1
|
Nkeze J, Li L, Benko Z, Li G, Zhao RY. Molecular characterization of HIV-1 genome in fission yeast Schizosaccharomyces pombe. Cell Biosci 2015; 5:47. [PMID: 26309721 PMCID: PMC4549081 DOI: 10.1186/s13578-015-0037-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/27/2015] [Indexed: 11/25/2022] Open
Abstract
Background The human immunodeficiency virus type 1 (HIV-1) genome (~9 kb RNA) is flanked by two long terminal repeats (LTR) promoter regions with nine open reading frames, which encode Gag, Pol and Env polyproteins, four accessory proteins (Vpu, Vif, Vpr, Nef) and two regulatory proteins (Rev, Tat). In this study, we carried out a genome-wide and functional analysis of the HIV-1 genome in fission yeast (Schizosaccharomyces pombe). Results Each one of the HIV-1 genes was cloned and expressed individually in fission yeast. Subcellular localization of each viral protein was first examined. The effect of protein expression on cellular proliferation and colony formations, an indication of cytotoxicity, were observed. Overall, there is a general correlation of subcellular localization of each viral protein between fission yeast and mammalian cells. Three viral proteins, viral protein R (Vpr), protease (PR) and regulator of expression of viral protein (Rev), were found to inhibit cellular proliferation. Rev was chosen for further analysis in fission yeast and mammalian cells. Consistent with the observation in fission yeast, expression of HIV-1 rev gene also caused growth retardation in mammalian cells. However, the observed growth delay was neither due to the cytotoxic effect nor due to alterations in cell cycling. Mechanistic testing of the Rev effect suggests it triggers transient induction of cellular oxidative stress. Conclusions Some of the behavioral and functional similarities of Rev between fission yeast and mammalian cells suggest fission yeast might be a useful model system for further studies of molecular functions of Rev and other HIV-1 viral proteins.
Collapse
Affiliation(s)
- Joseph Nkeze
- Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA
| | - Lin Li
- Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA.,AIDS Research Department, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Zsigmond Benko
- Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA.,Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Ge Li
- Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA
| | - Richard Y Zhao
- Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA.,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA
| |
Collapse
|
2
|
Defining differential genetic signatures in CXCR4- and the CCR5-utilizing HIV-1 co-linear sequences. PLoS One 2014; 9:e107389. [PMID: 25265194 PMCID: PMC4180074 DOI: 10.1371/journal.pone.0107389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/07/2014] [Indexed: 11/29/2022] Open
Abstract
The adaptation of human immunodeficiency virus type-1 (HIV-1) to an array of physiologic niches is advantaged by the plasticity of the viral genome, encoded proteins, and promoter. CXCR4-utilizing (X4) viruses preferentially, but not universally, infect CD4+ T cells, generating high levels of virus within activated HIV-1-infected T cells that can be detected in regional lymph nodes and peripheral blood. By comparison, the CCR5-utilizing (R5) viruses have a greater preference for cells of the monocyte-macrophage lineage; however, while R5 viruses also display a propensity to enter and replicate in T cells, they infect a smaller percentage of CD4+ T cells in comparison to X4 viruses. Additionally, R5 viruses have been associated with viral transmission and CNS disease and are also more prevalent during HIV-1 disease. Specific adaptive changes associated with X4 and R5 viruses were identified in co-linear viral sequences beyond the Env-V3. The in silico position-specific scoring matrix (PSSM) algorithm was used to define distinct groups of X4 and R5 sequences based solely on sequences in Env-V3. Bioinformatic tools were used to identify genetic signatures involving specific protein domains or long terminal repeat (LTR) transcription factor sites within co-linear viral protein R (Vpr), trans-activator of transcription (Tat), or LTR sequences that were preferentially associated with X4 or R5 Env-V3 sequences. A number of differential amino acid and nucleotide changes were identified across the co-linear Vpr, Tat, and LTR sequences, suggesting the presence of specific genetic signatures that preferentially associate with X4 or R5 viruses. Investigation of the genetic relatedness between X4 and R5 viruses utilizing phylogenetic analyses of complete sequences could not be used to definitively and uniquely identify groups of R5 or X4 sequences; in contrast, differences in the genetic diversities between X4 and R5 were readily identified within these co-linear sequences in HIV-1-infected patients.
