1
|
Friedlander Y, Zanette B, Lindenmaier AA, Fliss J, Li D, Emami K, Jankov RP, Kassner A, Santyr G. Effect of inhaled oxygen concentration on 129 Xe chemical shift of red blood cells in rat lungs. Magn Reson Med 2021; 86:1187-1193. [PMID: 33837550 DOI: 10.1002/mrm.28801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 03/21/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE To investigate the dependence of dissolved 129 Xe chemical shift on the fraction of inhaled oxygen, Fi O2 , in the lungs of healthy rats. METHODS The chemical shifts of 129 Xe dissolved in red blood cells, δRBC , and blood plasma and/or tissue, δPlasma , were measured using MRS in 12 Sprague Dawley rats mechanically ventilated at Fi O2 values of 0.14, 0.19, and 0.22. Regional effects on the chemical shifts were controlled using a chemical shift saturation recovery sequence with a fixed delay time. MRS was also performed at an Fi CO2 value of 0.085 to investigate the potential effect of the vascular response on δRBC and δPlasma . RESULTS δRBC increased with decreasing Fi O2 (P = .0002), and δPlasma showed no dependence on Fi O2 (P = .23). δRBC at Fi CO2 = 0 (210.7 ppm ± 0.1) and at Fi CO2 = 0.085 (210.6 ppm ± 0.2) were not significantly different (P = .67). δPlasma at Fi CO2 = 0 (196.9 ppm ± 0.3) and at Fi CO2 = 0.085 (197.0 ppm ± 0.1) were also not significantly different (P = .81). CONCLUSION Rat lung δRBC showed an inverse relationship to Fi O2 , opposite to the relationship previously demonstrated for in vitro human blood. Rat lung δRBC did not depend on Fi CO2 .
Collapse
Affiliation(s)
- Yonni Friedlander
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Brandon Zanette
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andras A Lindenmaier
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jordan Fliss
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Li
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Robert P Jankov
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrea Kassner
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Giles Santyr
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Dunn JF, Wu Y, Zhao Z, Srinivasan S, Natah SS. Training the brain to survive stroke. PLoS One 2012; 7:e45108. [PMID: 23028788 PMCID: PMC3441606 DOI: 10.1371/journal.pone.0045108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/14/2012] [Indexed: 12/20/2022] Open
Abstract
Background Presently, little can be done to repair brain tissue after stroke damage. We hypothesized that the mammalian brain has an intrinsic capacity to adapt to low oxygen which would improve outcome from a reversible hypoxic/ischemic episode. Acclimation to chronic hypoxia causes increased capillarity and tissue oxygen levels which may improve the capacity to survive ischemia. Identification of these adaptations will lead to protocols which high risk groups could use to improve recovery and reduce costs. Methods and Findings Rats were exposed to hypoxia (3 weeks living at ½ an atmosphere). After acclimation, capillary density was measured morphometrically and was increased by 30% in the cortex. Novel implantable oxygen sensors showed that partial pressure of oxygen in the brain was increased by 40% in the normal cortex. Infarcts were induced in brain with 1 h reversible middle cerebral artery occlusions. After ischemia (48 h) behavioural scores were improved and T2 weighted MRI lesion volumes were reduced by 52% in acclimated groups. There was a reduction in inflammation indicated by reduced lymphocytes (by 27–33%), and ED1 positive cells (by 35–45%). Conclusions It is possible to stimulate a natural adaptive mechanism in the brain which will reduce damage and improve outcome for a given ischemic event. Since these adaptations occur after factors such as HIF-1α have returned to baseline, protection is likely related more to morphological changes such as angiogenesis. Such pre-conditioning, perhaps with exercise or pharmaceuticals, would not necessarily reduce the incidence of stroke, but the severity of damage could be reduced by 50%.
