1
|
Very-low-density lipoprotein (VLDL)-producing and hepatitis C virus-replicating HepG2 cells secrete no more lipoviroparticles than VLDL-deficient Huh7.5 cells. J Virol 2013; 87:5065-80. [PMID: 23427158 DOI: 10.1128/jvi.01405-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the plasma samples of hepatitis C virus (HCV)-infected patients, lipoviroparticles (LVPs), defined as (very-) low-density viral particles immunoprecipitated with anti-β-lipoproteins antibodies are observed. This HCV-lipoprotein association has major implications with respect to our understanding of HCV assembly, secretion, and entry. However, cell culture-grown HCV (HCVcc) virions produced in Huh7 cells, which are deficient for very-low-density lipoprotein (VLDL) secretion, are only associated with and dependent on apolipoprotein E (apoE), not apolipoprotein B (apoB), for assembly and infectivity. In contrast to Huh7, HepG2 cells can be stimulated to produce VLDL by both oleic acid treatment and inhibition of the MEK/extracellular signal-regulated kinase (ERK) pathway but are not permissive for persistent HCV replication. Here, we developed a new HCV cell culture model to study the interaction between HCV and lipoproteins, based on engineered HepG2 cells stably replicating a blasticidin-tagged HCV JFH1 strain (JB). Control Huh7.5-JB as well as HepG2-JB cell lines persistently replicated viral RNA and expressed viral proteins with a subcellular colocalization of double-stranded RNA (dsRNA), core, gpE2, and NS5A compatible with virion assembly. The intracellular RNA replication level was increased in HepG2-JB cells upon dimethyl sulfoxide (DMSO) treatment, MEK/ERK inhibition, and NS5A overexpression to a level similar to that observed in Huh7.5-JB cells. Both cell culture systems produced infectious virions, which were surprisingly biophysically and biochemically similar. They floated at similar densities on gradients, contained mainly apoE but not apoB, and were not neutralized by anti-apoB antibodies. This suggests that there is no correlation between the ability of cells to simultaneously replicate HCV as well as secrete VLDL and their capacity to produce LVPs.
Collapse
|
2
|
Tariq H, Manzoor S, Parvaiz F, Javed F, Fatima K, Qadri I. An overview: in vitro models of HCV replication in different cell cultures. INFECTION GENETICS AND EVOLUTION 2011; 12:13-20. [PMID: 22061839 DOI: 10.1016/j.meegid.2011.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/21/2011] [Accepted: 10/12/2011] [Indexed: 01/14/2023]
Abstract
Although much of productive research has been conducted in the field of molecular virology of Hepatitis C virus (HCV) regarding its genes, gene functions and proteins, development of an efficient cell culture model for its replication remained a focused area. Focus has been directed to establish HCV in vitro replication system. This replication system should mimic its intrahepatic pathogenesis so that antivirals should be screened and in vitro gene profiling of HCV induced pathogenesis should be worked out. Since 1990 various experimental approaches and strategies have been utilized in phase of development of a robust replication model for HCV, and success has been reported for a few genotypes. Still the work is going on to have more success in availing such robust replication models for all the genotypes. This will help to have a common antiviral strategy against HCV induced pathogenesis involving any genotype or subtype.
Collapse
Affiliation(s)
- Huma Tariq
- NUST Center of Virology and Immunology (NCVI), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.
| | | | | | | | | | | |
Collapse
|
3
|
Bailey J. An assessment of the use of chimpanzees in hepatitis C research past, present and future: 1. Validity of the chimpanzee model. Altern Lab Anim 2011; 38:387-418. [PMID: 21105756 DOI: 10.1177/026119291003800501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The USA is the only significant user of chimpanzees in biomedical research in the world, since many countries have banned or limited the practice due to substantial ethical, economic and scientific concerns. Advocates of chimpanzee use cite hepatitis C research as a major reason for its necessity and continuation, in spite of supporting evidence that is scant and often anecdotal. This paper examines the scientific and ethical issues surrounding chimpanzee hepatitis C research, and concludes that claims of the necessity of chimpanzees in historical and future hepatitis C research are exaggerated and unjustifiable, respectively. The chimpanzee model has several major scientific, ethical, economic and practical caveats. It has made a relatively negligible contribution to knowledge of, and tangible progress against, the hepatitis C virus compared to non-chimpanzee research, and must be considered scientifically redundant, given the array of alternative methods of inquiry now available. The continuation of chimpanzee use in hepatitis C research adversely affects scientific progress, as well as chimpanzees and humans in need of treatment. Unfounded claims of its necessity should not discourage changes in public policy regarding the use of chimpanzees in US laboratories.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society, Boston, MA 02108-5100, USA.