Collapse
|
3
|
HIV-1 Vpr triggers natural killer cell-mediated lysis of infected cells through activation of the ATR-mediated DNA damage response. PLoS Pathog 2009; 5:e1000613. [PMID: 19798433 PMCID: PMC2747015 DOI: 10.1371/journal.ppat.1000613] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 09/11/2009] [Indexed: 11/19/2022] Open
Abstract
Natural killer (NK) cells are stimulated by ligands on virus-infected cells. We have recently demonstrated that NK cells respond to human immunodeficiency virus type-1 (HIV-1)-infected autologous T-cells, in part, through the recognition of ligands for the NK cell activating receptor NKG2D on the surface of the infected cells. Uninfected primary CD4pos T-cell blasts express little, if any, NKG2D ligands. In the present study we determined the mechanism through which ligands for NKG2D are induced on HIV-1-infected cells. Our studies reveal that expression of vpr is necessary and sufficient to elicit the expression of NKG2D ligands in the context of HIV-1 infection. Vpr specifically induces surface expression of the unique-long 16 binding proteins (ULBP)-1 and ULBP-2, but not ULBP-3, MHC class I-related chain molecules (MIC)-A or MIC-B. In these studies we also demonstrated that Vpr increases the level of ULBP-1 and ULBP-2 mRNA in primary CD4pos T-cell blasts. The presence of ULBP-1 and ULBP-2 on HIV-1 infected cells is dependent on the ability of Vpr to associate with a protein complex know as Cullin 4a (Cul4a)/damaged DNA binding protein 1 (DDB1) and Cul4a-associated factor-1(DCAF-1) E3 ubiquitin ligase (Cul4aDCAF-1). ULBP-1 and -2 expression by Vpr is also dependent on activation of the DNA damage sensor, ataxia telangiectasia and rad-3-related kinase (ATR). When T-cell blasts are infected with a vpr-deficient HIV-1, NK cells are impaired in killing the infected cells. Thus, HIV-1 Vpr actively triggers the expression of the ligands to the NK cell activation receptor. Natural killer (NK) cells are part of the innate immune response against virus infection and cancer. Recently we demonstrated that ligands for the NK cell activation receptor, NKG2D, trigger NK cell-mediated response to infected cells. These ligands are expressed on HIV-1-infected cells and not on uninfected cells. Despite the observation that NKG2D ligands are expressed on infected cells, it is unclear how HIV-1 induces their expression. In the present study, we demonstrate that HIV induces the ligands of the NKG2D receptor through the viral gene product Vpr. Vpr triggers a DNA damage response in infected cells, which in turn, increases virus production. We also demonstrate that by blocking the activity of ATR, a major component in the DNA damage response, we were able to prevent NKG2D ligand expression. When Vpr was removed from the virus genome, NK cells lost their ability to lyse the HIV-infected cells. Thus, HIV-1 actively triggers NK cells through the activity of its viral gene product, Vpr.
Collapse
|
4
|
Srinivasan A, Ayyavoo V, Mahalingam S, Kannan A, Boyd A, Datta D, Kalyanaraman VS, Cristillo A, Collman RG, Morellet N, Sawaya BE, Murali R. A comprehensive analysis of the naturally occurring polymorphisms in HIV-1 Vpr: potential impact on CTL epitopes. Virol J 2008; 5:99. [PMID: 18721481 PMCID: PMC2553080 DOI: 10.1186/1743-422x-5-99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 08/23/2008] [Indexed: 12/20/2022] Open
Abstract
The enormous genetic variability reported in HIV-1 has posed problems in the treatment of infected individuals. This is evident in the form of HIV-1 resistant to antiviral agents, neutralizing antibodies and cytotoxic T lymphocytes (CTLs) involving multiple viral gene products. Based on this, it has been suggested that a comprehensive analysis of the polymorphisms in HIV proteins is of value for understanding the virus transmission and pathogenesis as well as for the efforts towards developing anti-viral therapeutics and vaccines. This study, for the first time, describes an in-depth analysis of genetic variation in Vpr using information from global HIV-1 isolates involving a total of 976 Vpr sequences. The polymorphisms at the individual amino acid level were analyzed. The residues 9, 33, 39, and 47 showed a single variant amino acid compared to other residues. There are several amino acids which are highly polymorphic. The residues that show ten or more variant amino acids are 15, 16, 28, 36, 37, 48, 55, 58, 59, 77, 84, 86, 89, and 93. Further, the variant amino acids noted at residues 60, 61, 34, 71 and 72 are identical. Interestingly, the frequency of the variant amino acids was found to be low for most residues. Vpr is known to contain multiple CTL epitopes like protease, reverse transcriptase, Env, and Gag proteins of HIV-1. Based on this, we have also extended our analysis of the amino acid polymorphisms to the experimentally defined and predicted CTL epitopes. The results suggest that amino acid polymorphisms may contribute to the immune escape of the virus. The available data on naturally occurring polymorphisms will be useful to assess their potential effect on the structural and functional constraints of Vpr and also on the fitness of HIV-1 for replication.
