1
|
de Jesus AA, Canna SW, Liu Y, Goldbach-Mansky R. Molecular mechanisms in genetically defined autoinflammatory diseases: disorders of amplified danger signaling. Annu Rev Immunol 2015; 33:823-74. [PMID: 25706096 DOI: 10.1146/annurev-immunol-032414-112227] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Patients with autoinflammatory diseases present with noninfectious fever flares and systemic and/or disease-specific organ inflammation. Their excessive proinflammatory cytokine and chemokine responses can be life threatening and lead to organ damage over time. Studying such patients has revealed genetic defects that have helped unravel key innate immune pathways, including excessive IL-1 signaling, constitutive NF-κB activation, and, more recently, chronic type I IFN signaling. Discoveries of monogenic defects that lead to activation of proinflammatory cytokines have inspired the use of anticytokine-directed treatment approaches that have been life changing for many patients and have led to the approval of IL-1-blocking agents for a number of autoinflammatory conditions. In this review, we describe the genetically characterized autoinflammatory diseases, we summarize our understanding of the molecular pathways that drive clinical phenotypes and that continue to inspire the search for novel treatment targets, and we provide a conceptual framework for classification.
Collapse
Affiliation(s)
- Adriana Almeida de Jesus
- Translational Autoinflammatory Diseases Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland 20892;
| | | | | | | |
Collapse
|
2
|
Watashi K, Liang G, Iwamoto M, Marusawa H, Uchida N, Daito T, Kitamura K, Muramatsu M, Ohashi H, Kiyohara T, Suzuki R, Li J, Tong S, Tanaka Y, Murata K, Aizaki H, Wakita T. Interleukin-1 and tumor necrosis factor-α trigger restriction of hepatitis B virus infection via a cytidine deaminase activation-induced cytidine deaminase (AID). J Biol Chem 2013. [PMID: 24025329 DOI: 10.1074/jbc.m113.50112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Virus infection is restricted by intracellular immune responses in host cells, and this is typically modulated by stimulation of cytokines. The cytokines and host factors that determine the host cell restriction against hepatitis B virus (HBV) infection are not well understood. We screened 36 cytokines and chemokines to determine which were able to reduce the susceptibility of HepaRG cells to HBV infection. Here, we found that pretreatment with IL-1β and TNFα remarkably reduced the host cell susceptibility to HBV infection. This effect was mediated by activation of the NF-κB signaling pathway. A cytidine deaminase, activation-induced cytidine deaminase (AID), was up-regulated by both IL-1β and TNFα in a variety of hepatocyte cell lines and primary human hepatocytes. Another deaminase APOBEC3G was not induced by these proinflammatory cytokines. Knockdown of AID expression impaired the anti-HBV effect of IL-1β, and overexpression of AID antagonized HBV infection, suggesting that AID was one of the responsible factors for the anti-HBV activity of IL-1/TNFα. Although AID induced hypermutation of HBV DNA, this activity was dispensable for the anti-HBV activity. The antiviral effect of IL-1/TNFα was also observed on different HBV genotypes but not on hepatitis C virus. These results demonstrate that proinflammatory cytokines IL-1/TNFα trigger a novel antiviral mechanism involving AID to regulate host cell permissiveness to HBV infection.
