNA replication by chimeric West Nile virus W956IC leads to IPS-1-mediated activation of NF-κB and insufficient virus-mediated counteraction of the resulting canonical type I interferon signaling. J Virol 2013; 87:7952-65. [PMID: 23678179 DOI: 10.1128/jvi.02842-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although infections with "natural" West Nile virus (WNV) and the chimeric W956IC WNV infectious clone virus produce comparable peak virus yields in type I interferon (IFN) response-deficient BHK cells, W956IC infection produces higher levels of "unprotected" viral RNA at early times after infection. Analysis of infections with these two viruses in IFN-competent cells showed that W956IC activated NF-κB, induced higher levels of IFN-β, and produced lower virus yields than WNV strain Eg101. IPS-1 was required for both increased induction of IFN-β and decreased yields of W956IC. In Eg101-infected cells, phospho-STAT1/STAT2 nuclear translocation was blocked at all times analyzed, while some phospho-STAT1/STAT2 nuclear translocation was still detected at 8 h after infection in W956IC-infected mouse embryonic fibroblasts (MEFs), and early viral protein levels were lower in these cells. A set of additional chimeras was made by replacing various W956IC gene regions with the Eg101 equivalents. As reported previously, for three of these chimeras, the low early RNA phenotype of Eg101 was restored in BHK cells. Analysis of infections with two of these chimeric viruses in MEFs detected lower early viral RNA levels, higher early viral protein levels, lower early IFN-β levels, and higher virus yields similar to those seen after Eg101 infection. The data suggest that replicase protein interactions directly or indirectly regulate genome switching between replication and translation at early times in favor of translation to minimize NF-κB activation and IFN induction by decreasing the amount of unprotected viral RNA, to produce sufficient viral protein to block canonical type I IFN signaling, and to efficiently remodel cell membranes for exponential genome amplification.
Collapse
|
21
|
Identification of cis-acting nucleotides and a structural feature in West Nile virus 3'-terminus RNA that facilitate viral minus strand RNA synthesis. J Virol 2013; 87:7622-36. [PMID: 23637406 DOI: 10.1128/jvi.00212-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The 3'-terminal nucleotides (nt) of West Nile virus (WNV) genomic RNA form a penultimate 16-nt small stem-loop (SSL) and an 80-nt terminal stem-loop (SL). These RNA structures are conserved in divergent flavivirus genomes. A previous in vitro study using truncated WNV 3' RNA structures predicted a putative tertiary interaction between the 5' side of the 3'-terminal SL and the loop of the SSL. Although substitution or deletion of the 3' G (nt 87) within the SSL loop, which forms the only G-C pair in the predicted tertiary interaction, in a WNV infectious clone was lethal, a finding consistent with the involvement in a functionally relevant pseudoknot interaction, extensive mutagenesis of nucleotides in the terminal SL did not identify a cis-acting pairing partner for this SSL 3' G. However, both the sequence and the structural context of two adjacent base pairs flanked by symmetrical internal loops in the 3'-terminal SL were shown to be required for efficient viral RNA replication. Nuclear magnetic resonance analysis confirmed the predicted SSL and SL structures but not the tertiary interaction. The SSL was previously reported to contain one of three eEF1A binding sites, and G87 in the SSL loop was shown to be involved in eEF1A binding. The nucleotides at the bottom part of the 3'-terminal SL switch between 3' RNA-RNA and 3'-5' RNA-RNA interactions. The data suggest that interaction of the 3' SL RNA with eEF1A at three sites and a unique metastable structural feature may participate in regulating structural changes in the 3'-terminal SL.
Collapse
|
22
|
Li SH, Li XF, Zhao H, Deng YQ, Yu XD, Zhu SY, Jiang T, Ye Q, Qin ED, Qin CF. Development and characterization of the replicon system of Japanese encephalitis live vaccine virus SA14-14-2. Virol J 2013; 10:64. [PMID: 23442449 PMCID: PMC3608946 DOI: 10.1186/1743-422x-10-64] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/22/2013] [Indexed: 11/17/2022] Open
Abstract
Background Viral self-replicating sub-genomic replicons represent a powerful tool for studying viral genome replication, antiviral screening and chimeric vaccine development. Many kinds of flavivirus replicons have been developed with broad applications. Findings The replicon system of JEV live vaccine strain SA14-14-2 was successfully developed in this study. Two kinds of replicons that express enhanced green fluorescent protein (EGFP) and Renilla luciferase (R.luc) were constructed under the control of SP6 promoter, respectively. Robust EGFP and R.luc signals could be detected in the replicon-transfected BHK-21 cells. Furthermore, the potential effects of selected amino acids in the C-terminal of envelope protein on replication were characterized using the replicon system. Conclusions Our results provide a useful platform not only for the study of JEV replication, but also for antiviral screening and chimeric vaccine development.