Collapse
Affiliation(s)
- Alagarsamy Srinivasan
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Huard S, Elder RT, Liang D, Li G, Zhao RY. Human immunodeficiency virus type 1 Vpr induces cell cycle G2 arrest through Srk1/MK2-mediated phosphorylation of Cdc25. J Virol 2008; 82:2904-17. [PMID: 18160429 PMCID: PMC2259012 DOI: 10.1128/jvi.01098-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 11/28/2007] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Vpr induces cell cycle G(2) arrest in fission yeast (Schizosaccharomyces pombe) and mammalian cells, suggesting the cellular pathway(s) targeted by Vpr is conserved among eukaryotes. Our previous studies in fission yeast demonstrated that Vpr induces G(2) arrest in part through inhibition of Cdc25, a Cdc2-specific phosphatase that promotes G(2)/M transition. The goal of this study was to further elucidate molecular mechanism underlying the inhibitory effect of Vpr on Cdc25. We show here that, similar to the DNA checkpoint controls, expression of vpr promotes subcellular relocalization of Cdc25 from nuclear to cytoplasm and thereby prevents activation of Cdc2 by Cdc25. Vpr-induced nuclear exclusion of Cdc25 appears to depend on the serine/threonine phosphorylation of Cdc25 and the presence of Rad24/14-3-3 protein, since amino acid substitutions of the nine possible phosphorylation sites of Cdc25 with Ala (9A) or deletion of the rad24 gene abolished nuclear exclusion induced by Vpr. Interestingly, Vpr is still able to promote Cdc25 nuclear export in mutants defective in the checkpoints (rad3 and chk1/cds1), the kinases that are normally required for Cdc25 phosphorylation and nuclear exclusion of Cdc25, suggesting that others kinase(s) might modulate phosphorylation of Cdc25 for the Vpr-induced G(2) arrest. We report here that this kinase is Srk1. Deletion of the srk1 gene blocks the nuclear exclusion of Cdc25 caused by Vpr. Overexpression of srk1 induces cell elongation, an indication of cell cycle G(2) delay, in a similar fashion to Vpr; however, no additive effect of cell elongation was observed when srk1 and vpr were coexpressed, indicating Srk1 and Vpr are likely affecting the cell cycle G(2)/M transition through the same cellular pathway. Immunoprecipitation further shows that Vpr and Srk1 are part of the same protein complex. Consistent with our findings in fission yeast, depletion of the MK2 gene, a human homologue of Srk1, either by small interfering RNA or an MK2 inhibitor suppresses Vpr-induced cell cycle G(2) arrest in mammalian cells. Collectively, our data suggest that Vpr induces cell cycle G(2) arrest at least in part through a Srk1/MK2-mediated mechanism.
