1
|
Preclinical Testing of New Hydrogel Materials for Cartilage Repair: Overcoming Fixation Issues in a Large Animal Model. Int J Biomater 2021; 2021:5583815. [PMID: 34239571 PMCID: PMC8235960 DOI: 10.1155/2021/5583815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
Reinforced hydrogels represent a promising strategy for tissue engineering of articular cartilage. They can recreate mechanical and biological characteristics of native articular cartilage and promote cartilage regeneration in combination with mesenchymal stromal cells. One of the limitations of in vivo models for testing the outcome of tissue engineering approaches is implant fixation. The high mechanical stress within the knee joint, as well as the concave and convex cartilage surfaces, makes fixation of reinforced hydrogel challenging. Methods. Different fixation methods for full-thickness chondral defects in minipigs such as fibrin glue, BioGlue®, covering, and direct suturing of nonenforced and enforced constructs were compared. Because of insufficient fixation in chondral defects, superficial osteochondral defects in the femoral trochlea, as well as the femoral condyle, were examined using press-fit fixation. Two different hydrogels (starPEG and PAGE) were compared by 3D-micro-CT (μCT) analysis as well as histological analysis. Results. Our results showed fixation of below 50% for all methods in chondral defects. A superficial osteochondral defect of 1 mm depth was necessary for long-term fixation of a polycaprolactone (PCL)-reinforced hydrogel construct. Press-fit fixation seems to be adapted for a reliable fixation of 95% without confounding effects of glue or suture material. Despite the good integration of our constructs, especially in the starPEG group, visible bone lysis was detected in micro-CT analysis. There was no significant difference between the two hydrogels (starPEG and PAGE) and empty control defects regarding regeneration tissue and cell integration. However, in the starPEG group, more cell-containing hydrogel fragments were found within the defect area. Conclusion. Press-fit fixation in a superficial osteochondral defect in the medial trochlear groove of adult minipigs is a promising fixation method for reinforced hydrogels. To avoid bone lysis, future approaches should focus on multilayered constructs recreating the zonal cartilage as well as the calcified cartilage and the subchondral bone plate.
Collapse
|
2
|
Combination of chondrocytes and chondrons improves extracellular matrix production to promote the repairs of defective knee cartilage in rabbits. J Orthop Translat 2021; 28:47-54. [PMID: 33717981 PMCID: PMC7906883 DOI: 10.1016/j.jot.2021.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/12/2020] [Accepted: 01/13/2021] [Indexed: 12/02/2022] Open
Abstract
Background Chondrons are composed of chondrocytes and the surrounding pericellular matrix (PCM) and function to enhance chondrocyte-mediated cartilage tissue engineering. This study aimed at investigating the potential effect of combined chondrocytes with chondrons on the production of proteoglycan and collagen-II (Col-2) and the repair of defective knee cartilage in rabbits. Methods Chondrocytes and chondrons were isolated from the knee cartilage of rabbits, and cultured alone or co-cultured for varying periods in vitro. Their morphology was characterized by histology. The levels of aggrecan (AGG), Col-2 and glycosaminoglycan (GAG) expression were quantified by qRT-PCR, Alcian blue-based precipitation and ELISA. The effect of combined chondrocytes with chondrons in alginate spheres on the repair of defective knee cartilage was examined in rabbits. Results The isolated chondrocytes and chondrons displayed unique morphology and began to proliferate on day 3 and 6 post culture, respectively, accompanied by completely degenerated PCM on day 6 post culture. Evidently, chondrocytes had stronger proliferation capacity than chondrons. Longitudinal analyses indicated that culture of chondrons, but not chondrocytes, increased AGG mRNA transcripts and GAG levels with time and Col-2 mRNA transcripts only on day 3 post culture. Compared with chondrocytes or chondrons alone, co-culture of chondrocytes and chondrons significantly up-regulated AGG and Col-2 expression and GAG production, particularly at a ratio of 1:1. Implantation with chondrocytes and chondrons at 1:1 significantly promoted the repair of defective knee cartilage in rabbits, accompanied by reduced the Wakiteni scores with time. Conclusion Combined chondrons with chondrocytes promoted the production of extracellular matrix and the repair of defective knee cartilage in rabbits. The translational potential of this article This study explores that the combination of chondrons and chondrocytes may be new therapeutic strategy for cartilage tissue engineering and repair of defective cartilage.