Collapse
Affiliation(s)
- Shi-Hua Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Construction of self-replicating subgenomic West Nile virus replicons for screening antiviral compounds. Methods Mol Biol 2013; 1030:283-99. [PMID: 23821276 DOI: 10.1007/978-1-62703-484-5_22] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mosquito-borne flavivirus RNA genomes encode one long open reading frame flanking 5'- and 3'-untranslated regions (5'- and 3'-UTRs) which contain cis-acting RNA elements playing important roles for viral RNA translation and replication. The viral RNA encodes a single polyprotein, which is processed into three structural proteins and seven nonstructural (NS) proteins. The regions coding for the seven NS proteins are sufficient for replication of the RNA. The sequences encoding the structural genes can be deleted except for two short regions. The first one encompasses 32 amino acid (aa) residues from the N-terminal coding sequence of capsid (C) and the second, 27 aa region from the C-terminus of envelope (E) protein. The deleted region can be substituted with a gene coding for a readily quantifiable reporter to give rise to a subgenomic reporter replicon. Replicons containing a variety of reporter genes and marker genes for construction of stable mammalian cell lines are valuable reagents for studying the effects of mutations in translation and/or replication in isolation from processes like the entry and assembly of the virus particles. Here we describe the construction of two West Nile virus (WNV) replicons by overlap extension PCR and standard recombinant DNA techniques. One has a Renilla luciferase (Rluc) reporter gene followed by an internal ribosome entry site (element) for cap-independent translation of the open reading frame encompassing the carboxy-terminal sequence of E to NS5. The second replicon has in tandem the Rluc gene, foot and mouth disease virus 2A, and neomycin phosphotransferase gene that allows establishment of a stable mammalian cell line expressing the Rluc reporter in the presence of the neomycin analog, G418. The stable replicon-expressing Vero cell line has been used for cell-based screening and determination of EC50 values for antiviral compounds that inhibited WNV replication.
Collapse
|
24
|
Capone G, Lucchese G, Calabrò M, Kanduc D. West Nile virus diagnosis and vaccination: using unique viral peptide sequences to evoke specific immune responses. Immunopharmacol Immunotoxicol 2012; 35:64-70. [DOI: 10.3109/08923973.2012.736521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Bahuon C, Desprès P, Pardigon N, Panthier JJ, Cordonnier N, Lowenski S, Richardson J, Zientara S, Lecollinet S. IS-98-ST1 West Nile virus derived from an infectious cDNA clone retains neuroinvasiveness and neurovirulence properties of the original virus. PLoS One 2012; 7:e47666. [PMID: 23110088 PMCID: PMC3479121 DOI: 10.1371/journal.pone.0047666] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/14/2012] [Indexed: 01/25/2023] Open
Abstract
Infectious clones of West Nile virus (WNV) have previously been generated and used to decipher the role of viral proteins in WNV virulence. The majority of molecular clones obtained to date have been derived from North American, Australian, or African isolates. Here, we describe the construction of an infectious cDNA clone of a Mediterranean WNV strain, IS-98-ST1. We characterized the biological properties of the recovered recombinant virus in cell culture and in mice. The growth kinetics of recombinant and parental WNV were similar in Vero cells. Moreover, the phenotype of recombinant and parental WNV was indistinguishable as regards viremia, viral load in the brain, and mortality in susceptible and resistant mice. Finally, the pathobiology of the infectious clone was examined in embryonated chicken eggs. The capacity of different WNV strains to replicate in embryonated chicken eggs closely paralleled their ability to replicate in mice, suggesting that inoculation of embryonated chicken eggs could provide a practical in vivo model for the study of WNV pathogenesis. In conclusion, the IS-98-ST1 infectious clone will allow assessment of the impact of selected mutations and novel genomic changes appearing in emerging European strains pathogenicity and endemic or epidemic potential. This will be invaluable in the context of an increasing number of outbreaks and enhanced severity of infections in the Mediterranean basin and Eastern Europe.
Collapse
Affiliation(s)
- Céline Bahuon
- UMR 1161 VIROLOGIE ANSES-INRA-ENVA, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Maisons-Alfort, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Capone G, Pagoni M, Delfino AP, Kanduc D. Evidence for a vast peptide overlap between West Nile virus and human proteomes. J Basic Microbiol 2012; 53:800-7. [PMID: 22961336 DOI: 10.1002/jobm.201200204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/15/2012] [Indexed: 11/08/2022]
Abstract
The primary amino acid sequence of West Nile virus (WNV) polyprotein, GenBank accession number M12294, was analyzed by computional biology. WNV is a mosquito-borne neurotropic flavivirus that has emerged globally as a significant cause of viral encephalitis in humans. Using pentapeptides as scanning units and the perfect peptide match program from PIR International Protein Sequence Database, we compared the WNV polyprotein and the human proteome. WNV polyprotein showed significant sequence similarities to a number of human proteins. Several of these proteins are involved in embryogenesis, neurite outgrowth, cortical neuron branching, formation of mature synapses, semaphorin interactions, and voltage dependent L-type calcium channel subunits. The biocomputional study suggest that common amino acid segments might represent a potential platform for further studies on the neurological pathophysiology of WNV infections.