Collapse
Affiliation(s)
- Koichi Watashi
- From the Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Watashi K, Liang G, Iwamoto M, Marusawa H, Uchida N, Daito T, Kitamura K, Muramatsu M, Ohashi H, Kiyohara T, Suzuki R, Li J, Tong S, Tanaka Y, Murata K, Aizaki H, Wakita T. Interleukin-1 and tumor necrosis factor-α trigger restriction of hepatitis B virus infection via a cytidine deaminase activation-induced cytidine deaminase (AID). J Biol Chem 2013; 288:31715-27. [PMID: 24025329 PMCID: PMC3814766 DOI: 10.1074/jbc.m113.501122] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Virus infection is restricted by intracellular immune responses in host cells, and this is typically modulated by stimulation of cytokines. The cytokines and host factors that determine the host cell restriction against hepatitis B virus (HBV) infection are not well understood. We screened 36 cytokines and chemokines to determine which were able to reduce the susceptibility of HepaRG cells to HBV infection. Here, we found that pretreatment with IL-1β and TNFα remarkably reduced the host cell susceptibility to HBV infection. This effect was mediated by activation of the NF-κB signaling pathway. A cytidine deaminase, activation-induced cytidine deaminase (AID), was up-regulated by both IL-1β and TNFα in a variety of hepatocyte cell lines and primary human hepatocytes. Another deaminase APOBEC3G was not induced by these proinflammatory cytokines. Knockdown of AID expression impaired the anti-HBV effect of IL-1β, and overexpression of AID antagonized HBV infection, suggesting that AID was one of the responsible factors for the anti-HBV activity of IL-1/TNFα. Although AID induced hypermutation of HBV DNA, this activity was dispensable for the anti-HBV activity. The antiviral effect of IL-1/TNFα was also observed on different HBV genotypes but not on hepatitis C virus. These results demonstrate that proinflammatory cytokines IL-1/TNFα trigger a novel antiviral mechanism involving AID to regulate host cell permissiveness to HBV infection.
Collapse
Affiliation(s)
- Koichi Watashi
- From the Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
The role of the potent proinflammatory cytokine IL-1 in disease could clinically be investigated with the development of the IL-1 blocking agent anakinra (Kineret), a recombinant IL-1 receptor antagonist. It was first tested in patients with sepsis without much benefit but was later FDA approved for the treatment of patients with rheumatoid arthritis. More recently IL-1 blocking therapies are used successfully to treat a new group of immune-mediated inflammatory conditions, autoinflammatory diseases. These conditions include rare hereditary fever syndromes and pediatric and adult conditions of Still's disease. Recently the FDA approved two additional longer acting IL-1 blocking agents, for the treatment of cryopyrin-associated periodic syndromes (CAPS), an IL-1 dependent autoinflammatory syndrome. The study of autoinflammatory diseases revealed mechanisms of IL-1 mediated organ damage and provided concepts to a better understanding of the pathogenesis of more common diseases such as gout and Type 2 diabetes which show initial promising results with IL-1 blocking therapy.
Collapse
Affiliation(s)
- Raphaela Goldbach-Mansky
- National Institute of Arthritis and Musculoskeletal and Skin Diseases at the National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
5
|
Goldbach-Mansky R, Kastner DL. Autoinflammation: the prominent role of IL-1 in monogenic autoinflammatory diseases and implications for common illnesses. J Allergy Clin Immunol 2010; 124:1141-9; quiz 1150-1. [PMID: 20004775 DOI: 10.1016/j.jaci.2009.11.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 11/11/2009] [Indexed: 11/15/2022]
Abstract
The discovery of the genetic causes of a rare group of immune-mediated inflammatory conditions that mimic infections and allergic conditions in their clinical presentation and the molecular understanding of the function of the mutated molecules in these diseases has led to a revolution in our understanding of the pathogenesis of systemic and local inflammation. The proteins mutated in a number of these so-called autoinflammatory diseases are part of, or regulate the activity of, intracellular molecular complexes, the inflammasomes, that sense "danger" to the body and coordinate an initial immune response. Our understanding of specific triggers of the inflammasomes, coupled with the recognition that inflammasomes are critical for activation of the proinflammatory cytokine IL-1, has provided a rational and very effective target in the treatment of a number of these rare autoinflammatory diseases. In addition, the ongoing discovery of the role of inflammasomes and IL-1 activation and secretion in a number of genetically complex disorders have fundamentally changed our view of disease pathogenesis in a growing number of disorders that were heretofore not even thought of as "immunologic" diseases.