Collapse
|
3
|
Hamann A, Nguyen A, Pannier AK. Nucleic acid delivery to mesenchymal stem cells: a review of nonviral methods and applications. J Biol Eng 2019; 13:7. [PMID: 30675180 PMCID: PMC6339289 DOI: 10.1186/s13036-019-0140-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated and expanded from many tissues, and are being investigated for use in cell therapies. Though MSC therapies have demonstrated some success, none have been FDA approved for clinical use. MSCs lose stemness ex vivo, decreasing therapeutic potential, and face additional barriers in vivo, decreasing therapeutic efficacy. Culture optimization and genetic modification of MSCs can overcome these barriers. Viral transduction is efficient, but limited by safety concerns related to mutagenicity of integrating viral vectors and potential immunogenicity of viral antigens. Nonviral delivery methods are safer, though limited by inefficiency and toxicity, and are flexible and scalable, making them attractive for engineering MSC therapies. Main text Transfection method and nucleic acid determine efficiency and expression profile in transfection of MSCs. Transfection methods include microinjection, electroporation, and nanocarrier delivery. Microinjection and electroporation are efficient, but are limited by throughput and toxicity. In contrast, a variety of nanocarriers have been demonstrated to transfer nucleic acids into cells, however nanocarrier delivery to MSCs has traditionally been inefficient. To improve efficiency, plasmid sequences can be optimized by choice of promoter, inclusion of DNA targeting sequences, and removal of bacterial elements. Instead of DNA, RNA can be delivered for rapid protein expression or regulation of endogenous gene expression. Beyond choice of nanocarrier and nucleic acid, transfection can be optimized by priming cells with media additives and cell culture surface modifications to modulate barriers of transfection. Media additives known to enhance MSC transfection include glucocorticoids and histone deacetylase inhibitors. Culture surface properties known to modulate MSC transfection include substrate stiffness and specific protein coating. If nonviral gene delivery to MSCs can be sufficiently improved, MSC therapies could be enhanced by transfection for guided differentiation and reprogramming, transplantation survival and directed homing, and secretion of therapeutics. We discuss utilized delivery methods and nucleic acids, and resulting efficiency and outcomes, in transfection of MSCs reported for such applications. Conclusion Recent developments in transfection methods, including nanocarrier and nucleic acid technologies, combined with chemical and physical priming of MSCs, may sufficiently improve transfection efficiency, enabling scalable genetic engineering of MSCs, potentially bringing effective MSC therapies to patients.
Collapse
Affiliation(s)
- Andrew Hamann
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE 68583-0726 USA
| | - Albert Nguyen
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE 68583-0726 USA
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE 68583-0726 USA
| |
Collapse
|
4
|
Li Y, Hai Y, Chen J, Liu T. Differentiating Chondrocytes from Peripheral Blood-derived Human Induced Pluripotent Stem Cells. J Vis Exp 2017. [PMID: 28745632 DOI: 10.3791/55722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this study, we used peripheral blood cells (PBCs) as seed cells to produce chondrocytes via induced pluripotent stem cells (iPSCs) in an integration-free method. Following embryoid body (EB) formation and fibroblastic cell expansion, the iPSCs are induced for chondrogenic differentiation for 21 days under serum-free and xeno-free conditions. After chondrocyte induction, the phenotypes of the cells are evaluated by morphological, immunohistochemical, and biochemical analyses, as well as by the quantitative real-time PCR examination of chondrogenic differentiation markers. The chondrogenic pellets show positive alcian blue and toluidine blue staining. The immunohistochemistry of collagen II and X staining is also positive. The sulfated glycosaminoglycan (sGAG) content and the chondrogenic differentiation markers COLLAGEN 2 (COL2), COLLAGEN 10 (COL10), SOX9, and AGGRECAN are significantly upregulated in chondrogenic pellets compared to hiPSCs and fibroblastic cells. These results suggest that PBCs can be used as seed cells to generate iPSCs for cartilage repair, which is patient-specific and cost-effective.
