1
|
Mohmad M, Agnihotri N, Kumar V. Fumaric acid: fermentative production, applications and future perspectives. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The rising prices of petroleum-based chemicals and the growing apprehension about food safety and dairy supplements have reignited interest in fermentation process to produce fumaric acid. This article reviews the main issues associated with industrial production of fumaric acid. Different approaches such as strain modulation, morphological control, selection of substrate and fermentative separation have been addressed and discussed followed by their potential towards production of fumaric acid at industrial scale is highlighted. The employment of biodegradable wastes as substrates for the microorganisms involved in fumaric acid synthesis has opened an economic and green route for production of the later on a commercial scale. Additionally, the commercial potential and technological approaches to the augmented fumaric acid derivatives have been discussed. Conclusion of the current review reveals future possibilities for microbial fumaric acid synthesis.
Collapse
Affiliation(s)
- Masrat Mohmad
- Department of Chemistry , Maharishi Markandeshwar (Deemed to be University) , Mullana , Ambala 133207 , India
| | - Nivedita Agnihotri
- Department of Chemistry , Maharishi Markandeshwar (Deemed to be University) , Mullana , Ambala 133207 , India
| | - Vikas Kumar
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University) , Mullana , Ambala 133207 , India
| |
Collapse
|
2
|
Insights for the Valorization of Biomass from Portuguese Invasive Acacia spp. in a Biorefinery Perspective. FORESTS 2020. [DOI: 10.3390/f11121342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acacia spp. are widespread all over the Portuguese territory, representing a threat to local biodiversity and to the productivity of the forest sector. The measures adopted in some countries for their eradication or to control their propagation are expensive, have been considered unfeasible from practical and economical perspectives, and have generated large amounts of residue that must be valorized in a sustainable way. This review brings together information on the valorization of bark, wood, leaves, flowers, pods, seeds, roots, and exudates from Acacia spp., through the production of high-value bioactive extracts (e.g., antioxidant, antimicrobial, anti-inflammatory, antidiabetic, antiviral, anthelmintic, or pesticidal agents, suitable to be explored by pharmaceutical, nutraceutical, cosmetics, and food and feed industries), its incorporation in innovative materials (e.g., polymers and composites, nanomaterials, low-cost adsorbents), as well as through the application of advanced thermochemical processes (e.g., flash pyrolysis) and pre-treatments to decompose biomass in its structural components, regarding the production of biofuels along with valuable chemicals derived from cellulose, hemicellulose, and lignin. The knowledge of this research is important to encourage an efficient and sustainable valorization of Acacia spp. within a biorefinery concept, which can bring a significant economic return from the valorization of these residues, simultaneously contributing to forest cleaning and management, to reduce the risk of fires, and to improve the social-economic development of rural areas.
Collapse
|
3
|
Amusa AA, Ahmad AL, Adewole JK. Mechanism and Compatibility of Pretreated Lignocellulosic Biomass and Polymeric Mixed Matrix Membranes: A Review. MEMBRANES 2020; 10:E370. [PMID: 33255866 PMCID: PMC7760533 DOI: 10.3390/membranes10120370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
Abstract
In this paper, a review of the compatibility of polymeric membranes with lignocellulosic biomass is presented. The structure and composition of lignocellulosic biomass which could enhance membrane fabrications are considered. However, strong cell walls and interchain hindrances have limited the commercial-scale applications of raw lignocellulosic biomasses. These shortcomings can be surpassed to improve lignocellulosic biomass applications by using the proposed pretreatment methods, including physical and chemical methods, before incorporation into a single-polymer or copolymer matrix. It is imperative to understand the characteristics of lignocellulosic biomass and polymeric membranes, as well as to investigate membrane materials and how the separation performance of polymeric membranes containing lignocellulosic biomass can be influenced. Hence, lignocellulosic biomass and polymer modification and interfacial morphology improvement become necessary in producing mixed matrix membranes (MMMs). In general, the present study has shown that future membrane generations could attain high performance, e.g., CO2 separation using MMMs containing pretreated lignocellulosic biomasses with reachable hydroxyl group radicals.
Collapse
Affiliation(s)
- Abiodun Abdulhameed Amusa
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia;
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia;
| | - Jimoh Kayode Adewole
- Process Engineering Department, International Maritime College, Sohar 322, Oman;
| |
Collapse
|
4
|
Zhu XG, Ort DR, Parry MAJ, von Caemmerer S. A wish list for synthetic biology in photosynthesis research. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2219-2225. [PMID: 32060550 PMCID: PMC7134917 DOI: 10.1093/jxb/eraa075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/12/2020] [Indexed: 05/02/2023]
Abstract
This perspective summarizes the presentations and discussions at the ' International Symposium on Synthetic Biology in Photosynthesis Research', which was held in Shanghai in 2018. Leveraging the current advanced understanding of photosynthetic systems, the symposium brain-stormed about the redesign and engineering of photosynthetic systems for translational goals and evaluated available new technologies/tools for synthetic biology as well as technological obstacles and new tools that would be needed to overcome them. Four major research areas for redesigning photosynthesis were identified: (i) mining natural variations of photosynthesis; (ii) coordinating photosynthesis with pathways utilizing photosynthate; (iii) reconstruction of highly efficient photosynthetic systems in non-host species; and (iv) development of new photosynthetic systems that do not exist in nature. To expedite photosynthesis synthetic biology research, an array of new technologies and community resources need to be developed, which include expanded modelling capacities, molecular engineering toolboxes, model species, and phenotyping tools.
Collapse
Affiliation(s)
- Xin-Guang Zhu
- Institute of Plant Physiology and Ecology and Center for Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Donald R Ort
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Martin A J Parry
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Susanne von Caemmerer
- Research School of Biological Sciences, Australian National University, Acton, Australia
| |
Collapse
|
5
|
Jiang T, Zhang C, He Q, Zheng Z, Ouyang J. Metabolic Engineering of Escherichia coli K12 for Homofermentative Production of L-Lactate from Xylose. Appl Biochem Biotechnol 2018; 184:703-715. [PMID: 28840503 DOI: 10.1007/s12010-017-2581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Abstract
The efficient utilization of xylose is regarded as a technical barrier to the commercial production of bulk chemicals from biomass. Due to the desirable mechanical properties of polylactic acid (PLA) depending on the isomeric composition of lactate, biotechnological production of lactate with high optical pure has been increasingly focused in recent years. The main objective of this work was to construct an engineered Escherichia coli for the optically pure L-lactate production from xylose. Six chromosomal deletions (pflB, ldhA, ackA, pta, frdA, adhE) and a chromosomal integration of L-lactate dehydrogenase-encoding gene (ldhL) from Bacillus coagulans was involved in construction of E. coli KSJ316. The recombinant strain could produce L-lactate from xylose resulting in a yield of 0.91 g/g xylose. The chemical purity of L-lactate was 95.52%, and the optical purity was greater than 99%. Moreover, three strategies, including overexpression of L-lactate dehydrogenase, intensification of xylose catabolism, and addition of additives to medium, were designed to enhance the production. The results showed that they could increase the concentration of L-lactate by 32.90, 20.13, and 233.88% relative to the control, respectively. This was the first report that adding formate not only could increase the xylose utilization but also led to the fewer by-product levels.
Collapse
Affiliation(s)
- Ting Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210037, People's Republic of China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chen Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Qin He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210037, People's Republic of China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210037, People's Republic of China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210037, People's Republic of China. .,College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China. .,Key Laboratory of Forest Genetics and Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|