Collapse
Affiliation(s)
- Giovanni Capone
- Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Bari, Italy
| | | | | | | |
Collapse
|
27
|
Melik W, Ellencrona K, Wigerius M, Hedström C, Elväng A, Johansson M. Two PDZ binding motifs within NS5 have roles in Tick-borne encephalitis virus replication. Virus Res 2012; 169:54-62. [PMID: 22796133 DOI: 10.1016/j.virusres.2012.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 11/16/2022]
Abstract
The flavivirus genus includes important human neurotropic pathogens like Tick-borne encephalitis virus (TBEV) and West-Nile virus (WNV). Flavivirus replication occurs at replication complexes, where the NS5 protein provides both RNA cap methyltransferase and RNA-dependent RNA polymerase activities. TBEVNS5 contains two PDZ binding motifs (PBMs) important for specific targeting of human PDZ proteins including Scribble, an association important for viral down regulation of cellular defense systems and neurite outgrowth. To determine whether the PBMs of TBEVNS5 affects virus replication we constructed a DNA based sub-genomic TBEV replicon expressing firefly luciferase. The PBMs within NS5 were mutated individually and in concert and the replicons were assayed in cell culture. Our results show that the replication rate was impaired in all mutants, which indicates that PDZ dependent host interactions influence TBEV replication. We also find that the C-terminal PBMs present in TBEVNS5 and WNVNS5 are targeting various human PDZ domain proteins. TBEVNS5 has affinity to Zonula occludens-2 (ZO-2), GIAP C-terminus interacting protein (GIPC), calcium/calmodulin-dependent serine protein kinase (CASK), glutamate receptor interacting protein 2, (GRIP2) and Interleukin 16 (IL-16). A different pattern was observed for WNVNS5 as it associate with a broader repertoire of putative host PDZ proteins.
Collapse
Affiliation(s)
- Wessam Melik
- School of Life Sciences, Södertörn University, S-141 89 Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
Mutational analysis of the West Nile virus NS4B protein. Virology 2012; 426:22-33. [PMID: 22314017 DOI: 10.1016/j.virol.2011.11.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 04/30/2011] [Accepted: 11/23/2011] [Indexed: 01/29/2023]
Abstract
West Nile virus NS4B is a small hydrophobic nonstructural protein approximately 27 kDa in size whose function is poorly understood. Amino acid substitutions were introduced into the NS4B protein primarily targeting two distinct regions; the N-terminal domain (residues 35 through 60) and the central hydrophobic domain (residues 95 through 120). Only the NS4B P38G substitution was associated with both temperature-sensitive and small-plaque phenotypes. Importantly, this mutation was found to attenuate neuroinvasiveness greater than 10,000,000-fold and lower viremia titers compared to the wild-type NY99 virus in a mouse model. Full genome sequencing of the NS4B P38G mutant virus revealed two unexpected mutations at NS4B T116I and NS3 N480H (P38G/T116I/N480H), however, neither mutation alone was temperature sensitive or attenuated in mice. Following incubation of P38G/T116I/N480H at 41°C, five mutants encoding compensatory substitutions in the NS4B protein exhibited a reduction in the temperature-sensitive phenotype and reversion to a virulent phenotype in the mouse model.
Collapse
|
29
|
West nile virus infections suppress early viral RNA synthesis and avoid inducing the cell stress granule response. J Virol 2012; 86:3647-57. [PMID: 22258263 DOI: 10.1128/jvi.06549-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
West Nile virus (WNV) recently became endemic in the United States and is a significant cause of human morbidity and mortality. Natural WNV strain infections do not induce stress granules (SGs), while W956IC (a lineage 2/1 chimeric WNV infectious clone) virus infections produce high levels of early viral RNA and efficiently induce SGs through protein kinase R (PKR) activation. Additional WNV chimeric viruses made by replacing one or more W956IC genes with the lineage 1 Eg101 equivalent in the W956IC backbone were analyzed. The Eg-NS4b+5, Eg-NS1+3+4a, and Eg-NS1+4b+5 chimeras produced low levels of viral RNA at early times of infection and inefficiently induced SGs, suggesting the possibility that interactions between viral nonstructural proteins and/or between viral nonstructural proteins and cell proteins are involved in suppressing early viral RNA synthesis and membrane remodeling during natural WNV strain infections. Detection of exposed viral double-stranded RNA (dsRNA) in W956IC-infected cells suggested that the enhanced early viral RNA synthesis surpassed the available virus-induced membrane protection and allowed viral dsRNA to activate PKR.
Collapse
|
30
|
A novel approach for the rapid mutagenesis and directed evolution of the structural genes of west nile virus. J Virol 2012; 86:3501-12. [PMID: 22258236 DOI: 10.1128/jvi.06435-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Molecular clone technology has proven to be a powerful tool for investigating the life cycle of flaviviruses, their interactions with the host, and vaccine development. Despite the demonstrated utility of existing molecular clone strategies, the feasibility of employing these existing approaches in large-scale mutagenesis studies is limited by the technical challenges of manipulating relatively large molecular clone plasmids that can be quite unstable when propagated in bacteria. We have developed a novel strategy that provides an extremely rapid approach for the introduction of mutations into the structural genes of West Nile virus (WNV). The backbone of this technology is a truncated form of the genome into which DNA fragments harboring the structural genes are ligated and transfected directly into mammalian cells, bypassing entirely the requirement for cloning in bacteria. The transfection of cells with this system results in the rapid release of WNV that achieves a high titer (∼10(7) infectious units/ml in 48 h). The suitability of this approach for large-scale mutagenesis efforts was established in two ways. First, we constructed and characterized a library of variants encoding single defined amino acid substitutions at the 92 residues of the "pr" portion of the precursor-to-membrane (prM) protein. Analysis of a subset of these variants identified a mutation that conferred resistance to neutralization by an envelope protein-specific antibody. Second, we employed this approach to accelerate the identification of mutations that allow escape from neutralizing antibodies. Populations of WNV encoding random changes in the E protein were produced in the presence of a potent monoclonal antibody, E16. Viruses resistant to neutralization were identified in a single passage. Together, we have developed a simple and rapid approach to produce infectious WNV that accelerates the process of manipulating the genome to study the structure and function of the structural genes of this important human pathogen.