Collapse
Affiliation(s)
- Sylvain Huard
- Department of Pathology, University of Maryland School of Medicine, 10 South Pine Street, MSTF700A, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
6
|
Liang D, Benko Z, Agbottah E, Bukrinsky M, Zhao RY. Anti-vpr activities of heat shock protein 27. Mol Med 2007. [PMID: 17622316 DOI: 10.2119/2007-00004.liang] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 Vpr plays a pivotal role in viral pathogenesis and is preferentially targeted by the host immune system. In this report, we demonstrate that a small heat shock protein, HSP27, exhibits Vpr-specific antiviral activity, as its expression is specifically responsive to vpr gene expression and increased levels of HSP27 inhibit Vpr-induced cell cycle G2 arrest and cell killing. We further show that overexpression of HSP27 reduces viral replication in T-lymphocytes in a Vpr-dependent manner. Mechanistically, Vpr triggers HSP27 expression through heat shock factor (HSF) 1, but inhibits prolonged expression of HSP27 under heat-shock conditions. Together, these data suggest a potential dynamic and antagonistic interaction between HIV-1 Vpr and a host cell HSP27, suggesting that HSP27 may contribute to cellular intrinsic immunity against HIV infection.
Collapse
Affiliation(s)
- Dong Liang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
7
|
Liang D, Benko Z, Agbottah E, Bukrinsky M, Zhao RY. Anti-vpr activities of heat shock protein 27. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007; 13:229-39. [PMID: 17622316 PMCID: PMC1906686 DOI: 10.2119/2007–00004.liang] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 03/25/2007] [Indexed: 11/06/2022]
Abstract
HIV-1 Vpr plays a pivotal role in viral pathogenesis and is preferentially targeted by the host immune system. In this report, we demonstrate that a small heat shock protein, HSP27, exhibits Vpr-specific antiviral activity, as its expression is specifically responsive to vpr gene expression and increased levels of HSP27 inhibit Vpr-induced cell cycle G2 arrest and cell killing. We further show that overexpression of HSP27 reduces viral replication in T-lymphocytes in a Vpr-dependent manner. Mechanistically, Vpr triggers HSP27 expression through heat shock factor (HSF) 1, but inhibits prolonged expression of HSP27 under heat-shock conditions. Together, these data suggest a potential dynamic and antagonistic interaction between HIV-1 Vpr and a host cell HSP27, suggesting that HSP27 may contribute to cellular intrinsic immunity against HIV infection.
Collapse
Affiliation(s)
- Dong Liang
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zsigmond Benko
- Children’s Memorial Research Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Emmanuel Agbottah
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Richard Y Zhao
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Children’s Memorial Research Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Microbiology-Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Address correspondence and reprint requests to Richard Y. Zhao, Department of Pathology, University of Maryland School of Medicine, 10 South Pine Street, MSTF700A, Baltimore, MD 21201. Phone: 410-796-6301; Fax 410-706-6303; E-mail:
, or Michael Bukrinsky, Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037. Phone: 202-994-2036; Fax: 410-706-6303; E-mail:
| |
Collapse
|
8
|
Tan L, Ehrlich E, Yu XF. DDB1 and Cul4A are required for human immunodeficiency virus type 1 Vpr-induced G2 arrest. J Virol 2007; 81:10822-30. [PMID: 17626091 PMCID: PMC2045451 DOI: 10.1128/jvi.01380-07] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Vpr-mediated induction of G2 cell cycle arrest has been postulated to be important for human immunodeficiency virus type 1 (HIV-1) replication, but the precise role of Vpr in this cell cycle arrest is unclear. In the present study, we have shown that HIV-1 Vpr interacts with damaged DNA binding protein 1 (DDB1) but not its partner DDB2. The interaction of Vpr with DDB1 was inhibited when DCAF1 (VprBP) expression was reduced by short interfering RNA (siRNA) treatment. The Vpr mutant (Q65R) that was defective for DCAF1 interaction also had a defect in DDB1 binding. However, Vpr binding to DDB1 was not sufficient to induce G2 arrest. A reduction in DDB1 or DDB2 expression in the absence of Vpr also did not induce G2 arrest. On the other hand, Vpr-induced G2 arrest was impaired when the intracellular level of DDB1 or Cullin 4A was reduced by siRNA treatment. Furthermore, Vpr-induced G2 arrest was largely abolished by a proteasome inhibitor. These data suggest that Vpr assembles with DDB1 through interaction with DCAF1 to form an E3 ubiquitin ligase that targets cellular substrates for proteasome-mediated degradation and G2 arrest.
