1
|
Dhandapani P, Dondapati SK, Zemella A, Bräuer D, Wüstenhagen DA, Mergler S, Kubick S. Targeted esterase-induced dye (TED) loading supports direct calcium imaging in eukaryotic cell-free systems. RSC Adv 2021; 11:16285-16296. [PMID: 35479141 PMCID: PMC9030739 DOI: 10.1039/d0ra08397f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/25/2021] [Indexed: 11/21/2022] Open
Abstract
Calcium imaging is an important functional tool for analysing ion channels, transporters and pumps for drug screening in living cells. Depicted eukaryotic cell-free systems utilize microsomes, derived from the endoplasmic reticulum to incorporate the synthesized membrane proteins-like ion channels. Carboxylesterase is required to cleave the acetoxymethyl ester moiety of the chemical calcium indicators in order to ensure its immobility across the endoplasmic reticulum membrane. Absence or an inadequate amount of carboxylesterase in the endoplasmic reticulum of different eukaryotic cells poses a hindrance to perform calcium imaging in microsomes. In this work, we try to overcome this drawback and adapt the cell-based calcium imaging principle to a cell-free protein synthesis platform. Carboxylesterase synthesized in a Spodoptera frugiperda Sf21 lysate translation system is established as a viable calcium imaging tool in microsomes. Cell-free synthesized carboxylesterase inside microsomes is validated with esterase and dye loading assays. Native proteins from the endoplasmic reticulum, such as ryanodine channels and calcium ATPase, are analysed. Cell-free synthesized transient receptor potential channels are used as model proteins to demonstrate the realization of this concept. Carboxylesterase, the key enzyme to handle ester-based dyes, is synthesized in microsomes using eukaryotic cell-free protein synthesis platform and established as a viable calcium imaging tool to analyze native and cell-free synthesized ion channels.![]()
Collapse
Affiliation(s)
- Priyavathi Dhandapani
- Fraunhofer Institute of Cell Therapy and Immunology, Branch of Bioanalytics and Bioprocesses (IZI-BB) Am Muehlenberg 13 Potsdam-Golm Germany
| | - Srujan Kumar Dondapati
- Fraunhofer Institute of Cell Therapy and Immunology, Branch of Bioanalytics and Bioprocesses (IZI-BB) Am Muehlenberg 13 Potsdam-Golm Germany
| | - Anne Zemella
- Fraunhofer Institute of Cell Therapy and Immunology, Branch of Bioanalytics and Bioprocesses (IZI-BB) Am Muehlenberg 13 Potsdam-Golm Germany
| | - Dennis Bräuer
- Fraunhofer Institute of Cell Therapy and Immunology, Branch of Bioanalytics and Bioprocesses (IZI-BB) Am Muehlenberg 13 Potsdam-Golm Germany
| | - Doreen Anja Wüstenhagen
- Fraunhofer Institute of Cell Therapy and Immunology, Branch of Bioanalytics and Bioprocesses (IZI-BB) Am Muehlenberg 13 Potsdam-Golm Germany
| | - Stefan Mergler
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin Campus Virchow-Hospital Berlin Germany
| | - Stefan Kubick
- Fraunhofer Institute of Cell Therapy and Immunology, Branch of Bioanalytics and Bioprocesses (IZI-BB) Am Muehlenberg 13 Potsdam-Golm Germany .,Faculty of Health Sciences, Joint Faculty of Brandenburg University of Technology, Cottbus - Senftenberg, Theodor Fontane Medical School of Brandenburg, University of Potsdam Germany
| |
Collapse
|
2
|
Cui J, Wu D, Sun Q, Yang X, Wang D, Zhuang M, Zhang Y, Gan M, Luo D. A PEGDA/DNA Hybrid Hydrogel for Cell-Free Protein Synthesis. Front Chem 2020; 8:28. [PMID: 32133338 PMCID: PMC7039859 DOI: 10.3389/fchem.2020.00028] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Cell-free protein synthesis (CFPS) has the advantage of rapid expression of proteins and has been widely implemented in synthetic biology and protein engineering. However, the critical problem limiting CFPS industrial application is its relatively high cost, which partly attributes to the overexpense of single-use DNA templates. Hydrogels provide a possible solution because they can preserve and reutilize the DNA templates in CFPS and have great potential in elevating the protein production yield of the CFPS. Here, we presented a low-cost hybrid hydrogel simply prepared with polyethylene glycol diacrylate (PEGDA) and DNA, which is capable of high-efficient and repeated protein synthesis in CFPS. Parameters governing protein production specific to hybrid hydrogels were optimized. Structures and physical properties of the hybrid hydrogel were characterized. Transcription and expression kinetics of solution phase system and gel phased systems were investigated. The results showed that PEGDA/DNA hydrogel can enhance the protein expression of the CFPS system and enable a repeated protein production for tens of times. This PEGDA/DNA hybrid hydrogel can serve as a recyclable gene carrier for either batch or continuous protein expression, and paves a path toward more powerful, scalable protein production and cell-free synthetic biology.