| |
Collapse
|
4
|
Bailey J. An Assessment of the Use of Chimpanzees in Hepatitis C Research Past, Present and Future: 2. Alternative Replacement Methods. Altern Lab Anim 2010; 38:471-94. [DOI: 10.1177/026119291003800602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of chimpanzees in hepatitis C virus (HCV) research was examined in the report associated with this paper ( 1: Validity of the Chimpanzee Model), in which it was concluded that claims of past necessity of chimpanzee use were exaggerated, and that claims of current and future indispensability were unjustifiable. Furthermore, given the serious scientific and ethical issues surrounding chimpanzee experimentation, it was proposed that it must now be considered redundant — particularly in light of the demonstrable contribution of alternative methods to past and current scientific progress, and the future promise that these methods hold. This paper builds on this evidence, by examining the development of alternative approaches to the investigation of HCV, and by reviewing examples of how these methods have contributed, and are continuing to contribute substantially, to progress in this field. It augments the argument against chimpanzee use by demonstrating the comprehensive nature of these methods and the valuable data they deliver. The entire life-cycle of HCV can now be investigated in a human (and much more relevant) context, without recourse to chimpanzee use. This also includes the testing of new therapies and vaccines. Consequently, there is no sound argument against the changes in public policy that propose a move away from chimpanzee use in US laboratories.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society, Boston, MA, USA
| |
Collapse
|
5
|
Uprichard SL. Hepatitis C virus experimental model systems and antiviral drug research. Virol Sin 2010; 25:227-45. [PMID: 20960298 DOI: 10.1007/s12250-010-3134-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 04/18/2010] [Indexed: 12/27/2022] Open
Abstract
An estimated 130 million people worldwide are chronically infected with hepatitis C virus (HCV) making it a leading cause of liver disease worldwide. Because the currently available therapy of pegylated interferon-alpha and ribavirin is only effective in a subset of patients, the development of new HCV antivirals is a healthcare imperative. This review discusses the experimental models available for HCV antiviral drug research, recent advances in HCV antiviral drug development, as well as active research being pursued to facilitate development of new HCV-specific therapeutics.
Collapse
Affiliation(s)
- Susan L Uprichard
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
6
|
Subcellular forms and biochemical events triggered in human cells by HCV polyprotein expression from a viral vector. Virol J 2008; 5:102. [PMID: 18793431 PMCID: PMC2553408 DOI: 10.1186/1743-422x-5-102] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 09/15/2008] [Indexed: 12/16/2022] Open
Abstract
To identify the subcellular forms and biochemical events induced in human cells after HCV polyprotein expression, we have used a robust cell culture system based on vaccinia virus (VACV) that efficiently expresses in infected cells the structural and nonstructural proteins of HCV from genotype 1b (VT7-HCV7.9). As determined by confocal microscopy, HCV proteins expressed from VT7-HCV7.9 localize largely in a globular-like distribution pattern in the cytoplasm, with some proteins co-localizing with the endoplasmic reticulum (ER) and mitochondria. As examined by electron microscopy, HCV proteins induced formation of large electron-dense cytoplasmic structures derived from the ER and containing HCV proteins. In the course of HCV protein production, there is disruption of the Golgi apparatus, loss of spatial organization of the ER, appearance of some "virus-like" structures and swelling of mitochondria. Biochemical analysis demonstrate that HCV proteins bring about the activation of initiator and effector caspases followed by severe apoptosis and mitochondria dysfunction, hallmarks of HCV cell injury. Microarray analysis revealed that HCV polyprotein expression modulated transcription of genes associated with lipid metabolism, oxidative stress, apoptosis, and cellular proliferation. Our findings demonstrate the uniqueness of the VT7-HCV7.9 system to characterize morphological and biochemical events related to HCV pathogenesis.