Collapse
Affiliation(s)
- Lindi Tan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
9
|
Werner NS, Weber W, Fussenegger M, Geisse S. A gas-inducible expression system in HEK.EBNA cells applied to controlled proliferation studies by expression of p27(Kip1). Biotechnol Bioeng 2007; 96:1155-66. [PMID: 17058277 DOI: 10.1002/bit.21235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We describe an efficient inducible gene expression system in HEK.EBNA cells, a well-established cell system for the rapid transient expression of research-tool proteins. The transgene control system of choice is the novel acetaldehyde-inducible regulation (AIR) technology, which has been shown to modulate transgene levels following exposure of cells to acetaldehyde. For application in HEK.EBNA cells, AlcR transactivator plasmids were constructed and co-expressed with the secreted alkaline phosphatase (SEAP) gene under the control of a chimeric mammalian promoter (P(AIR)) for acetaldehyde-regulated expression. Several highly inducible transactivator cell lines were established. Adjustable transgene induction by gaseous acetaldehyde led to high induction levels and tight repression in transient expression trials and in stably transfected HEK.EBNA cell lines. Thus, the AIR technology can be used for inducible expression of any desired recombinant protein in HEK.EBNA cells. A possible application for inducible gene expression is a controlled proliferation strategy. Clonal HEK.EBNA cell lines, expressing the fungal transactivator protein AlcR, were engineered for gas-adjustable expression of the cell-cycle regulator p27(Kip1). We show that expression of p27(Kip1) via transient or stable transfection led to a G1-phase specific growth arrest of HEK.EBNA cells. Furthermore, production pools engineered for gas-adjustable expression of p27(Kip1) and constitutive expression of SEAP showed enhanced productive capacity.
Collapse
Affiliation(s)
- Nicola Susann Werner
- Novartis Institutes for BioMedical Research, Discovery Technologies/Biomolecules Production, WSJ 506.3.04, CH-4002 Basel, Switzerland
| | | | | | | |
Collapse
|
10
|
Li G, Elder RT, Qin K, Park HU, Liang D, Zhao RY. Phosphatase type 2A-dependent and -independent pathways for ATR phosphorylation of Chk1. J Biol Chem 2007; 282:7287-98. [PMID: 17210576 DOI: 10.1074/jbc.m607951200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATM and Rad3-related (ATR) is a regulatory kinase that, when activated by hydroxyurea, UV, or human immunodeficiency virus-1 Vpr, causes cell cycle arrest through Chk1-Ser(345) phosphorylation. We demonstrate here that of these three agents only Vpr requires protein phosphatase type 2A (PP2A) to activate ATR for Chk1-Ser(345) phosphorylation. A requirement for PP2A by Vpr was first shown with the PP2A-specific inhibitor okadaic acid, which reduced Vpr-induced G(2) arrest and Cdk1-Tyr(15) phosphorylation. Using small interference RNA to down-regulate specific subunits of PP2A indicated that the catalytic beta-isoform PP2A(Cbeta) and the A regulatory alpha-isoform PP2A(Aalpha) are involved in the G(2) induction, and these downregulations decreased the Vpr-induced, ATR-dependent phosphorylations of Cdk1-Tyr(15) and Chk1-Ser(345). In contrast, the same down-regulations had no effect on hydroxyurea- or UV-activated ATR-dependent Chk1-Ser(345) phosphorylation. Vpr and hydroxyurea/UV all induce ATR-mediated gammaH2AX-Ser(139) phosphorylation and foci formation, but down-regulation of PP2A(Aalpha) or PP2A(Cbeta) did not decrease gammaH2AX-Ser(139) phosphorylation by any of these agents or foci formation by Vpr. Conversely, H2AX down-regulation had little effect on PP2A(Aalpha/Cbeta)-mediated G(2) arrest and Chk1-Ser(345) phosphorylation by Vpr. The expression of vpr increases the amount and phosphorylation of Claspin, an activator of Chk1 phosphorylation. Down-regulation of either PP2A(Cbeta) or PP2A(Aalpha) had little effect on Claspin phosphorylation, but the amount of Claspin was reduced. Claspin may then be one of the phosphoproteins through which PP2A(Aalpha/Cbeta) affects Chk1 phosphorylation when ATR is activated by human immunodeficiency virus-1 Vpr.