Collapse
Affiliation(s)
- Raphaela Goldbach-Mansky
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
6
|
Luheshi NM, Rothwell NJ, Brough D. Dual functionality of interleukin-1 family cytokines: implications for anti-interleukin-1 therapy. Br J Pharmacol 2010; 157:1318-29. [PMID: 19681864 PMCID: PMC2765320 DOI: 10.1111/j.1476-5381.2009.00331.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dysregulated inflammation contributes to disease pathogenesis in both the periphery and the brain. Cytokines are coordinators of inflammation and were originally defined as secreted mediators, released from expressing cells to activate plasma membrane receptors on responsive cells. However, a group of cytokines is now recognized as having dual functionality. In addition to their extracellular effects, these cytokines act inside the nuclei of cytokine-expressing or cytokine-responsive cells. Interleukin-1 (IL-1) family cytokines are key pro-inflammatory mediators, and blockade of the IL-1 system in inflammatory diseases is an attractive therapeutic goal. All current therapies target IL-1 extracellular actions. Here we review evidence that suggests IL-1 family members have dual functionality. Several IL-1 family members have been detected inside the nuclei of IL-1-expressing or IL-1-responsive cells, and intranuclear IL-1 is reported to regulate gene transcription and mRNA splicing. However, further work is required to determine the impact of IL-1 intranuclear actions on disease pathogenesis. The intranuclear actions of IL-1 family members represent a new and potentially important area of IL-1 biology and may have implications for the future development of anti-IL-1 therapies.
Collapse
Affiliation(s)
- N M Luheshi
- Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | | | | |
Collapse
|
7
|
Luheshi NM, McColl BW, Brough D. Nuclear retention of IL-1 alpha by necrotic cells: a mechanism to dampen sterile inflammation. Eur J Immunol 2009; 39:2973-80. [PMID: 19839011 PMCID: PMC3394668 DOI: 10.1002/eji.200939712] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Sterile inflammation is a host response to tissue injury that is mediated by damage-associated molecular patterns released from dead cells. Sterile inflammation worsens damage in a number of injury paradigms. The pro-inflammatory cytokine IL-1 alpha is reported to be a damage-associated molecular pattern released from dead cells, and it is known to exacerbate brain injury caused by stroke. In the brain, IL-1 alpha is produced by microglia, the resident brain macrophages. We found that IL-1 alpha is actively trafficked to the nuclei of microglia, and hence tested the hypothesis that trafficking of IL-1 alpha to the nucleus would inhibit its release following necrotic cell death, limiting sterile inflammation. Microglia subjected to oxygen-glucose deprivation died via necrosis. Under these conditions, microglia expressing nuclear IL-1 alpha released significantly less IL-1 alpha than microglia with predominantly cytosolic IL-1 alpha. The remaining IL-1 alpha was immobilized in the nuclei of the dead cells. Thus, nuclear retention of IL-1 alpha may serve to limit inflammation following cell death.