Collapse
|
7
|
Tang W, Lázaro CA, Campbell JS, Parks WT, Katze MG, Fausto N. Responses of nontransformed human hepatocytes to conditional expression of full-length hepatitis C virus open reading frame. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1831-46. [PMID: 17991716 DOI: 10.2353/ajpath.2007.070413] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of chronic hepatitis that can lead to cirrhosis and hepatocellular carcinoma. To study the effects of HCV protein expression on host cells, we established conditional expression of the full-length open reading frame (ORF) of an infectious cDNA clone of HCV (genotype 1a, H77 strain) in the nontransformed human hepatocyte line cell HH4 using the ecdysone receptor regulatory system. Treatment with the ecdysone analog ponasterone-A induced tightly regulated and dose-dependent full-length HCV ORF expression and properly processed HCV proteins. HCV Core, NS3, and NS5A colocalized in perinuclear regions and associated with the early endosomal protein EEA1. HCV ORF expression caused marked growth inhibition, increased intracellular reactive oxygen species, up-regulation of glutamate-l-cysteine ligase activity, increased glutathione level, and activation of nuclear factor kappaB. Although it was not directly cytotoxic, HCV ORF expression sensitized HH4 cells to Fas at certain concentrations but not to tumor necrosis factor-related apoptosis-inducing ligand. HCV ORF expression in HH4 cells up-regulated genes involved in innate immune response/inflammation and oxidative stress responses and down-regulated cell growth-related genes. Expression of HCV ORF in host cells may contribute to HCV pathogenesis by producing oxidative stress and increasing the expression of genes related to the innate immune response and inflammation.
Collapse
Affiliation(s)
- Weiliang Tang
- Department of Pathology, University of Washington School of Medicine, K078 Health Sciences Building, Box 357705, Seattle, WA 98195-7705, USA
| | | | | | | | | | | |
Collapse
|
8
|
Sheehy P, Mullan B, Moreau I, Kenny-Walsh E, Shanahan F, Scallan M, Fanning LJ. In vitro replication models for the hepatitis C virus. J Viral Hepat 2007; 14:2-10. [PMID: 17212638 DOI: 10.1111/j.1365-2893.2006.00807.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Soon after the discovery of the hepatitis C virus (HCV), attention turned to the development of models whereby replication of the virus could be investigated. Among the HCV replication models developed, the HCV RNA replicon model and the newly discovered infectious cell culture systems have had an immediate impact on the study of HCV replication, and will continue to lead to important advances in our understanding of HCV replication. The aim of this study is to deal with developments in HCV replication models in a chronological order from the early 1990s to the recent infectious HCV cell culture systems.
Collapse
Affiliation(s)
- P Sheehy
- Department of Medicine, University College Cork, Cork, Ireland.
| | | | | | | | | | | | | |
Collapse
|
9
|
Valli MB, Serafino A, Crema A, Bertolini L, Manzin A, Lanzilli G, Bosman C, Iacovacci S, Giunta S, Ponzetto A, Clementi M, Carloni G. Transmission in vitro of hepatitis C virus from persistently infected human B-cells to hepatoma cells by cell-to-cell contact. J Med Virol 2006; 78:192-201. [PMID: 16372297 DOI: 10.1002/jmv.20527] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Virus cell-to-cell spread has been reported for many different viruses and may contribute to pathogenesis of viral disease. The role played by cell-to-cell contact in hepatitis C virus (HCV) transmission was studied in vitro by cell co-cultivation experiments. A human lymphoblastoid B-cell line, infected persistently with HCV in vitro (TO.FE(HCV)), was used as HCV donor [Serafino et al., 2003]; recipient cells were the human hepatoma HepG2 cell line. Both cell types were co-cultured for 48 hr to allow the cell-to-cell contacts. The hepatoma HepG2 cells are not permissive to free-virus infection, but they were infected successfully using TO.FE(HCV) cells as source of virus. The kinetics of viral RNA synthesis and the percentage of infected cells were compared in cell-mediated-and cell-free-viral infection. After co-cultivation, a consistent proportion of hepatoma cells replicated HCV and stably expressed viral antigens. Virus produced was infectious as demonstrated by the ability to reinfect fresh B-cells. This cell model shows that permissiveness to HCV infection can be achieved in vitro in non-permissive hepatoma cells by direct cell-to-cell contacts with infected human B-cells. This mechanism of virus spread may also play a pathogenic role in vivo.