Collapse
Affiliation(s)
- Ge Li
- Department of Pathology, Department of Microbiology-Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
11
|
Palli SR, Kapitskaya MZ, Potter DW. The influence of heterodimer partner ultraspiracle/retinoid X receptor on the function of ecdysone receptor. FEBS J 2005; 272:5979-90. [PMID: 16302963 DOI: 10.1111/j.1742-4658.2005.05003.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A pair of nuclear receptors, ecdysone receptor (EcR) and ultraspiracle (USP), heterodimerize and transduce ecdysteroid signals. The EcR and its nonsteroidal ligands are being developed for regulation of transgene expression in humans, animals and plants. In mammalian cells, EcR:USP heterodimers can function in the absence of ligand, but EcR/retinoid X receptor (EcR:RXR) heterodimers require the presence of ligand for activation. The heterodimer partner of EcR can influence ligand sensitivity of EcR so that the EcR/Locusta migratoria RXR (EcR:LmRXR) heterodimers are activated at lower concentrations of ligand when compared with the concentrations of ligand required for the activation of EcR/Homo sapiens RXR (EcR:HsRXR) heterodimers. Analysis of chimeric RXRs containing regions of LmRXR and HsRXR and point mutants of HsRXR showed that the amino acid residues present in helix 9 and in the two loops on either end of helix 9 are responsible for improved activity of LmRXR. The EcR:Lm-HsRXR chimera heterodimer induced reporter genes with nanomolar concentration of ligand compared with the micromolar concentration of ligand required for activating the EcR:HsRXR heterodimer. The EcR:Lm-HsRXR chimera heterodimer, but not the EcR:HsRXR heterodimer, supported ligand-dependent induction of reporter gene in a C57BL/6 mouse model.
Collapse
Affiliation(s)
- Subba R Palli
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| | | | | |
Collapse
|
12
|
Benko Z, Liang D, Agbottah E, Hou J, Chiu K, Yu M, Innis S, Reed P, Kabat W, Elder RT, Di Marzio P, Taricani L, Ratner L, Young PG, Bukrinsky M, Zhao RY. Anti-Vpr activity of a yeast chaperone protein. J Virol 2004; 78:11016-29. [PMID: 15452222 PMCID: PMC521794 DOI: 10.1128/jvi.78.20.11016-11029.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) exerts multiple effects on viral and host cellular activities during viral infection, including nuclear transport of the proviral integration complex, induction of cell cycle G(2) arrest, and cell death. In this report, we show that a fission yeast chaperone protein Hsp16 inhibits HIV-1 by suppressing these Vpr activities. This protein was identified through three independent genome-wide screens for multicopy suppressors of each of the three Vpr activities. Consistent with the properties of a heat shock protein, heat shock-induced elevation or overproduction of Hsp16 suppressed Vpr activities through direct protein-protein interaction. Even though Hsp16 shows a stronger suppressive effect on Vpr in fission yeast than in mammalian cells, similar effects were also observed in human cells when fission yeast hsp16 was expressed either in vpr-expressing cells or during HIV-1 infection, indicating a possible highly conserved Vpr suppressing activity. Furthermore, stable expression of hsp16 prior to HIV-1 infection inhibits viral replication in a Vpr-dependent manner. Together, these data suggest that Hsp16 inhibits HIV-1 by suppressing Vpr-specific activities. This finding could potentially provide a new approach to studying the contribution of Vpr to viral pathogenesis and to reducing Vpr-mediated detrimental effects in HIV-infected patients.