Collapse
Affiliation(s)
- Jeff F Dunn
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | |
Collapse
|
4
|
Dunn JF, Khan MN, Hou HG, Merlis J, Abajian MA, Demidenko E, Grinberg OY, Swartz HM. Cerebral oxygenation in awake rats during acclimation and deacclimation to hypoxia: an in vivo electron paramagnetic resonance study. High Alt Med Biol 2011; 12:71-7. [PMID: 21452968 DOI: 10.1089/ham.2010.1038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exposure to high altitude or hypobaric hypoxia results in a series of metabolic, physiologic, and genetic changes that serve to acclimate the brain to hypoxia. Tissue Po(2) (Pto(2)) is a sensitive index of the balance between oxygen delivery and utilization and can be considered to represent the summation of such factors as cerebral blood flow, capillary density, hematocrit, arterial Po(2), and metabolic rate. As such, it can be used as a marker of the extent of acclimation. We developed a method using electron paramagnetic resonance (EPR) to measure Pto(2) in unanesthetized subjects with a chronically implanted sensor. EPR was used to measure rat cortical tissue Pto(2) in awake rats during acute hypoxia and over a time course of acclimation and deacclimation to hypobaric hypoxia. This was done to simulate the effects on brain Pto(2) of traveling to altitude for a limited period. Acute reduction of inspired O(2) to 10% caused a decline from 26.7 ± 2.2 to 13.0 ± 1.5 mmHg (mean ± SD). Addition of 10% CO(2) to animals breathing 10% O(2) returned Pto(2) to values measured while breathing 21% O(2,) indicating that hypercapnia can reverse the effects of acute hypoxia. Pto(2) in animals acclimated to 10% O(2) was similar to that measured preacclimation when breathing 21% O(2). Using a novel, individualized statistical model, it was shown that the T(1/2) of the Pto(2) response during exposure to chronic hypoxia was approximately 2 days. This indicates a capacity for rapid adaptation to hypoxia. When subjects were returned to normoxia, there was a transient hyperoxygenation, followed by a return to lower values with a T(1/2) of deacclimation of 1.5 to 3 days. These data indicate that exposure to hypoxia results in significant improvements in steady-state oxygenation for a given inspired O(2) and that both acclimation and deacclimation can occur within days.
Collapse
Affiliation(s)
- Jeff F Dunn
- Department of Radiology, Experimental Imaging Centre, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Ortiz-Prado E, Natah S, Srinivasan S, Dunn JF. A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: the effect of acute and chronic hypoxia on brain tissue PO(2). J Neurosci Methods 2010; 193:217-25. [PMID: 20817029 DOI: 10.1016/j.jneumeth.2010.08.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/19/2010] [Accepted: 08/23/2010] [Indexed: 10/19/2022]
Abstract
The level of tissue oxygenation provides information related to the balance between oxygen delivery, oxygen utilization, tissue reactivity and morphology during physiological conditions. Tissue partial pressure of oxygen (PtO(2)) is influenced by the use of anesthesia or restraint. These factors may impact the absolute level of PtO(2). In this study we present a novel fiber optic method to measure brain PtO(2). This method can be used in unanesthetized, unrestrained animals, provides absolute values for PO(2), has a stable calibration, does not consume oxygen and is MRI compatible. Brain PtO(2) was studied during acute hypoxia, as well as before and after 28 days of high altitude acclimatization. A sensor was chronically implanted in the frontal cortex of eight Wistar rats. It is comprised of a fiber optic probe with a tip containing material that fluoresces with an oxygen dependent lifetime. Brain PtO(2) declines by 80% and 76% pre- and post-acclimatization, respectively, when the fraction of inspired oxygen declines from 0.21 to 0.08. In addition, a linear relationship between brain PtO(2) and inspired O(2) levels was demonstrated r(2)=0.98 and r(2)=0.99 (pre- and post-acclimatization). Hypoxia acclimatization resulted in an increase in the overall brain PtO(2) by approximately 35%. This paper demonstrates the use of a novel chronically implanted fiber optic based sensor for measuring absolute PtO(2). It shows a very strong linear relationship in awake animals between inspired O(2) and tissue O(2), and shows that there is a proportional increase in PtO(2) over a range of inspired values after exposure to chronic hypoxia.
Collapse
Affiliation(s)
- E Ortiz-Prado
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|