Collapse
Affiliation(s)
- Yueying Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences
| | - Yong Hai
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University
| | - Tie Liu
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University;
| |
Collapse
|
5
|
Hagmann S, Frank S, Gotterbarm T, Dreher T, Eckstein V, Moradi B. Fluorescence activated enrichment of CD146+ cells during expansion of human bone-marrow derived mesenchymal stromal cells augments proliferation and GAG/DNA content in chondrogenic media. BMC Musculoskelet Disord 2014; 15:322. [PMID: 25262357 PMCID: PMC4196082 DOI: 10.1186/1471-2474-15-322] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/08/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND While numerous subpopulations of BM-MSCs have been identified, the relevance of these findings regarding the functional properties remains mostly unclear. With regards to attempts of enhancing differentiation results by preselecting certain MSC subtypes, we have evaluated the efficiency of CD146 purification during expansion, and evaluated whether these measures enhanced MSC differentiation results. METHODS Human MSCs were derived from bone marrow of six donors and cultured in two different culture media. After P1, MSCs were purified by either magnetic or fluorescence sorting for CD146, with unsorted cells as controls. Growth characteristics and typical MSC surface markers were assessed from P0 to P3. After P3, chondrogenic, osteogenic and adipogenic differentiation potential were assessed. RESULTS Despite a high variability of CD146 expression among the donors, fluorescence sorting significantly increased the number of CD146+ cells compared to control MSCs, while magnetic sorting led to a lesser enrichment. Osteogenic and adipogenic differentiation potential was not affected by the sorting process. However, FACS-sorted cells showed significantly increased GAG/DNA content after chondrogenic differentiation compared to control MSCs. CONCLUSION FACS sorting of CD146+ cells was more efficient than magnetic sorting. The underlying mechanism of increased GAG/DNA content after enrichment during expansion remains unclear, but may be linked to increased proliferation rates in these cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Babak Moradi
- Department of Orthopedic and Trauma Surgery, University Hospital Heidelberg, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany.
| |
Collapse
|
6
|
Buhrmann C, Busch F, Shayan P, Shakibaei M. Sirtuin-1 (SIRT1) is required for promoting chondrogenic differentiation of mesenchymal stem cells. J Biol Chem 2014; 289:22048-62. [PMID: 24962570 DOI: 10.1074/jbc.m114.568790] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sirtuin-1 (SIRT1), NAD(+)-dependent deacetylase, has been linked to anabolic effects in cartilage, although the mechanisms of SIRT1 signaling during differentiation of mesenchymal stem cells (MSCs) to chondrocytes are poorly understood. Therefore, we investigated the role of SIRT1-mediated signaling during chondrogenic differentiation of MSCs in vitro. High density and alginate cultures of MSCs were treated with chondrogenic induction medium with/without the SIRT1 inhibitor nicotinamide, antisense oligonucleotides against SIRT1 (SIRT1-ASO), IL-1β, and/or resveratrol. Transient transfection of MSCs with SIRT1-antisense oligonucleotides, nicotinamide, and IL-1β inhibited chondrogenesis-induced down-regulation of cartilage-specific proteins, cartilage-specific transcription factor Sox9, and enhanced NF-κB-regulated gene products involved in the inflammatory and degradative processes in cartilage (MMP-9, COX-2, and caspase-3), and NF-κB phosphorylation, acetylation, and activation of IκBα kinase. In contrast, the SIRT1 activator resveratrol or BMS-345541 (inhibitor of IKK) inhibited IL-1β- and NAM-induced suppression of cartilage-specific proteins, Sox9, and up-regulation of NF-κB-regulated gene products. Moreover, SIRT1 was found to interact directly with NF-κB and resveratrol-suppressed IL-1β and NAM but not SIRT1-ASO-induced NF-κB phosphorylation, acetylation, and activation of IκBα kinase. Knockdown of SIRT1 by mRNA abolished the inhibitory effects of resveratrol on inflammatory and apoptotic signaling and Sox9 expression, suggesting the essential role of this enzyme. Finally, the modulatory effects of resveratrol were found to be mediated at least in part by the association between SIRT1 and Sox9. These results indicate for the first time that SIRT1 supports chondrogenic development of MSCs at least in part through inhibition/deacetylation of NF-κB and activation of Sox9.