Collapse
|
31
|
Evans JD, Crown RA, Sohn JA, Seeger C. West Nile virus infection induces depletion of IFNAR1 protein levels. Viral Immunol 2011; 24:253-63. [PMID: 21830897 DOI: 10.1089/vim.2010.0126] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Productive virus infection requires evasion, inhibition, or subversion of innate immune responses. West Nile virus (WNV), a human pathogen that can cause symptomatic infections associated with meningitis and encephalitis, inhibits the interferon (IFN) signal transduction pathway by preventing phosphorylation of Janus kinases and STAT transcription factors. Inhibition of the IFN signal cascade abrogates activation of IFN-induced genes, thus attenuating an antiviral response. We investigated the mechanism responsible for this inhibition and found that WNV infection prevents accumulation of the IFN-α receptor subunit 1 (IFNAR1). The WNV-induced depletion of IFNAR1 was conserved across multiple cell types. Our results indicated that expression of WNV nonstructural proteins resulted in activated lysosomal and proteasomal protein degradation pathways independent of the unfolded protein response (UPR). Furthermore, WNV infection did not induce serine phosphorylation, a modification on IFNAR1 that precedes its natural turnover. These data demonstrate that WNV infection results in a reduction of IFNAR1 protein through a non-canonical protein degradation pathway, and may participate in the inhibition of the IFN response.
Collapse
Affiliation(s)
- Jared D Evans
- Institute for Cancer Research , Fox Chase Cancer Center, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
32
|
Elbahesh H, Scherbik SV, Brinton MA. West Nile virus infection does not induce PKR activation in rodent cells. Virology 2011; 421:51-60. [PMID: 21982595 DOI: 10.1016/j.virol.2011.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 05/21/2011] [Accepted: 08/14/2011] [Indexed: 11/16/2022]
Abstract
dsRNA-activated protein kinase (PKR) is activated by viral dsRNAs and phosphorylates eIF2a reducing translation of host and viral mRNA. Although infection with a chimeric West Nile virus (WNV) efficiently induced PKR and eIF2a phosphorylation, infections with natural lineage 1 or 2 strains did not. Investigation of the mechanism of suppression showed that among the cellular PKR inhibitor proteins tested, only Nck, known to interact with inactive PKR, colocalized and co-immunoprecipitated with PKR in WNV-infected cells and PKR phosphorylation did not increase in infected Nck1,2-/- cells. Several WNV stem-loop RNAs efficiently activated PKR in vitro but not in infected cells. WNV infection did not interfere with intracellular PKR activation by poly(I:C) and similar virus yields were produced by control and PKR-/- cells. The results indicate that PKR phosphorylation is not actively suppressed in WNV-infected cells but that PKR is not activated by the viral dsRNA in infected cells.
Collapse
Affiliation(s)
- H Elbahesh
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
33
|
Takano A, Yoshii K, Omori-Urabe Y, Yokozawa K, Kariwa H, Takashima I. Construction of a replicon and an infectious cDNA clone of the Sofjin strain of the Far-Eastern subtype of tick-borne encephalitis virus. Arch Virol 2011; 156:1931-41. [PMID: 21785855 DOI: 10.1007/s00705-011-1066-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 07/01/2011] [Indexed: 11/27/2022]
Abstract
Tick-borne encephalitis virus (TBEV) causes severe encephalitis in humans. The Sofjin-HO strain is the prototype strain of the TBEV Far-Eastern subtype and is highly pathogenic in a mouse model. In this study, we constructed replicons and infectious cDNA clones of the Sofjin-HO strain. The replication of the replicon RNA was confirmed, and infectious viruses were recovered from the infectious cDNA clone. The recombinant viruses showed similar virulence characteristics to those of the parental virus. While characterizing the replicon and infectious cDNA, several amino acid differences derived from cell culture adaptations were analysed. The amino acids differences at E position 496 and NS4A position 58 were found to affect viral replication. The Gly- or Ala-to-Glu substitution at E position 122 was shown to increase neuroinvasiveness in mice. These replicons and infectious cDNA clones are useful in revealing the viral molecular determinants involved in the replication and pathogenicity of TBEV.
