1
|
He Y, Fang J, Zhang C, Pan J, Jin Q, Yang Y, Wang L, Wang B, Zhang D, Pan J. TcpC secreting uropathogenic E. coli promoted kidney cells to secrete MIP-2 via p38 MAPK pathway. Mol Med Rep 2017; 16:3528-3534. [PMID: 28765918 DOI: 10.3892/mmr.2017.7021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 07/06/2017] [Indexed: 11/05/2022] Open
Abstract
Pyelonephritis is an infection of the upper urinary tract with characteristic histological change to neutrophil infiltration in the kidney. The majority of pyelonephritis is caused by uropathogenic Escherichia (E.) coli (UPEC) bearing distinct virulence factors. Toll/interleukin‑1 receptor domain‑containing protein C (TcpC) encoded by E. coli is an important virulence factor in the majority of strains of UPEC and inhibits macrophage‑mediated innate immunity, which serves an essential role in the pathogenesis of pyelonephritis. In the present study, it was demonstrated that TcpC induced kidney cells to produce macrophage inflammatory protein‑2 (MIP‑2; also known as C‑X‑C motif chemokine 2). MIP‑2 concentration in kidney homogenates from TcpC‑secreting UPEC CFT073 (TcpCwt) murine pyelonephritis models was significantly higher compared with that in kidney homogenates from tcpC knockout CFT073 (TcpC‑/‑) models. In vitro, TcpCwt dose‑dependently promoted MIP‑2 secretion in HEK‑293 cells. The concentration of MIP‑2 in culture supernatants of HEK‑293 co‑cultured with TcpCwt was profoundly higher compared with that of HEK‑293 co‑cultured with TcpC‑/‑. In the presence of anti‑TcpC antibody, the enhancement effect of TcpCwt on MIP‑2 production was completely abrogated, suggesting that the enhanced production of MIP‑2 was mediated by secreted TcpC. Furthermore, it was demonstrated that TcpC‑/‑ treatment had no effect on the p38 mitogen activated protein kinase (MAPK) signaling pathway, while TcpCwt treatment resulted in the activation of p38 MAPK in HEK‑293 cells, as indicated by a simultaneous increase in p38 and phosphorylated‑p38. In addition, inhibition of p38 MAPK with SB203580 significantly decreased MIP‑2 concentration and neutrophil recruitment activity in the supernatants of HEK‑293 cells co‑cultured with TcpCwt. This indicates that TcpC may promote MIP‑2 production in kidney cells through the p38 MAPK signaling pathway. Taken together, the data of the present study demonstrated that TcpC can induce MIP‑2 production, which may contribute to the characteristic histological change associated with pyelonephritis. This data has provided novel evidence to further clarify the pathogenesis of pyelonephritis and novel directions on the pathogenicity of TcpC‑secreting UPEC.
Collapse
Affiliation(s)
- Yujie He
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China
| | - Jie Fang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China
| | - Chong Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China
| | - Jun Pan
- Cancer Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Qi Jin
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China
| | - Yingzhi Yang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China
| | - Linyao Wang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China
| | - Baoming Wang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China
| | - Dayong Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China
| | - Jianping Pan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China
| |
Collapse
|
2
|
Kariyawasam S, Johnson TJ, Debroy C, Nolan LK. Occurrence of pathogenicity island I(APEC-O1) genes among Escherichia coli implicated in avian colibacillosis. Avian Dis 2006; 50:405-10. [PMID: 17039841 DOI: 10.1637/7462-102705r.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Colibacillosis caused by avian pathogenic Escherichia coli (APEC) is a leading cause of economic loss to the poultry industry worldwide. The ability of APEC to cause disease is determined by certain virulence markers, some of which are located on pathogenicity islands (PAls). We recently described one such PAI in an APEC O1:K1 strain (APEC-O1). This PAI, termed PAI I(APEC-O1), carries the genes of the pap operon, a region similar to the tia invasion determinant of enterotoxigenic E coli; ireA, a gene that encodes an iron-responsive element; and a novel 1.5-kb region, ORF 54. Here, the occurrence of six selected loci of PAI I(APEC-O1) (papA, papC, papG, ireA, tia, and ORF 54) among APEC and fecal E. coli strains from apparently healthy chickens (avian commensal E. coli) was determined using polymerase chain reaction (PCR) techniques. None of the commensal E. coli was positive for all six traits, whereas 7.2% of the APEC isolates were positive for all the traits. Although there was no significant difference in the occurrence of ORF 54 among APEC and commensal E. coli, tia, ireA, papC, and papG genes were predominantly present in APEC rather than in avian commensal E. coli. papA was detected in only 6.3% of APEC, perhaps because of the presence of allelic variants of the gene. Additionally, the presence of all six traits was tested with PCR in APEC isolates collected in the 1980s, and these results were compared with those obtained with the APEC isolated in the 1990s. There was no significant difference in the occurrence of tia, ireA, papC, papG, and ORF 54 between APEC isolates collected during the different decades. However, papA was more frequently present in APEC from the 1980s than it was in APEC from the 1990s. Phylogenetic group of an isolate did not correlate with pathogenicity or the presence of PAI traits, except that more APEC of the low-pathogenicity group belonged to the phylogenetic group B1. However, PAI traits occurred more frequently in isolates belonging to the intermediate- and high-pathogenicity groups than in isolates of low pathogenicity.