Collapse
Affiliation(s)
- Constanze Buhrmann
- From the Institute of Anatomy, Musculoskeletal Research Group, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany
| | - Franziska Busch
- From the Institute of Anatomy, Musculoskeletal Research Group, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany
| | - Parviz Shayan
- the Investigating Institute of Molecular Biological System Transfer, Tehran 1417863171, Iran, and the Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, Tehran 141556453, Iran
| | - Mehdi Shakibaei
- From the Institute of Anatomy, Musculoskeletal Research Group, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany,
| |
Collapse
|
7
|
Hagmann S, Moradi B, Frank S, Dreher T, Kämmerer PW, Richter W, Gotterbarm T. FGF-2 addition during expansion of human bone marrow-derived stromal cells alters MSC surface marker distribution and chondrogenic differentiation potential. Cell Prolif 2014; 46:396-407. [PMID: 23869761 DOI: 10.1111/cpr.12046] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 05/10/2013] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Although clinical applications using mesenchymal stromal cells (MSCs) are becoming more frequent, procedures for their in vitro culture are far from standardized. Growth factors such as FGF-2 are frequently added during expansion to improve population growth and differentiation characteristics. However, up to now its influence on surface marker distribution of MSCs has been close to unknown. The purpose of this study was therefore to analyse effects of FGF-2 supplementation on pre-selection of MSC subpopulations. MATERIALS AND METHODS Mesenchymal stromal cells were harvested from bone marrow of six patients and expanded in alpha-MEM or DMEM-LG. Starting in passage 2, 10 ng/ml FGF-2 was administered and non-supplemented media were used as controls. Growth indices were calculated from P0 to P4. After P4, fluorescence cytometry for common MSC surface markers was performed and standard chondrogenic, adipogenic and osteogenic differentiation protocols were applied. RESULTS Cell population growth indices were higher for those in FGF-2 supplemented media. Significant differences in surface marker distribution were observed for CD13, CD14, CD49, CD90, CD340 and STRO-1 depending on respective culture conditions. FGF-2 suppressed CD146 expression in both alpha-MEM and DMEM-LG. No differences in adipogenic and osteogenic differentiation potential could be observed, while FGF-2 significantly improved chondrogenic differentiation in DMEM-LG. CONCLUSIONS While holding the benefit of improving MSC chondrogenic differentiation potential, FGF-2 pre-selects certain MSC subtypes. Our data clearly show that expansion culture conditions have a significant effect on distribution of a number of MSC surface markers.