Collapse
MESH Headings
- Animals
- Cell Line
- Cricetinae
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Encephalitis Viruses, Tick-Borne/classification
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/pathogenicity
- Encephalitis Viruses, Tick-Borne/physiology
- Encephalitis, Tick-Borne/virology
- Female
- Humans
- Mice
- Mice, Inbred C57BL
- Replicon
- Virulence
- Virus Replication
Collapse
Affiliation(s)
- Ayako Takano
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Li D, Aaskov J, Lott WB. Identification of a cryptic prokaryotic promoter within the cDNA encoding the 5' end of dengue virus RNA genome. PLoS One 2011; 6:e18197. [PMID: 21483867 PMCID: PMC3069047 DOI: 10.1371/journal.pone.0018197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/28/2011] [Indexed: 11/17/2022] Open
Abstract
Infectious cDNA clones of RNA viruses are important research tools, but flavivirus cDNA clones have proven difficult to assemble and propagate in bacteria. This has been attributed to genetic instability and/or host cell toxicity, however the mechanism leading to these difficulties has not been fully elucidated. Here we identify and characterize an efficient cryptic bacterial promoter in the cDNA encoding the dengue virus (DENV) 5' UTR. Following cryptic transcription in E. coli, protein expression initiated at a conserved in-frame AUG that is downstream from the authentic DENV initiation codon, yielding a DENV polyprotein fragment that was truncated at the N-terminus. A more complete understanding of constitutive viral protein expression in E. coli might help explain the cloning and propagation difficulties generally observed with flavivirus cDNA.
Collapse
Affiliation(s)
- Dongsheng Li
- Infectious Diseases Program, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | | | | |
Collapse
|
35
|
Basu M, Brinton MA. West Nile virus (WNV) genome RNAs with up to three adjacent mutations that disrupt long distance 5'-3' cyclization sequence basepairs are viable. Virology 2011; 412:220-32. [PMID: 21292293 DOI: 10.1016/j.virol.2011.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/19/2010] [Accepted: 01/06/2011] [Indexed: 12/30/2022]
Abstract
Mosquito-borne flavivirus genomes contain conserved 5' and 3' cyclization sequences (CYC) that facilitate long distance RNA-RNA interactions. In previous studies, flavivirus replicon RNA replication was completely inhibited by single or multiple mismatching CYC nt substitutions. In the present study, full-length WNV genomes with one, two or three mismatching CYC substitutions showed reduced replication efficiencies but were viable and generated revertants with increased replication efficiency. Several different three adjacent mismatching CYC substitution mutant RNAs were rescued by a second site mutation that created an additional basepair (nts 147-10913) on the internal genomic side of the 5'-3' CYC. The finding that full-length genomes with up to three mismatching CYC mutations are viable and can be rescued by a single nt spontaneous mutation indicates that more than three adjacent CYC basepair substitutions would be required to increase the safety of vaccine genomes by creating mismatches in inter-genomic recombinants.
Collapse
Affiliation(s)
- Mausumi Basu
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | | |
Collapse
|
36
|
Successful propagation of flavivirus infectious cDNAs by a novel method to reduce the cryptic bacterial promoter activity of virus genomes. J Virol 2011; 85:2927-41. [PMID: 21228244 DOI: 10.1128/jvi.01986-10] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reverse genetics is a powerful tool to study single-stranded RNA viruses. Despite tremendous efforts having been made to improve the methodology for constructing flavivirus cDNAs, the cause of toxicity of flavivirus cDNAs in bacteria remains unknown. Here we performed mutational analysis studies to identify Escherichia coli promoter (ECP) sequences within nucleotides (nt) 1 to 3000 of the dengue virus type 2 (DENV2) and Japanese encephalitis virus (JEV) genomes. Eight and four active ECPs were demonstrated within nt 1 to 3000 of the DENV2 and JEV genomes, respectively, using fusion constructs containing DENV2 or JEV segments and empty vector reporter gene Renilla luciferase. Full-length DENV2 and JEV cDNAs were obtained by inserting mutations reducing their ECP activity in bacteria without altering amino acid sequences. A severe cytopathic effect occurred when BHK21 cells were transfected with in vitro-transcribed RNAs from either a DENV2 cDNA clone with multiple silent mutations within the prM-E-NS1 region of dengue genome or a JEV cDNA clone with an A-to-C mutation at nt 90 of the JEV genome. The virions derived from the DENV2 or JEV cDNA clone exhibited infectivities similar to those of their parental viruses in C6/36 and BHK21 cells. A cis-acting element essential for virus replication was revealed by introducing silent mutations into the central portion (nt 160 to 243) of the core gene of DENV2 infectious cDNA or a subgenomic DENV2 replicon clone. This novel strategy of constructing DENV2 and JEV infectious clones could be applied to other flaviviruses or pathogenic RNA viruses to facilitate research in virology, viral pathogenesis, and vaccine development.
Collapse
|
37
|
Abstract
West Nile virus (WNV) infection leads to rapid and sustained Ca(2+) influx. This influx was observed with different strains of WNV and in different types of cells. Entry during virion endocytosis as well as through calcium channels contributed to the Ca(2+) influx observed in WNV-infected cells. Ca(2+) influx was not detected after infection with vesicular stomatitis virus (VSV) and occurred only through endocytosis in Sindbis virus-infected cells. Caspase 3 cleavage and activation of several kinases, including focal adhesion kinase (FAK), mitogen-activated extracellular signal-regulated protein kinase (ERK1/2), and protein-serine kinase B alpha (Akt), at early times after WNV infection were shown to be dependent on Ca(2+) influx. Although the activation of these kinases was sustained in virus-infected cells throughout infection, UV-inactivated WNV induced only a transient activation of FAK and ERK1/2 at early times after infection. The Ca(2+)-dependent FAK activation observed in WNV-infected cells was not mediated by alphavbeta3 integrins. Reduction of Ca(2+) influx at early times of infection by various treatments decreased the viral yield and delayed both the early transient caspase 3 cleavage and the activation of FAK, Akt, and ERK signaling. The results indicate that Ca(2+) influx is required for early infection events needed for efficient viral replication, possibly for virus-induced rearrangement of the endoplasmic reticulum (ER) membrane. Increased caspase 3 cleavage at both early (transient) and late times of infection correlated with decreased activation of the FAK and ERK1/2 pathways, indicating a role for these kinases in extending the survival of flavivirus-infected cells.