Collapse
Affiliation(s)
- Jinhui Cui
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Dan Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
| | - Qian Sun
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | | | - Dandan Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | | | - Yiheng Zhang
- Central Laboratory, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mingzhe Gan
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
3
|
Karaçağlar E, Akgün AN, Müderrisoğlu IH, Haberal M. Coronary Angiography for Follow-up of Heart Transplant Recipients: Usefulness of the Gensini Score. EXP CLIN TRANSPLANT 2020; 18:99-104. [PMID: 32008508 DOI: 10.6002/ect.tond-tdtd2019.p37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Posttransplant cardiac allograft vasculo-pathy affects long-term survival after heart transplant. Because cardiac transplant recipients do not feel angina pectoris as a result of denervation of the transplanted heart graft, early diagnosis is difficult. The Gensini score, a widely used and simple scoring system, can determine the severity of coronary artery disease by angiography. Although this system has been widely used to evaluate natural coronary atherosclerosis, its use in heart transplant recipients has not been studied. Here, we evaluated cardiac allograft vasculo-pathy using the Gensini score. MATERIALS AND METHODS We retrospectively analyzed 105 heart transplant patients seen between February 2004 and April 2018, including their immunosuppressive therapies. The Gensini score was calculated to determine severity score for each coronary stenosis according to degree of luminal narrowing and location. RESULTS Of 105 heart transplant patients, 21 were diagnosed with cardiac allograft vasculopathy. Most patients received tacrolimus, prednisolone, and mycophenolate mofetil as standard therapy. Of 63 included patients, 21 (33.3%) showed cardiac allograft vasculopathy on coronary angiography. In accordance with the International Society of Heart and Lung Transplantation rating system, 42 of 63 patients (66.6%) were rated as 0 (no detectable angiographic lesions). Mean Gensini score was 34.8 ± 26. In the 21 patients with cardiac allograft vasculopathy, Gensini score showed mild cardiac allograft vas-culopathy (score ≤ 10) in 8 patients (38%), moderate (score > 10 and ≤ 40) in 6 patients (28.5%), and severe (score > 40) in 7 patients (33.3%). Angiographic coronary artery disease burden using Gensini was strongly correlated with cardiac allograft vasculopathy severity. CONCLUSIONS The Gensini score could provide valid assessment of cardiac allograft vasculopathy burden for use in clinical practice. However, more research is needed to identify and treat cardiac allograft vasculopathy for successful long-term survival of heart transplant patients.
Collapse
Affiliation(s)
- Emir Karaçağlar
- From the Department of Cardiology, Ankara Hospital, Başkent University Faculty of Medicine, Ankara, Turkey
| | | | | | | |
Collapse
|
4
|
Abstract
Cell-free systems (CFS) have recently evolved into key platforms for synthetic biology applications. Many synthetic biology tools have traditionally relied on cell-based systems, and while their adoption has shown great progress, the constraints inherent to the use of cellular hosts have limited their reach and scope. Cell-free systems, which can be thought of as programmable liquids, have removed many of these complexities and have brought about exciting opportunities for rational design and manipulation of biological systems. Here we review how these simple and accessible enzymatic systems are poised to accelerate the rate of advancement in synthetic biology and, more broadly, biotechnology.