Collapse
Affiliation(s)
- Nadia M. Luheshi
- 2.003 AV Hill Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, U.K
| | - Barry W. McColl
- 2.003 AV Hill Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, U.K
| | - David Brough
- 2.003 AV Hill Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, U.K
| |
Collapse
|
8
|
Aksentijevich I, Masters SL, Ferguson PJ, Dancey P, Frenkel J, van Royen-Kerkhoff A, Laxer R, Tedgård U, Cowen EW, Pham TH, Booty M, Estes JD, Sandler NG, Plass N, Stone DL, Turner ML, Hill S, Butman JA, Schneider R, Babyn P, El-Shanti HI, Pope E, Barron K, Bing X, Laurence A, Lee CCR, Chapelle D, Clarke GI, Ohson K, Nicholson M, Gadina M, Yang B, Korman BD, Gregersen PK, van Hagen PM, Hak AE, Huizing M, Rahman P, Douek DC, Remmers EF, Kastner DL, Goldbach-Mansky R. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med 2009; 360:2426-37. [PMID: 19494218 PMCID: PMC2876877 DOI: 10.1056/nejmoa0807865] [Citation(s) in RCA: 669] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Autoinflammatory diseases manifest inflammation without evidence of infection, high-titer autoantibodies, or autoreactive T cells. We report a disorder caused by mutations of IL1RN, which encodes the interleukin-1-receptor antagonist, with prominent involvement of skin and bone. METHODS We studied nine children from six families who had neonatal onset of sterile multifocal osteomyelitis, periostitis, and pustulosis. Response to empirical treatment with the recombinant interleukin-1-receptor antagonist anakinra in the first patient prompted us to test for the presence of mutations and changes in proteins and their function in interleukin-1-pathway genes including IL1RN. RESULTS We identified homozygous mutations of IL1RN in nine affected children, from one family from Newfoundland, Canada, three families from The Netherlands, and one consanguineous family from Lebanon. A nonconsanguineous patient from Puerto Rico was homozygous for a genomic deletion that includes IL1RN and five other interleukin-1-family members. At least three of the mutations are founder mutations; heterozygous carriers were asymptomatic, with no cytokine abnormalities in vitro. The IL1RN mutations resulted in a truncated protein that is not secreted, thereby rendering cells hyperresponsive to interleukin-1beta stimulation. Patients treated with anakinra responded rapidly. CONCLUSIONS We propose the term deficiency of the interleukin-1-receptor antagonist, or DIRA, to denote this autosomal recessive autoinflammatory disease caused by mutations affecting IL1RN. The absence of interleukin-1-receptor antagonist allows unopposed action of interleukin-1, resulting in life-threatening systemic inflammation with skin and bone involvement. (ClinicalTrials.gov number, NCT00059748.)
Collapse
Affiliation(s)
- Ivona Aksentijevich
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Apte RN, Voronov E. Is interleukin-1 a good or bad 'guy' in tumor immunobiology and immunotherapy? Immunol Rev 2009; 222:222-41. [PMID: 18364005 DOI: 10.1111/j.1600-065x.2008.00615.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interleukin-1 (IL-1) family consists of two major agonistic proteins, IL-1alpha and IL-1beta, which are pleiotropic and affect mainly inflammation, immunity, and hemopoiesis. The IL-1 receptor antagonist (IL-1Ra) is a physiological inhibitor of pre-formed IL-1. In their secreted form, IL-1alpha and IL-1beta bind to the same receptors and induce the same biological functions. However, the IL-1 molecules differ in their compartmentalization within the producing cell or the microenvironment. Thus, IL-1beta is solely active in its secreted form, whereas IL-1alpha is mainly active in cell-associated forms (intracellular precursor and membrane-bound IL-1) and only rarely as a secreted cytokine, mainly by macrophages/monocytes. IL-1 is abundant at tumor sites, being produced by cellular elements of the tumor microenvironment or by the malignant cells, and it affects not only various phases of the malignant process, such as carcinogenesis, tumor growth, and invasiveness, but also patterns of interactions between malignant cells and the host's immune system. Hence, the effects of the IL-1 molecules on the malignant process are complex and are often of an opposing nature. Comparative studies on the differential roles of malignant cell- or host-derived IL-1alpha and IL-1beta in different stages of the malignant process can subsequently open new avenues for manipulation of IL-1 expression and function in cancer immunotherapy.