Collapse
Affiliation(s)
- S Hagmann
- Department of Orthopaedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, 69118 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Hagmann S, Moradi B, Frank S, Dreher T, Kämmerer PW, Richter W, Gotterbarm T. Different culture media affect growth characteristics, surface marker distribution and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells. BMC Musculoskelet Disord 2013; 14:223. [PMID: 23898974 PMCID: PMC3734101 DOI: 10.1186/1471-2474-14-223] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/19/2013] [Indexed: 02/11/2023] Open
Abstract
Background Bone marrow-derived mesenchymal stromal cells (BM-MSCs) play an important role in modern tissue engineering, while distinct variations of culture media compositions and supplements have been reported. Because MSCs are heterogeneous regarding their regenerative potential and their surface markers, these parameters were compared in four widely used culture media compositions. Methods MSCs were isolated from bone marrow and expanded in four established cell culture media. MSC yield/1000 MNCs, passage time and growth index were observed. In P4, typical MSC surface markers were analysed by fluorescence cytometry. Additionally, chondrogenic, adipogenic and osteogenic differentiation potential were evaluated. Results Growth index and P0 cell yield varied importantly between the media. The different expansion media had a significant influence on the expression of CD10, CD90, CD105, CD140b CD146 and STRO-1. While no significant differences were observed regarding osteogenic and adipogenic differentiation, chondrogenic differentiation was superior in medium A as reflected by GAG/DNA content. Conclusions The choice of expansion medium can have a significant influence on growth, differentiation potential and surface marker expression of mesenchymal stromal cells, which is of fundamental importance for tissue engineering procedures.
Collapse
Affiliation(s)
- Sebastien Hagmann
- Department of Orthopedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Germany Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Kim K, Lam J, Lu S, Spicer PP, Lueckgen A, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK. Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J Control Release 2013; 168:166-78. [PMID: 23541928 DOI: 10.1016/j.jconrel.2013.03.013] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/20/2013] [Indexed: 12/11/2022]
Abstract
Biodegradable oligo(poly(ethylene glycol) fumarate) (OPF) composite hydrogels have been investigated for the delivery of growth factors (GFs) with the aid of gelatin microparticles (GMPs) and stem cell populations for osteochondral tissue regeneration. In this study, a bilayered OPF composite hydrogel that mimics the distinctive hierarchical structure of native osteochondral tissue was utilized to investigate the effect of transforming growth factor-β3 (TGF-β3) with varying release kinetics and/or insulin-like growth factor-1 (IGF-1) on osteochondral tissue regeneration in a rabbit full-thickness osteochondral defect model. The four groups investigated included (i) a blank control (no GFs), (ii) GMP-loaded IGF-1 alone, (iii) GMP-loaded IGF-1 and gel-loaded TGF-β3, and (iv) GMP-loaded IGF-1 and GMP-loaded TGF-β3 in OPF composite hydrogels. The results of an in vitro release study demonstrated that TGF-β3 release kinetics could be modulated by the GF incorporation method. At 12weeks post-implantation, the quality of tissue repair in both chondral and subchondral layers was analyzed based on quantitative histological scoring. All groups incorporating GFs resulted in a significant improvement in cartilage morphology compared to the control. Single delivery of IGF-1 showed higher scores in subchondral bone morphology as well as chondrocyte and glycosaminoglycan amount in adjacent cartilage tissue when compared to a dual delivery of IGF-1 and TGF-β3, independent of the TGF-β3 release kinetics. The results suggest that although the dual delivery of TGF-β3 and IGF-1 may not synergistically enhance the quality of engineered tissue, the delivery of IGF-1 alone from bilayered composite hydrogels positively affects osteochondral tissue repair and holds promise for osteochondral tissue engineering applications.
Collapse
Affiliation(s)
- Kyobum Kim
- Department of Bioengineering, Rice University, Houston, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Perera JR, Gikas PD, Bentley G. The present state of treatments for articular cartilage defects in the knee. Ann R Coll Surg Engl 2012; 94:381-7. [PMID: 22943326 PMCID: PMC3954317 DOI: 10.1308/003588412x13171221592573] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2011] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Chondral and osteochondral lesions of the knee are notoriously difficult to treat due to the poor healing capacity of articular cartilage and the hostile environment of moving joints, ultimately causing disabling pain and early osteoarthritis. There are many different reconstructive techniques used currently but few are proven to be of value. However, some have been shown to produce a better repair with hyaline-like cartilage rather than fibrocartilage. METHODS A systematic search of all available online databases including PubMed, MEDLINE(®) and Embase™ was undertaken using several keywords. All the multiple treatment options and methods available were considered. These were summarised, and the evidence for and against them was scrutinised. RESULTS A total of 460 articles were identified after cross-referencing the database searches using the keywords. These revealed that autologous and matrix assisted chondrocyte implantation demonstrated both 'good to excellent' histological results and significant improvement in clinical outcomes. CONCLUSIONS Autologous and matrix assisted chondrocyte implantation have been shown to treat symptomatic lesions successfully with significant histological and clinical improvement. There is, however, still a need for further randomised clinical trials, perfecting the type of scaffold and the use of adjuncts such as growth factors. A list of recommendations for treatment and the potential future trends of managing these lesions are given.