Collapse
Affiliation(s)
- Aidan Tinafar
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada
| | - Katariina Jaenes
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
5
|
Gregorio NE, Levine MZ, Oza JP. A User's Guide to Cell-Free Protein Synthesis. Methods Protoc 2019; 2:E24. [PMID: 31164605 PMCID: PMC6481089 DOI: 10.3390/mps2010024] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic development, education, and more. The advantages of CFPS over in vivo protein expression include its open system, the elimination of reliance on living cells, and the ability to focus all system energy on production of the protein of interest. Over the last 60 years, the CFPS platform has grown and diversified greatly, and it continues to evolve today. Both new applications and new types of extracts based on a variety of organisms are current areas of development. However, new users interested in CFPS may find it challenging to implement a cell-free platform in their laboratory due to the technical and functional considerations involved in choosing and executing a platform that best suits their needs. Here we hope to reduce this barrier to implementing CFPS by clarifying the similarities and differences amongst cell-free platforms, highlighting the various applications that have been accomplished in each of them, and detailing the main methodological and instrumental requirement for their preparation. Additionally, this review will help to contextualize the landscape of work that has been done using CFPS and showcase the diversity of applications that it enables.
Collapse
Affiliation(s)
- Nicole E Gregorio
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - Max Z Levine
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - Javin P Oza
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
6
|
Schoborg JA, Jewett MC. Cell-Free Protein Synthesis: An Emerging Technology for Understanding, Harnessing, and Expanding the Capabilities of Biological Systems. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jennifer A. Schoborg
- Department of Chemical and Biological Engineering; Northwestern University, 2145 Sheridan Road, Evanston, IL; 60208-3120 USA
- Chemistry of Life Processes Institute; 2170 Campus Drive, Evanston, IL; 60208-3120 USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering; Northwestern University, 2145 Sheridan Road, Evanston, IL; 60208-3120 USA
- Chemistry of Life Processes Institute; 2170 Campus Drive, Evanston, IL; 60208-3120 USA
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University, 676 N. St Clair St; Suite 1200 Chicago IL 60611-3068 USA
- Simpson Querrey Institute; Northwestern University; 303 E. Superior St; Suite 11-131, Chicago IL 60611-2875 USA
- Center for Synthetic Biology; Northwestern University, 2145 Sheridan Road; Evanston IL 60208-3120 USA
| |
Collapse
|
7
|
Tran K, Gurramkonda C, Cooper MA, Pilli M, Taris JE, Selock N, Han T, Tolosa M, Zuber A, Peñalber‐Johnstone C, Dinkins C, Pezeshk N, Kostov Y, Frey DD, Tolosa L, Wood DW, Rao G. Cell‐free production of a therapeutic protein: Expression, purification, and characterization of recombinant streptokinase using a CHO lysate. Biotechnol Bioeng 2017; 115:92-102. [DOI: 10.1002/bit.26439] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Kevin Tran
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | | | - Merideth A. Cooper
- Department of Chemical and Biomolecular EngineeringOhio State UniversityColumbusOhio
| | - Manohar Pilli
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | - Joseph E. Taris
- Department of Chemical and Biomolecular EngineeringOhio State UniversityColumbusOhio
| | - Nicholas Selock
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | - Tzu‐Chiang Han
- Department of Chemical and Biomolecular EngineeringOhio State UniversityColumbusOhio
| | - Michael Tolosa
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | - Adil Zuber
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | | | - Christina Dinkins
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | - Niloufar Pezeshk
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | - Yordan Kostov
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | - Douglas D. Frey
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | - Leah Tolosa
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | - David W. Wood