Collapse
Affiliation(s)
- Ron N Apte
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and The Cancer Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | |
Collapse
|
10
|
Apte RN, Dotan S, Elkabets M, White MR, Reich E, Carmi Y, Song X, Dvozkin T, Krelin Y, Voronov E. The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev 2007; 25:387-408. [PMID: 17043764 DOI: 10.1007/s10555-006-9004-4] [Citation(s) in RCA: 447] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin-1 (IL-1) includes a family of closely related genes; the two major agonistic proteins, IL-1alpha and IL-1beta, are pleiotropic and affect mainly inflammation, immunity and hemopoiesis. The IL-1Ra antagonist is a physiological inhibitor of pre-formed IL-1. Recombinant IL-1alpha and IL-1beta bind to the same receptors and induce the same biological functions. As such, the IL-1 molecules have been considered identical in normal homeostasis and in disease. However, the IL-1 molecules differ in their compartmentalization within the producing cell or the microenvironment. Thus, IL-1beta is solely active in its secreted form, whereas IL-1alpha is mainly active in cell-associated forms (intracellular precursor and membrane-bound IL-1alpha) and only rarely as a secreted cytokine, as it is secreted only in a limited manner. IL-1 is abundant at tumor sites, where it may affect the process of carcinogenesis, tumor growth and invasiveness and also the patterns of tumor-host interactions. Here, we review the effects of microenvironment- and tumor cell-derived IL-1 on malignant processes in experimental tumor models and in cancer patients. We propose that membrane-associated IL-1alpha expressed on malignant cells stimulates anti-tumor immunity, while secretable IL-1beta, derived from the microenvironment or the malignant cells, activates inflammation that promotes invasiveness and also induces tumor-mediated suppression. Inhibition of the function of IL-1 by the IL-1Ra, reduces tumor invasiveness and alleviates tumor-mediated suppression, pointing to its feasibility in cancer therapy. Differential manipulation of IL-1alpha and IL-1beta in malignant cells or in the tumor's microenvironment can open new avenues for using IL-1 in cancer therapy.
Collapse
Affiliation(s)
- Ron N Apte
- Department of Microbiology and Immunology, Faculty of Health Sciences and The Cancer Research Center, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kamari Y, Werman-Venkert R, Shaish A, Werman A, Harari A, Gonen A, Voronov E, Grosskopf I, Sharabi Y, Grossman E, Iwakura Y, Dinarello CA, Apte RN, Harats D. Differential role and tissue specificity of interleukin-1alpha gene expression in atherogenesis and lipid metabolism. Atherosclerosis 2006; 195:31-8. [PMID: 17173923 DOI: 10.1016/j.atherosclerosis.2006.11.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 10/05/2006] [Accepted: 11/17/2006] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We examined the role of IL-1alpha and IL-1beta expressed by bone marrow-derived cells in atherogenesis and lipid metabolism. METHODS AND RESULTS We first studied the effect of atherogenic diet on wild-type C57BL/6 IL-1alpha or IL-1beta deficient mice. IL-1alpha KO resulted in a comparatively higher total cholesterol levels, compared to WT and IL-1beta KO mice (398+/-10; 266+/-19; 223+/-13 mg/dl, respectively, p<0.001), due to higher non-HDL cholesterol. Nevertheless, aortic sinus lesion area was 56% lower in IL-1alpha KO (p<0.05) and 50% lower in IL-1beta KO (p=0.08), compared to WT mice. Likewise, SAA levels in IL-1alpha KO mice were markedly lower compared to WT and IL-1beta KO mice (31+/-14; 220+/-33 and 106+/-39 microg/ml, respectively, p<0.001). To study the specific role of bone marrow-derived IL-1, irradiated C57BL/6 mice were transplanted with either IL-1+/+, IL-1alpha-/- or IL-1beta-/- bone marrow cells. Despite similar lipoprotein levels, aortic sinus lesion area was 59% lower in IL-1alpha-/- transplanted (p<0.05) compared to IL-1+/+ transplanted mice. Lesion area in IL-1beta-/- was 33% lower than in IL-1+/+ recipient mice, but it was not statistically significant. CONCLUSION We demonstrated that early lesion formation is accelerated specifically by bone marrow-derived IL-1alpha. Furthermore, we showed that the expression of IL-1alpha in cells other than the bone marrow plays a significant role in non-HDL cholesterol metabolism.