Collapse
|
38
|
Orlinger KK, Holzer GW, Schwaiger J, Mayrhofer J, Schmid K, Kistner O, Noel Barrett P, Falkner FG. An inactivated West Nile Virus vaccine derived from a chemically synthesized cDNA system. Vaccine 2010; 28:3318-24. [PMID: 20211218 PMCID: PMC7115638 DOI: 10.1016/j.vaccine.2010.02.092] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/17/2010] [Accepted: 02/19/2010] [Indexed: 01/29/2023]
Abstract
A cDNA comprising the complete genome of West Nile Virus (WNV) was generated by chemical synthesis using published sequence data, independent of any preformed viral components. The synthetic WNV, produced by transfection of in vitro transcribed RNA into cell culture, exhibited undistinguishable biological properties compared to the corresponding animal-derived wild-type virus. No differences were found concerning viral growth in mammalian and insect cell lines and concerning expression of viral proteins in cells. There were also no significant differences in virulence in mice following intranasal challenge. After immunizations of mice with experimental vaccines derived from the synthetic and wild-type viruses, protection from lethal challenge was achieved with similar amounts of antigen. Both vaccine preparations also induced comparable levels of neutralizing antibodies in mice. In addition, the synthetic approach turned out to be very accurate, since the rescued WNV genome contained no undesired mutations. Thus, the first flavivirus based on chemical gene synthesis was indistinguishable from the parent virus. This demonstrates that virus isolates from animal sources are dispensable to derive seed viruses for vaccine production or research.
Collapse
Affiliation(s)
- Klaus K Orlinger
- Baxter Bioscience, Biomedical Research Center, Uferstrasse 15, A-2304 Orth/Donau, Austria
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Evolution of the sequence composition of Flaviviruses. INFECTION GENETICS AND EVOLUTION 2010; 10:129-36. [DOI: 10.1016/j.meegid.2009.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/26/2009] [Accepted: 11/03/2009] [Indexed: 11/20/2022]
|
40
|
Introduction of a strong temperature-sensitive phenotype into enterovirus 71 by altering an amino acid of virus 3D polymerase. Virology 2010; 396:1-9. [DOI: 10.1016/j.virol.2009.10.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/04/2008] [Accepted: 10/13/2009] [Indexed: 11/19/2022]
|
41
|
Mosimann ALP, de Borba L, Bordignon J, Mason PW, Santos CNDD. Construction and characterization of a stable subgenomic replicon system of a Brazilian dengue virus type 3 strain (BR DEN3 290-02). J Virol Methods 2010; 163:147-52. [DOI: 10.1016/j.jviromet.2009.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 08/25/2009] [Accepted: 09/07/2009] [Indexed: 11/17/2022]
|
42
|
Attenuated West Nile viruses bearing 3′SL and envelope gene substitution mutations. Vaccine 2008; 26:5981-8. [DOI: 10.1016/j.vaccine.2008.08.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/19/2008] [Accepted: 08/25/2008] [Indexed: 11/22/2022]
|
43
|
Mutation of mapped TIA-1/TIAR binding sites in the 3' terminal stem-loop of West Nile virus minus-strand RNA in an infectious clone negatively affects genomic RNA amplification. J Virol 2008; 82:10657-70. [PMID: 18768985 DOI: 10.1128/jvi.00991-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Previous data showed that the cellular proteins TIA-1 and TIAR bound specifically to the West Nile virus 3' minus-strand stem-loop [WNV3'(-)SL] RNA (37) and colocalized with flavivirus replication complexes in WNV- and dengue virus-infected cells (21). In the present study, the sites on the WNV3'(-)SL RNA required for efficient in vitro T-cell intracellular antigen-related (TIAR) and T-cell intracellular antigen-1 (TIA-1) protein binding were mapped to short AU sequences (UAAUU) located in two internal loops of the WNV3'(-)SL RNA structure. Infectious clone RNAs with all or most of the binding site nucleotides in one of the 3' (-)SL loops deleted or substituted did not produce detectable virus after transfection or subsequent passage. With one exception, deletion/mutation of a single terminal nucleotide in one of the binding sequences had little effect on the efficiency of protein binding or virus production, but mutation of a nucleotide in the middle of a binding sequence reduced both the in vitro protein binding efficiency and virus production. Plaque size, intracellular genomic RNA levels, and virus production progressively decreased with decreasing in vitro TIAR/TIA-1 binding activity, but the translation efficiency of the various mutant RNAs was similar to that of the parental RNA. Several of the mutant RNAs that inefficiently interacted with TIAR/TIA-1 in vitro rapidly reverted in vivo, indicating that they could replicate at a low level and suggesting that an interaction between TIAR/TIA-1 and the viral 3'(-)SL RNA is not required for initial low-level symmetric RNA replication but instead facilitates the subsequent asymmetric amplification of genome RNA from the minus-strand template.