Collapse
Affiliation(s)
- Maria Beatrice Valli
- Institute of Neurobiology and Molecular Medicine, National Research Council (CNR), Area di Ricerca CNR TorVergata, Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Maillard P, Huby T, Andréo U, Moreau M, Chapman J, Budkowska A. The interaction of natural hepatitis C virus with human scavenger receptor SR-BI/Cla1 is mediated by ApoB-containing lipoproteins. FASEB J 2006; 20:735-7. [PMID: 16476701 DOI: 10.1096/fj.05-4728fje] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The possible role of candidate receptors in the cellular penetration of HCV from serum of infected patients remains unclear. SR-BI/Cla1 interacts with plasma HDL, native and modified LDL, and VLDL, and facilitates cellular cholesterol efflux to lipoprotein acceptors. SR-BI/Cla1 binds HCV E2 protein and interacts with HCV pseudotypes via the HVR1 of the E2 envelope glycoprotein. Our data reveal that functional SR-BI/Cla1 expressed on the surface of CHO cells mediates the binding and uptake of HCV from the sera of infected patients. Interaction between HCV and SR-BI/Cla1 is not sensitive to either anti-E2 or anti-HVR1 antibodies but is effectively inhibited by anti-betalipoprotein antibodies and competed out by apoB-containing lipoproteins and notably by VLDL. We interpret our data to indicate that VLDL associated with or incorporated into HCV plays a critical role in the primary interaction of HCV with SR-BI/Cla1, whereas the HCV E2 protein does not. In addition, our findings in hepatoma cell lines suggest that the interaction of HCV with human hepatocytes is equally mediated, at least in a part, by VLDL, and as such may represent an alternative pathway for infection. The association of HCV with ApoB-containing lipoproteins may promote cellular uptake of this virus in the presence of neutralizing antibodies.
Collapse
|
11
|
Lim SG, Tan YJ, Goh PY, Lim SP, Hong WJ. Use of an in vitro Model and Yeast Two-Hybrid System to Investigate the Pathogenesis of Hepatitis C. Intervirology 2005; 49:44-50. [PMID: 16166788 DOI: 10.1159/000087262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fifteen years after the discovery of hepatitis C virus (HCV) in 1989, much remains to be learnt about the cell biology of this virus. Using the serum from a patient containing HCV RNA in high titer as a source, a Singapore strain of genotype 1b was recovered and characterized. This full-length HCV genome was then constructed into a tetracycline-inducible vector using the pSTAR plasmid. Transfection of hepatoma cell lines with this HCV genome under tetracycline induction indicated that chemokines (RANTES and monocyte chemoattractant protein-1) were upregulated, possibly contributing to the induction of immune responses. Using the yeast two-hybrid system to discover protein-protein interactions, nonstructural region NS3 was found to interact with itself, forming a dimer that increased helicase activity but was not essential for its activity, thereby disqualifying it as a suitable target of drug actions. The significance of the interaction between core and NS5A is unclear, and the cleavage of NS5A is related to the development of apoptosis. However, the interaction of p68 and NS56B appears to be important because the knockdown of p68 reduced the viral replication. Finally, a new cell model using chimeric CD81 linked to the cytoplasmic domain of either a low-density lipoprotein receptor or a transferrin receptor led to productive infection of HCV that had been recovered from infected serum. These studies allow us to examine the pathogenesis of HCV infection in more detail.
Collapse
Affiliation(s)
- Seng Gee Lim
- Institute of Molecular and Cell Biology, Department of Medicine, National University Hospital, 5 Lower Kent Ridge Road, 119074 Singapore, Singapore.
| | | | | | | | | |
Collapse
|
12
|
Favre D, Muellhaupt B. Potential cellular receptors involved in hepatitis C virus entry into cells. Lipids Health Dis 2005; 4:9. [PMID: 15836798 PMCID: PMC1087871 DOI: 10.1186/1476-511x-4-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 04/19/2005] [Indexed: 01/28/2023] Open
Abstract
Hepatitis C virus (HCV) infects hepatocytes and leads to permanent, severe liver damage. Since the genomic sequence of HCV was determined, progress has been made towards understanding the functions of the HCV-encoded proteins and identifying the cellular receptor(s) responsible for adsorption and penetration of the virus particle into the target cells. Several cellular receptors for HCV have been proposed, all of which are associated with lipid and lipoprotein metabolism. This article reviews the cellular receptors for HCV and suggests a general model for HCV entry into cells, in which lipoproteins play a crucial role.
