1
|
Zambito M, Viti F, Bosio AG, Ceccherini I, Florio T, Vassalli M. The Impact of Experimental Conditions on Cell Mechanics as Measured with Nanoindentation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1190. [PMID: 37049284 PMCID: PMC10097320 DOI: 10.3390/nano13071190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The evaluation of cell elasticity is becoming increasingly significant, since it is now known that it impacts physiological mechanisms, such as stem cell differentiation and embryogenesis, as well as pathological processes, such as cancer invasiveness and endothelial senescence. However, the results of single-cell mechanical measurements vary considerably, not only due to systematic instrumental errors but also due to the dynamic and non-homogenous nature of the sample. In this work, relying on Chiaro nanoindenter (Optics11Life), we characterized in depth the nanoindentation experimental procedure, in order to highlight whether and how experimental conditions could affect measurements of living cell stiffness. We demonstrated that the procedure can be quite insensitive to technical replicates and that several biological conditions, such as cell confluency, starvation and passage, significantly impact the results. Experiments should be designed to maximally avoid inhomogeneous scenarios to avoid divergences in the measured phenotype.
Collapse
Affiliation(s)
- Martina Zambito
- Dipartimento Medicina Interna, Sezione di Farmacologia, Università di Genova, viale Benedetto XV 2, 16132 Genova, Italy
| | - Federica Viti
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genova, Italy
| | - Alessia G Bosio
- Dipartimento Medicina Interna, Sezione di Farmacologia, Università di Genova, viale Benedetto XV 2, 16132 Genova, Italy
| | | | - Tullio Florio
- Dipartimento Medicina Interna, Sezione di Farmacologia, Università di Genova, viale Benedetto XV 2, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
2
|
Couturier E, Vella D, Boudaoud A. Compression of a pressurized spherical shell by a spherical or flat probe. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:13. [PMID: 35157173 DOI: 10.1140/epje/s10189-022-00166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Measuring the mechanical properties of cells and tissues often involves indentation with a sphere or compression between two plates. Different theoretical approaches have been developed to retrieve material parameters (e.g., elastic modulus) or state variables (e.g., pressure) from such experiments. Here, we extend previous theoretical work on indentation of a spherical pressurized shell by a point force to cover indentation by a spherical probe or a plate. We provide formulae that enable the modulus or pressure to be deduced from experimental results with realistic contact geometries, giving different results that are applicable depending on pressure level. We expect our results to be broadly useful when investigating biomechanics or mechanobiology of cells and tissues.
Collapse
Affiliation(s)
- Etienne Couturier
- Laboratoire MSC, Université de Paris, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France.
| | - Dominic Vella
- Mathematical Institute, University of Oxford, Woodstock Rd, Oxford, OX2 6GG, UK
| | - Arezki Boudaoud
- LadHyX, CNRS, Ecole Polytechnique, IP Paris, 91128, Palaiseau Cedex, France
| |
Collapse
|
3
|
Puzzo D, Raiteri R, Castaldo C, Capasso R, Pagano E, Tedesco M, Gulisano W, Drozd L, Lippiello P, Palmeri A, Scotto P, Miniaci MC. CL316,243, a β3-adrenergic receptor agonist, induces muscle hypertrophy and increased strength. Sci Rep 2016; 5:37504. [PMID: 27874066 PMCID: PMC5118701 DOI: 10.1038/srep37504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022] Open
Abstract
Studies in vitro have demonstrated that β3-adrenergic receptors (β3-ARs) regulate protein metabolism in skeletal muscle by promoting protein synthesis and inhibiting protein degradation. In this study, we evaluated whether activation of β3-ARs by the selective agonist CL316,243 modifies the functional and structural properties of skeletal muscles of healthy mice. Daily injections of CL316,243 for 15 days resulted in a significant improvement in muscle force production, assessed by grip strength and weight tests, and an increased myofiber cross-sectional area, indicative of muscle hypertrophy. In addition, atomic force microscopy revealed a significant effect of CL316,243 on the transversal stiffness of isolated muscle fibers. Interestingly, the expression level of mammalian target of rapamycin (mTOR) downstream targets and neuronal nitric oxide synthase (NOS) was also found to be enhanced in tibialis anterior and soleus muscles of CL316,243 treated mice, in accordance with previous data linking β3-ARs to mTOR and NOS signaling pathways. In conclusion, our data suggest that CL316,243 systemic administration might be a novel therapeutic strategy worthy of further investigations in conditions of muscle wasting and weakness associated with aging and muscular diseases.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences - Section of Physiology, University of Catania, Catania, Italy
| | - Roberto Raiteri
- Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genova, Italy
| | - Clotilde Castaldo
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Raffaele Capasso
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ester Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Mariateresa Tedesco
- Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genova, Italy
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences - Section of Physiology, University of Catania, Catania, Italy
| | - Lisaveta Drozd
- Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genova, Italy
| | | | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences - Section of Physiology, University of Catania, Catania, Italy
| | - Pietro Scotto
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
4
|
Abstract
Determination of microbial viability by the plate count method is routine in microbiology laboratories worldwide. However, limitations of the technique, particularly with respect to environmental microorganisms, are widely recognized. Many alternatives based upon viability staining have been proposed, and these are often combined with techniques such as image analysis and flow cytometry. The plethora of choices, however, adds to confusion when selecting a method. Commercial staining kits aim to simplify the performance of microbial viability determination but often still need adaptation to the specific organism of interest and/or the instruments available to the researcher. This review explores the meaning of microbial viability and offers guidance in the selection and interpretation of viability testing methods.
Collapse
Affiliation(s)
- Hazel M Davey
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, United Kingdom.
| |
Collapse
|