- Department of Chemical and Biomolecular EngineeringOhio State UniversityColumbusOhio
| | - Govind Rao
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| |
Collapse
|
8
|
Sonnabend A, Spahn V, Stech M, Zemella A, Stein C, Kubick S. Production of G protein-coupled receptors in an insect-based cell-free system. Biotechnol Bioeng 2017; 114:2328-2338. [PMID: 28574582 PMCID: PMC5599999 DOI: 10.1002/bit.26346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 04/21/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023]
Abstract
The biochemical analysis of human cell membrane proteins remains a challenging task due to the difficulties in producing sufficient quantities of functional protein. G protein‐coupled receptors (GPCRs) represent a main class of membrane proteins and drug targets, which are responsible for a huge number of signaling processes regulating various physiological functions in living cells. To circumvent the current bottlenecks in GPCR studies, we propose the synthesis of GPCRs in eukaryotic cell‐free systems based on extracts generated from insect (Sf21) cells. Insect cell lysates harbor the fully active translational and translocational machinery allowing posttranslational modifications, such as glycosylation and phosphorylation of de novo synthesized proteins. Here, we demonstrate the production of several GPCRs in a eukaryotic cell‐free system, performed within a short time and in a cost‐effective manner. We were able to synthesize a variety of GPCRs ranging from 40 to 133 kDa in an insect‐based cell‐free system. Moreover, we have chosen the μ opioid receptor (MOR) as a model protein to analyze the ligand binding affinities of cell‐free synthesized MOR in comparison to MOR expressed in a human cell line by “one‐point” radioligand binding experiments. Biotechnol. Bioeng. 2017;114: 2328–2338. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrei Sonnabend
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| | - Viola Spahn
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| | - Christoph Stein
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| |
Collapse
|
9
|
Zemella A, Grossmann S, Sachse R, Sonnabend A, Schaefer M, Kubick S. Qualifying a eukaryotic cell-free system for fluorescence based GPCR analyses. Sci Rep 2017. [PMID: 28623260 PMCID: PMC5473880 DOI: 10.1038/s41598-017-03955-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Membrane proteins are key elements in cell-mediated processes. In particular, G protein-coupled receptors (GPCRs) have attracted increasing interest since they affect cellular signaling. Furthermore, mutations in GPCRs can cause acquired and inheritable diseases. Up to date, there still exist a number of GPCRs that has not been structurally and functionally analyzed due to difficulties in cell-based membrane protein production. A promising approach for membrane protein synthesis and analysis has emerged during the last years and is known as cell-free protein synthesis (CFPS). Here, we describe a simply portable method to synthesize GPCRs and analyze their ligand-binding properties without the requirement of additional supplements such as liposomes or nanodiscs. This method is based on eukaryotic cell lysates containing translocationally active endogenous endoplasmic reticulum-derived microsomes where the insertion of GPCRs into biologically active membranes is supported. In this study we present CFPS in combination with fast fluorescence-based screening methods to determine the localization, orientation and ligand-binding properties of the endothelin B (ET-B) receptor upon expression in an insect-based cell-free system. To determine the functionality of the cell-free synthesized ET-B receptor, we analyzed the binding of its ligand endothelin-1 (ET-1) in a qualitative fluorescence-based assay and in a quantitative radioligand binding assay.
Collapse
Affiliation(s)
- Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses, Potsdam-Golm, Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Solveig Grossmann
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Rita Sachse
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses, Potsdam-Golm, Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Andrei Sonnabend
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses, Potsdam-Golm, Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses, Potsdam-Golm, Am Mühlenberg 13, 14476, Potsdam, Germany.