Collapse
Affiliation(s)
- Daniel Favre
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zürich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Beat Muellhaupt
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zürich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| |
Collapse
|
13
|
Goh PY, Tan YJ, Lim SP, Tan YH, Lim SG, Fuller-Pace F, Hong W. Cellular RNA helicase p68 relocalization and interaction with the hepatitis C virus (HCV) NS5B protein and the potential role of p68 in HCV RNA replication. J Virol 2004; 78:5288-98. [PMID: 15113910 PMCID: PMC400326 DOI: 10.1128/jvi.78.10.5288-5298.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chronic infection by hepatitis C virus (HCV) can lead to severe hepatitis and cirrhosis and is closely associated with hepatocellular carcinoma. The replication cycle of HCV is poorly understood but is likely to involve interaction with host factors. In this report, we show that NS5B, the HCV RNA-dependent RNA polymerase (RdRp), interacts with a human RNA helicase, p68. Transient expression of NS5B alone, as well as the stable expression of all the nonstructural proteins in a HCV replicon-bearing cell line (V. Lohmann, F. Korner, J.-O. Koch, U. Herian, L. Theilmann, and R. Bartenschlager, Science 285:110-113), causes the redistribution of endogenous p68 from the nucleus to the cytoplasm. Deletion of the C-terminal two-thirds of NS5B (NS5BDeltaC) dramatically reduces its coimmunoprecipitation (co-IP) with endogenous p68, while the deletion of the N-terminal region (NS5BDeltaN1 and NS5BDeltaN2) does not affect its interaction with p68. In consistency with the co-IP results, NS5BDeltaC does not cause the relocalization of p68 whereas NS5BDeltaN1 does. With a replicon cell line, we were not able to detect a change in positive- and negative-strand synthesis when p68 levels were reduced using small interfering RNA (siRNA). In cells transiently transfected with a full-length HCV construct, however, the depletion (using specific p68 siRNA) of endogenous p68 correlated with a reduction in the transcription of negative-strand from positive-strand HCV RNA. Overexpression of NS5B and NS5BDeltaN1, but not that of NS5BDeltaC, causes a reduction in the negative-strand synthesis, indicating that overexpressed NS5B and NS5BDeltaN1 sequesters p68 from the replication complexes (thus reducing their replication activity levels). Identification of p68 as a cellular factor involved in HCV replication, at least for cells transiently transfected with a HCV expression construct, is a step towards understanding HCV replication.
Collapse
Affiliation(s)
- Phuay-Yee Goh
- Collaborative Anti-Viral Research Group, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Republic of Singapore.
| | | | | | | | | | | | | |
Collapse
|
14
|
McCormick CJ, Challinor L, Macdonald A, Rowlands DJ, Harris M. Introduction of replication-competent hepatitis C virus transcripts using a tetracycline-regulable baculovirus delivery system. J Gen Virol 2004; 85:429-439. [PMID: 14769901 DOI: 10.1099/vir.0.19676-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have developed a baculovirus delivery system that enables tetracycline-regulated expression of polII-derived hepatitis C virus (HCV) transcripts in hepatocyte-derived cell lines (McCormick et al., 2002). As part of a study to determine whether such transcripts are replication competent, the transcription start site of the tetracycline-regulable promoter was mapped and three baculovirus transfer vectors containing a neo(R)-expressing culture adapted replicon cDNA were generated. These vectors either had the first nucleotide of the 5'UTR positioned -2 (mkI) and +1 (mkII) with respect to the transcription start site, or included a hammerhead ribozyme at the 5' end of the transcript (5'HH) that cleaves between the ribozyme-5'UTR boundary. Transfection of all of the culture-adapted replicon constructs into Huh7 cells resulted in the formation of more neomycin-resistant colonies than seen with a polymerase knock-out replicon construct, although this was less pronounced in the mkI group. Furthermore, both the positive- and negative-strands of the replicon could be detected in all neomycin-resistant polyclonal cell lines except for those derived from transfection of the polymerase knock-out construct. Transduction of Huh7 cells with recombinant baculoviruses carrying the same expression cassettes improved replicon delivery, but the relative efficiency of the constructs remained the same. The baculovirus vectors were also used to introduce the replicon transcript into HepG2 cells. Expression of the culture-adapted but not the polymerase knock-out construct induced transcription of the beta-interferon gene, a response that may contribute to this cell line being unable to maintain the replicon over long-term culture.
Collapse
Affiliation(s)
- Christopher J McCormick
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Lisa Challinor
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew Macdonald
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J Rowlands
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Harris
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|