Collapse
Affiliation(s)
- J R Perera
- Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK.
| | | | | |
Collapse
|
11
|
Wei Y, Zeng W, Wan R, Wang J, Zhou Q, Qiu S, Singh SR. Chondrogenic differentiation of induced pluripotent stem cells from osteoarthritic chondrocytes in alginate matrix. Eur Cell Mater 2012; 23:1-12. [PMID: 22241609 PMCID: PMC7447074 DOI: 10.22203/ecm.v023a01] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have the potential to revolutionise cell therapy; however, it remains unclear whether iPSCs can be generated from human osteoarthritic chondrocytes (OCs) and subsequently induced to differentiate into chondrocytes. In the present study, we investigated the differentiation potential of OCs into iPSCs using defined transcription factors and explored the possibility of using these OC-derived iPSCs for chondrogenesis. Our study demonstrates that iPSCs can be generated from OCs and that these iPSCs are indistinguishable from human embryonic stem cells (hESCs). To promote chondrogenic differentiation, we used lentivirus to transduce iPSCs seeded in alginate matrix with transforming growth factor-β1 (TGF-β1) and then in vitro co-cultured these iPSCs with chondrocytes. Gene expression analysis showed that this combinational strategy promotes the differentiation of the established iPSCs into chondrocytes in alginate matrix. Increased expression of cartilage-related genes, including collagen II, aggrecan, and cartilage oligomeric matrix protein (COMP), and decreased gene expression of the degenerative cartilage marker, vascular endothelial growth factor (VEGF), were observed. The histological results revealed a dense sulphated extracellular matrix in the co-culture of TGF-β1-transfected iPSCs with chondrocytes in alginate matrix. Additionally, in vivo chondroinductive activity was also evaluated. Histological examination revealed that more new cartilage was formed in the co-culture of TGF-β1-transfected iPSCs with chondrocytes in alginate matrix. Taken together, our data indicate that iPSCs can be generated from OCs by defined factors and the combinational strategy results in significantly improved chondrogenesis of OC-derived iPSCs. This work adds to our understanding of potential solutions to osteoarthritic cell replacement problem.
Collapse
Affiliation(s)
- Yiyong Wei
- Department of Orthopaedics, Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China,Address for correspondence: Yiyong Wei, Department of Orthopaedics, Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People’s Republic of China, Telephone Number: 86-21-64370045-663538, ; Alternatively: Shree Ram Singh,
| | - Wen Zeng
- Department of Orthopaedics, Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Rong Wan
- Department of Orthopaedics, Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Jun Wang
- Department of Orthopaedics, Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Qi Zhou
- Department of Orthopaedics, Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Shijing Qiu
- Department of Orthopaedics, Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China,Bone and Mineral Research Laboratory, Henry Ford Hospital, Detroit, MI, USA
| | - Shree Ram Singh
- Mouse Cancer Genetics Program, National Institutes of Health, National Cancer Institute at Frederick, Frederick, MD, USA,Address for correspondence: Yiyong Wei, Department of Orthopaedics, Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People’s Republic of China, Telephone Number: 86-21-64370045-663538, ; Alternatively: Shree Ram Singh,
| |
Collapse
|
12
|
Kim DD, Kim DH, Son YJ. Three-Dimensional Porous Scaffold of Hyaluronic Acid for Cartilage Tissue Engineering. ACTIVE IMPLANTS AND SCAFFOLDS FOR TISSUE REGENERATION 2010. [DOI: 10.1007/8415_2010_51] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|