| |
Collapse
|
10
|
Goering AW, Li J, McClure RA, Thomson RJ, Jewett MC, Kelleher NL. In Vitro Reconstruction of Nonribosomal Peptide Biosynthesis Directly from DNA Using Cell-Free Protein Synthesis. ACS Synth Biol 2017; 6:39-44. [PMID: 27478992 DOI: 10.1021/acssynbio.6b00160] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Genome sequencing has revealed that a far greater number of natural product biosynthetic pathways exist than there are known natural products. To access these molecules directly and deterministically, a new generation of heterologous expression methods is needed. Cell-free protein synthesis has not previously been used to study nonribosomal peptide biosynthesis, and provides a tunable platform with advantages over conventional methods for protein expression. Here, we demonstrate the use of cell-free protein synthesis to biosynthesize a cyclic dipeptide with correct absolute stereochemistry. From a single-pot reaction, we measured the expression of two nonribosomal peptide synthetases larger than 100 kDa, and detected high-level production of a diketopiperazine. Using quantitative LC-MS and synthetically prepared standard, we observed production of this metabolite at levels higher than previously reported from cell-based recombinant expression, approximately 12 mg/L. Overall, this work represents a first step to apply cell-free protein synthesis to discover and characterize new natural products.
Collapse
Affiliation(s)
- Anthony W. Goering
- Department
of Molecular Biosciences,
and the Feinberg School of Medicine, ‡Department of Chemistry, and §Department of Chemical and Biological
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jian Li
- Department
of Molecular Biosciences,
and the Feinberg School of Medicine, ‡Department of Chemistry, and §Department of Chemical and Biological
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan A. McClure
- Department
of Molecular Biosciences,
and the Feinberg School of Medicine, ‡Department of Chemistry, and §Department of Chemical and Biological
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Regan J. Thomson
- Department
of Molecular Biosciences,
and the Feinberg School of Medicine, ‡Department of Chemistry, and §Department of Chemical and Biological
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Molecular Biosciences,
and the Feinberg School of Medicine, ‡Department of Chemistry, and §Department of Chemical and Biological
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L. Kelleher
- Department
of Molecular Biosciences,
and the Feinberg School of Medicine, ‡Department of Chemistry, and §Department of Chemical and Biological
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Perez JG, Stark JC, Jewett MC. Cell-Free Synthetic Biology: Engineering Beyond the Cell. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023853. [PMID: 27742731 DOI: 10.1101/cshperspect.a023853] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-free protein synthesis (CFPS) technologies have enabled inexpensive and rapid recombinant protein expression. Numerous highly active CFPS platforms are now available and have recently been used for synthetic biology applications. In this review, we focus on the ability of CFPS to expand our understanding of biological systems and its applications in the synthetic biology field. First, we outline a variety of CFPS platforms that provide alternative and complementary methods for expressing proteins from different organisms, compared with in vivo approaches. Next, we review the types of proteins, protein complexes, and protein modifications that have been achieved using CFPS systems. Finally, we introduce recent work on genetic networks in cell-free systems and the use of cell-free systems for rapid prototyping of in vivo networks. Given the flexibility of cell-free systems, CFPS holds promise to be a powerful tool for synthetic biology as well as a protein production technology in years to come.
Collapse
Affiliation(s)
- Jessica G Perez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611-3068.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611-2875
| |
Collapse
|
12
|
Thoring L, Wüstenhagen DA, Borowiak M, Stech M, Sonnabend A, Kubick S. Cell-Free Systems Based on CHO Cell Lysates: Optimization Strategies, Synthesis of "Difficult-to-Express" Proteins and Future Perspectives. PLoS One 2016; 11:e0163670. [PMID: 27684475 PMCID: PMC5042383 DOI: 10.1371/journal.pone.0163670] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/11/2016] [Indexed: 11/18/2022] Open
Abstract
Nowadays, biotechnological processes play a pivotal role in target protein production. In this context, Chinese Hamster Ovary (CHO) cells are one of the most prominent cell lines for the expression of recombinant proteins and revealed as a safe host for nearly 40 years. Nevertheless, the major bottleneck of common in vivo protein expression platforms becomes obvious when looking at the production of so called “difficult-to-express” proteins. This class of proteins comprises in particular several ion channels and multipass membrane proteins as well as cytotoxic proteins. To enhance the production of “difficult-to-express” proteins, alternative technologies were developed, mainly based on translationally active cell lysates. These so called “cell-free” protein synthesis systems enable an efficient production of different classes of proteins. Eukaryotic cell-free systems harboring endogenous microsomal structures for the synthesis of functional membrane proteins and posttranslationally modified proteins are of particular interest for future applications. Therefore, we present current developments in cell-free protein synthesis based on translationally active CHO cell extracts, underlining the high potential of this platform. We present novel results highlighting the optimization of protein yields, the synthesis of various “difficult-to-express” proteins and the cotranslational incorporation of non-standard amino acids, which was exemplarily demonstrated by residue specific labeling of the glycoprotein Erythropoietin and the multimeric membrane protein KCSA.