Collapse
Affiliation(s)
- Yehuda Kamari
- Institute of Lipid and Atherosclerosis Research, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Tel Hashomer 52621, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Apte RN, Krelin Y, Song X, Dotan S, Recih E, Elkabets M, Carmi Y, Dvorkin T, White RM, Gayvoronsky L, Segal S, Voronov E. Effects of micro-environment- and malignant cell-derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour-host interactions. Eur J Cancer 2006; 42:751-9. [PMID: 16530403 DOI: 10.1016/j.ejca.2006.01.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 01/16/2006] [Indexed: 02/08/2023]
Abstract
Interleukin-1 (IL-1) comprises a family of closely related genes; the two major agonistic proteins, IL-1alpha and IL-1beta, are pleiotropic and affect mainly inflammation, immunity and haemopoiesis. IL-1beta is active solely in its secreted form, whereas IL-1alpha is active mainly as an intracellular precursor. IL-1 is abundant at tumour sites, where it may affect the process of carcinogenesis, tumour growth and invasiveness and the patterns of tumour-host interactions. Here, we review the effects of micro-environment- and tumour cell-derived IL-1 on malignant processes in experimental tumour models. We propose that membrane-associated IL-1alpha expressed on malignant cells stimulates anti-tumour immunity, while secretable IL-1beta derived from the micro-environment or the malignant cells, activates inflammation that promotes invasiveness and induces tumour-mediated suppression. Inhibition of the function of IL-1 by the inhibitor of IL-1, interleukin-1 receptor antagonist (IL-1Ra), reduces tumour invasiveness and alleviates tumour-mediated suppression, pointing to its feasible use in cancer therapy. Differential manipulation of IL-1alpha and IL-1beta in malignant cells or in the tumour's micro-environment may open new possibilities for using IL-1 in cancer immunotherapy.
Collapse
Affiliation(s)
- Ron N Apte
- Department of Microbiology and Immunology and Faculty of Health Sciences and The Cancer Research Center, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cytokines and chemokines. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1567-7443(03)80049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Abstract
Interleukin-1 (IL-1) represents a family of two agonistic proteins, IL-1alpha and IL-1beta, that are pleiotropic and affect hemopoiesis, inflammation, and immunity. In the context of the producing cell, IL-1beta is solely active in its secreted form, whereas IL-1alpha is active as an intracellular precursor, as a membrane-associated cytokine and to a lesser extent as a secreted molecule. IL-1 is abundant at tumor sites, where it may not only affect the growth and invasiveness of malignant cells, but where it may also induce antitumor immunity. Here we review the effects of microenvironmental and tumor cell-associated IL-1 on malignant processes, in experimental tumor models and in cancer patients.
Collapse
Affiliation(s)
- Ron N Apte
- Department of Microbiology and Immunology, Faculty of Health Sciences and The Cancer Research Center, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | | |
Collapse
|
15
|
Globerson A. The center for multidisciplinary research in aging (CMRA) at Ben Gurion University of the Negev in Israel. Exp Gerontol 2001; 37:19-26. [PMID: 11738143 DOI: 10.1016/s0531-5565(01)00176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Center for Multidisciplinary Research in Aging (CMRA) was established at Ben Gurion University of the Negev (BGU) in Beer Sheva in 2000, to promote research in the different disciplines of gerontology and geriatrics. It benefits from the special features of that university compared to other academic institutions in Israel and from the regional uniqueness of its location, in the southern part of Israel. CMRA serves as a comprehensive outreach unit for collaborative projects, as well as training programs and organization of professional meetings on aging.
Collapse
Affiliation(s)
- A Globerson
- Ben Gurion University of Negev, The Center for Multidisciplinary Research in Aging, P.O. Box 653, 84105, Beer Sheva, Israel.
| |
Collapse
|