Collapse
|
44
|
Chambers TJ, Droll DA, Walton AH, Schwartz J, Wold WSM, Nickells J. West Nile 25A virus infection of B-cell-deficient ((micro)MT) mice: characterization of neuroinvasiveness and pseudoreversion of the viral envelope protein. J Gen Virol 2008; 89:627-635. [PMID: 18272752 DOI: 10.1099/vir.0.83297-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The attenuated West Nile virus 25A strain (WN25A) was investigated for its neuroinvasive properties in B-cell-deficient (microMT) mice. After peripheral inoculation, WN25A caused fatal encephalitis in the majority of 6-8-week-old mice, characterized by a systemic infection with viraemia, moderate virus burdens in peripheral tissues and a high titre of brain-associated virus. Mice generally succumbed to infection within a few weeks of infection. However, others survived for as long as 10 weeks, and some for even longer. Normal age-matched C57BL/6 mice showed no signs of illness after inoculation with WN25A virus. Nucleotide sequencing of WN25A viruses recovered from the brains of B-cell-deficient mice revealed that the conserved N-linked glycosylation site in the viral envelope protein was abolished by substitution of a serine residue at position 155. This was found to be a pseudoreversion relative to the wild-type WN-Israel strain, based on virulence testing of one such brain-associated virus in both B-cell-deficient and normal C57BL/6 mice. This study provides further characterization of the mouse virulence properties of the attenuated WN25A virus in the context of B-cell deficiency. Replication in these mice does not involve rapid neuroadaptation or reversion of WN25A virus to a neuroinvasive phenotype. Molecular modelling studies suggest a difference in local structure of the E protein associated with either an asparagine or serine residue at position 155 compared with the tyrosine found in the virulent parental WN-Israel virus.
Collapse
Affiliation(s)
- Thomas J Chambers
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1402 South Grand Ave, St Louis, MO 63104, USA
| | - Deborah A Droll
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1402 South Grand Ave, St Louis, MO 63104, USA
| | - Andrew H Walton
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1402 South Grand Ave, St Louis, MO 63104, USA
| | - Julie Schwartz
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1402 South Grand Ave, St Louis, MO 63104, USA
| | - William S M Wold
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1402 South Grand Ave, St Louis, MO 63104, USA
| | - Janice Nickells
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1402 South Grand Ave, St Louis, MO 63104, USA
| |
Collapse
|
45
|
A highly sensitive and versatile virus titration assay in the 96-well microplate format. J Virol Methods 2008; 147:197-205. [PMID: 18079007 DOI: 10.1016/j.jviromet.2007.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 08/17/2007] [Accepted: 08/22/2007] [Indexed: 11/21/2022]
Abstract
This report describes a fast, reproducible, inexpensive and convenient assay system for virus titration in the 96-well format. The micromethod substantially increases assay throughput and improves the data reproducibility. A highly simplified variant of virus quantification is based on immunohistochemical detection of virus amplification foci obtained without use of agarose or semisolid overlays. It can be incorporated into several types of routine virological assays successfully replacing the laborious and time-consuming conventional methods based on plaque formation under semisolid overlays. The method does not depend on the development of CPE and can be accommodated to assay viruses with substantial differences in growth properties. The use of enhanced immunohistochemical detection enabled a five- to six-fold reduction of the total assay time. The micromethod was specifically developed to take advantage of multichannel pipettor use to simplify handling of a large number of samples. The method performs well with an inexpensive low-power binocular, thus offering a routine assay system usable outside of specialized laboratory setting, such as for testing of clinical or field samples. When used in focus reduction-neutralization tests (FRNT), the method accommodates very small volumes of immune serum, which is often a decisive factor in experiments involving small rodent models.
Collapse
|
46
|
Yu L, Nomaguchi M, Padmanabhan R, Markoff L. Specific requirements for elements of the 5' and 3' terminal regions in flavivirus RNA synthesis and viral replication. Virology 2008; 374:170-85. [PMID: 18234265 DOI: 10.1016/j.virol.2007.12.035] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 11/13/2007] [Accepted: 12/16/2007] [Indexed: 01/12/2023]
Abstract
We initially studied requirements for 5' and 3' terminal regions (TRs) in flavivirus negative strand synthesis in vitro. Purified West Nile (WNV) and dengue-2 (DV2) RNA polymerases were both active with all-WNV or all-DV2 subgenomic RNAs containing the 5'- and 3'TRs of the respective genomes. However, subgenomic RNAs in which the 5'-noncoding region (5'NCR) or the 5'ORF (nts 100-230) in the 5'TR were substituted by analogous sequences derived from the heterologous genome were modestly to severely defective as templates for either polymerase. We also evaluated the infectivity of substitution mutant WNV genome-length RNAs. All WNV RNAs containing the DV2 3'SL were unable to replicate. However, WNV RNAs containing substitutions of the 5'NCR, the capsid gene, and/or 3'NCR nt sequences upstream from the WNV 3'SL, by the analogous DV2 nt sequences, were infectious. Combined results suggested that replication was not dependent upon species homology between the 3'SL and NS5.