Collapse
Affiliation(s)
- Subhashinie Kariyawasam
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, 1802 Elwood Drive, VMRI #2, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
3
|
Kariyawasam S, Johnson TJ, Nolan LK. The pap operon of avian pathogenic Escherichia coli strain O1:K1 is located on a novel pathogenicity island. Infect Immun 2006; 74:744-9. [PMID: 16369033 PMCID: PMC1346673 DOI: 10.1128/iai.74.1.744-749.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a 56-kb pathogenicity island (PAI) in avian pathogenic Escherichia coli strain O1:K1 (APEC-O1). This PAI, termed PAI I(APEC-O1), is integrated adjacent to the 3' end of the pheV tRNA gene. It carries putative virulence genes of APEC (pap operon), other E. coli genes (tia and ireA), and a 1.5-kb region unique to APEC-O1. The kps gene cluster required for the biosynthesis of polysialic acid capsule was mapped to a location immediately downstream of this PAI.
Collapse
|
4
|
Abstract
In this review, we focus on a group of mobile genetic elements designated pathogenicity islands (PAI). These elements play a pivotal role in the virulence of bacterial pathogens of humans and are also essential for virulence in pathogens of animals and plants. Characteristic molecular features of PAI of important human pathogens and their role in pathogenesis are described. The availability of a large number of genome sequences of pathogenic bacteria and their benign relatives currently offers a unique opportunity for the identification of novel pathogen-specific genomic islands. However, this knowledge has to be complemented by improved model systems for the analysis of virulence functions of bacterial pathogens. PAI apparently have been acquired during the speciation of pathogens from their nonpathogenic or environmental ancestors. The acquisition of PAI not only is an ancient evolutionary event that led to the appearance of bacterial pathogens on a timescale of millions of years but also may represent a mechanism that contributes to the appearance of new pathogens within a human life span. The acquisition of knowledge about PAI, their structure, their mobility, and the pathogenicity factors they encode not only is helpful in gaining a better understanding of bacterial evolution and interactions of pathogens with eukaryotic host cells but also may have important practical implications such as providing delivery systems for vaccination, tools for cell biology, and tools for the development of new strategies for therapy of bacterial infections.
Collapse
Affiliation(s)
- Herbert Schmidt
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | | |
Collapse
|
5
|
Abstract
PURPOSE This review provides practicing urologists with important basic information about urinary tract infections (UTIs) that can be applied to everyday clinical problems. MATERIALS AND METHODS A review is presented of provocative and controversial concepts in the current literature. RESULTS Bacterial virulence mechanisms are critical for overcoming the normal host defenses. Increasing antimicrobial resistance of uropathogens has led to reconsideration of traditional treatment recommendations in many areas. For effective patient management the first issue is to define complicating urological factors. Managing complicated urinary tract infections, particularly in urology, is determined by clinical experience to define the pertinent anatomy and to determine the optimal interventions. New clinical data are summarized on UTIs in long-term care patients, behavioral risks for UTI in healthy women and anatomical differences associated with an increased risk for UTI. The rationale is presented for UTI prophylaxis using cranberry juice, immunization and bacterial interference. Current treatment trends for UTI include empiric therapy (without urine culture and sensitivity testing), short-course therapy, patient-administered (self-start) therapy and outpatient therapy for uncomplicated pyelonephritis. CONCLUSIONS Recommendations for treating patients with UTIs have changed based on basic science and clinical experience.
Collapse
Affiliation(s)
- John N Krieger
- Department of Urology, University of Washington, School of Medicine, Seattle, USA
| |
Collapse
|