Collapse
Affiliation(s)
- Zsigmond Benko
- Children's Memorial Institute for Education and Research, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 2430 N. Halsted St. #218, Chicago, IL 60614, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Iordanskiy S, Zhao Y, Dubrovsky L, Iordanskaya T, Chen M, Liang D, Bukrinsky M. Heat shock protein 70 protects cells from cell cycle arrest and apoptosis induced by human immunodeficiency virus type 1 viral protein R. J Virol 2004; 78:9697-704. [PMID: 15331702 PMCID: PMC515005 DOI: 10.1128/jvi.78.18.9697-9704.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Viral protein R (Vpr) of human immunodeficiency virus type 1 (HIV-1) is an accessory protein that plays an important role in viral pathogenesis. This pathogenic activity of Vpr is related in part to its capacity to induce cell cycle G2 arrest and apoptosis of target T cells. A screening for multicopy suppressors of these Vpr activities in fission yeast identified heat shock protein 70 (Hsp70) as a suppressor of Vpr-induced cell cycle arrest. Hsp70 is a member of a family of molecular chaperones involved in innate immunity and protection from environmental stress. In this report, we demonstrate that HIV-1 infection induces Hsp70 in target cells. Overexpression of Hsp70 reduced the Vpr-dependent G2 arrest and apoptosis and also reduced replication of the Vpr-positive, but not Vpr-deficient, HIV-1. Suppression of Hsp70 expression by RNA interference (RNAi) resulted in increased apoptosis of cells infected with a Vpr-positive, but not Vpr-defective, HIV-1. Replication of the Vpr-positive HIV-1 was also increased when Hsp70 expression was diminished. Vpr and Hsp70 coimmunoprecipitated from HIV-infected cells. Together, these results identify Hsp70 as a novel anti-HIV innate immunity factor that targets HIV-1 Vpr.
Collapse
Affiliation(s)
- Sergey Iordanskiy
- The George Washington University, Ross Hall Rm. 734, 2300 Eye St. N.W., Washington, DC 20037, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Bukrinsky M, Zhao Y. Heat-shock proteins reverse the G2 arrest caused by HIV-1 viral protein R. DNA Cell Biol 2004; 23:223-5. [PMID: 15142379 DOI: 10.1089/104454904773819806] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HIV-1 Vpr is an important contributor to viral pathogenesis. Vpr displays several highly conserved pathogenic activities, including induction of cell cycle G(2) arrest and cell death. The host immune system, in turn, preferentially targets Vpr in an attempt to reduce its pathogenic effects. To identify innate anti-Vpr factors, we performed a genetic search for multicopy suppressors of Vpr-induced G(2) arrest in fission yeast. Several heat-shock proteins were identified in these experiments. Analyses in mammalian cells demonstrated that heatshock proteins HSP27 and HSP70 suppress Vpr-induced G2 arrest. This effect appears to be mediated by an interaction between heat shock proteins and Vpr. These results illustrate another example of antagonistic interactions between the viral and cellular proteins.
Collapse
Affiliation(s)
- Michael Bukrinsky
- Department of Microbiology and Tropical Medicine, The George Washington University, Washington, DC 20037, USA.
| | | |
Collapse
|
15
|
Zhao Y, Chen M, Wang B, Yang J, Elder RT, Song XQ, Yu M, Saksena NK. Functional conservation of HIV-1 Vpr and variability in a mother-child pair of long-term non-progressors. Virus Res 2002; 89:103-21. [PMID: 12367754 DOI: 10.1016/s0168-1702(02)00127-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Increasing evidence suggests that HIV-1 Vpr is required in vivo for viral pathogenesis. Since Vpr displays multiple activities, little is known about which Vpr-specific activities are conserved in naturally occurring viruses or how natural mutations in Vpr might modulate viral pathogenesis in HIV-infected individuals. The goals of this study were to evaluate the functional variability of Vpr in naturally occurring viruses. The Vpr-specific activities of nuclear localization, induction of cell cycle G2 arrest and cell death were compared between viruses isolated from the fast progressing AIDS patients and a mother-child pair of long-term non-progressors (LTNPs). Wild-type Vpr activities were found in all of the viruses that were isolated from the fast progressing AIDS patients except for the truncated Vpr(IIIB) which lacked these activities. In contrast, defective Vpr were readily detected in viral populations isolated, over an 11-year period, from the mother-child pair. Sequence analyses indicated that these Vpr carried unique amino acid substitutions that frequently interrupted a highly conserved domain containing an N-terminal alpha-helix-turn-alpha-helix. Thus, Vpr activities are generally conserved in naturally occurring viruses. The functionally defective Vpr identified in the mother-child pair of LTNPs are likely to be unique and may possibly contribute to the slow disease progression.
Collapse
Affiliation(s)
- Yuqi Zhao
- Children's Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | | | | | | | | | | | | |
Collapse
|