Collapse
Affiliation(s)
- Li Yu
- Laboratory of Vector-Borne Virus Diseases, Division of Viral Products, Office of Vaccines Research and Review, CBER, FDA, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
47
|
Rossi SL, Mason PW. Persistent infections of mammals and mammalian cell cultures with West Nile virus. Future Virol 2008. [DOI: 10.2217/17460794.3.1.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Before 1990, West Nile virus (WNV) was considered to be one of many arthropod-borne viruses that caused mild febrile illness in man. However, in the 1990s, the virus was associated with severe CNS disease that produced mortality in horses and man in Europe. In 1999, WNV was identified as the etiologic agent of an outbreak of human and avian encephalitis in New York City (NY, USA). Like many other Flaviviridae family members, WNV is generally considered to cause acute infections, however, persistent WNV infections have been observed in laboratory-infected animals and in human patients. These persistent infections could be facilitated by changes to the viral genome that allow the virus to evade detection by the host cell, a property that has been studied in cell culture. This review highlights our current knowledge of persistent WNV infections in vitro and in vivo, and speculates on how persistence could influence virus transmission.
Collapse
Affiliation(s)
- Shannan L Rossi
- University of Texas Medical Branch, Department of Pathology, 301 University Boulevard, Galveston, TX 77555-0428, USA
| | - Peter W Mason
- University of Texas Medical Branch, Departments of Pathology, Microbiology & Immunology and Sealy Center for Vaccine Development, 301 University Boulevard, Galveston, TX 77555-0436, USA
| |
Collapse
|
48
|
Erdélyi K, Ursu K, Ferenczi E, Szeredi L, Rátz F, Skáre J, Bakonyi T. Clinical and pathologic features of lineage 2 West Nile virus infections in birds of prey in Hungary. Vector Borne Zoonotic Dis 2007; 7:181-8. [PMID: 17627436 DOI: 10.1089/vbz.2006.0586] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
In the southeast of Hungary a sparrow hawk (Accipiter nisus) and several goshawk (Accipiter gentilis) fledglings succumbed to encephalitis manifesting as an acute neurological disease during the summers of 2004 and 2005. Both years the causative agent was identified as a lineage 2 West Nile virus. This is the first description of clinical, pathological and immunohistochemical findings of infection caused by a neuroinvasive, lineage 2 West Nile virus and the first evidence of its circulation in continental Europe.
Collapse
|
49
|
Hunt TA, Urbanowski MD, Kakani K, Law LMJ, Brinton MA, Hobman TC. Interactions between the West Nile virus capsid protein and the host cell-encoded phosphatase inhibitor, I2PP2A. Cell Microbiol 2007; 9:2756-66. [PMID: 17868381 DOI: 10.1111/j.1462-5822.2007.01046.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The West Nile virus (WNV) capsid protein functions in virus assembly to package genomic RNA into nucleocapsid structures. It is becoming clear, that in addition to their structural roles, capsid proteins of RNA viruses have non-structural functions. For example, the WNV capsid protein has been implicated as a pathogenic determinant. Presumably, many, if not all, of the non-structural functions of this protein involve interactions with host cell-encoded proteins. In the present study, we used affinity purification to isolate human proteins that bind to the WNV capsid protein. One of the capsid binding proteins is I(2)(PP2A), a previously characterized inhibitor of the serine/threonine phosphatase PP2A. Mapping studies revealed that capsid binding site overlaps with the region of I(2)(PP2A) that is required for inhibition of PP2A activity. Moreover, expression of the WNV capsid protein resulted in significantly increased PP2A activity and expected downstream events, such as inhibition of AP1-dependent transcription. Infected cells treated with I(2)(PP2A)-specific siRNAs produced less infectious virus than control siRNA-transfected cells, but this difference was minimal. Together, our data indicate that interactions between WNV capsid and I(2)(PP2A) result in increased PP2A activity. Given the central role of this phosphatase in cellular physiology, capsid/I(2)(PP2A) interactions may yet prove to be important for viral pathogenesis.
Collapse
Affiliation(s)
- Tracey A Hunt
- Department of Cell Biology, University of Alberta, 5-14 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Evans JD, Seeger C. Differential effects of mutations in NS4B on West Nile virus replication and inhibition of interferon signaling. J Virol 2007; 81:11809-16. [PMID: 17715229 PMCID: PMC2168815 DOI: 10.1128/jvi.00791-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
West Nile virus (WNV) is a human pathogen that can cause symptomatic infections associated with meningitis and encephalitis. Previously, we demonstrated that replication of WNV inhibits the interferon (IFN) signal transduction pathway by preventing the accumulation of phosphorylated Janus kinase 1 (JAK1) and tyrosine kinase 2 (Tyk2) (J. T. Guo et al., J. Virol. 79:1343-1350, 2005). Through a genetic analysis, we have now identified a determinant on the nonstructural protein 4B (NS4B) that controls IFN resistance in HeLa cells expressing subgenomic WNV replicons lacking the structural genes. However, in the context of infectious genomes, the same determinant did not influence IFN signaling. Thus, our results indicate that NS4B may be sufficient to inhibit the IFN response in replicon cells and suggest a role for structural genes, or as yet unknown interactions, in the inhibition of the IFN signaling pathway during WNV infections.
Collapse
Affiliation(s)
- Jared D Evans
- Fox Chase Cancer Center, Institute for Cancer Research, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | | |
Collapse
|