Collapse
Affiliation(s)
- Lena Thoring
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
- Institute for Biotechnology, Technical University of Berlin (TUB), Gustav-Meyer-Allee 25, 13355, Berlin
| | - Doreen A. Wüstenhagen
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
| | - Maria Borowiak
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
| | - Marlitt Stech
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
| | - Andrei Sonnabend
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
- Institute for Biotechnology, Technical University of Berlin (TUB), Gustav-Meyer-Allee 25, 13355, Berlin
| | - Stefan Kubick
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
- * E-mail:
| |
Collapse
|
13
|
Gupta SK, Shukla P. Microbial platform technology for recombinant antibody fragment production: A review. Crit Rev Microbiol 2016; 43:31-42. [PMID: 27387055 DOI: 10.3109/1040841x.2016.1150959] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recombinant antibody fragments are being used for the last few years as an important therapeutic protein to cure various critical and life threatening human diseases. Several expression platforms now days employed for the production of these recombinant fragments, out of which bacterial system has emerged a promising host for higher expression. Since, a small antibody fragment unlike full antibody does not require human-like post-translational modification therefore it is potentially expressed in prokaryotic production system. Recently, small antibody fragments such as scFvs (single-chain variable fragments) and Fabs (antibody fragments) which does not require glycosylation are successfully produced in bacteria and have commercially launched for therapeutic use as these fragments shows better tissue penetration and less immunogenic to human body compared to full-size antibody. Recently developed Wacker's ESETEC secretion technology is an efficient technology for the expression and secretion of the antibody fragment (Fab) exceeded up to 4.0 g/L while scFv up to 3.5 g/L into the fermentation broth. The Pfenex system and pOP prokaryotic expression vector are another platform used for the considerably good amount of antibody fragment production successfully. In this review, we summarize the recent progress on various expression platforms and cloning approaches for the production of different forms of antibody fragments in E. coli.
Collapse
Affiliation(s)
- Sanjeev Kumar Gupta
- a Advanced Biotech Lab, Ipca Laboratories Ltd., Kandivli Industrial Estate, Kandivli (west) , Mumbai , Mahrashtra , India
| | - Pratyoosh Shukla
- b Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology , Maharshi Dayanand University , Rohtak , Haryana , India
| |
Collapse
|
14
|
|
15
|
Developing cell-free protein synthesis systems: a focus on mammalian cells. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Stech M, Hust M, Schulze C, Dübel S, Kubick S. Cell-free eukaryotic systems for the production, engineering, and modification of scFv antibody fragments. Eng Life Sci 2014; 14:387-398. [PMID: 25821419 PMCID: PMC4374706 DOI: 10.1002/elsc.201400036] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 01/27/2023] Open
Abstract
Open cell-free translation systems based on Escherichia coli cell lysates have successfully been used to produce antibodies and antibody fragments. In this study, we demonstrate the cell-free expression of functional single-chain antibody variable fragments (scFvs) in a eukaryotic and endotoxin-free in vitro translation system based on Spodoptera frugiperda (Sf21) insect cell extracts. Three scFv candidates with different specificities were chosen as models. The first scFv candidate SH527-IIA4 specifically discriminates between its phosphorylated (SMAD2-P) and nonphosphorylated antigens (SMAD2) (where SMAD is mothers against decapentaplegic homolog 2), whereas the second scFv candidate SH527-IIC10 recognizes both, SMAD2-P and SMAD2. The third scFv candidate SH855-C11 binds specifically to a linear epitope of the CXC chemokine receptor type 5. The translocation of antibody fragments into the lumen of endogenous microsomal vesicles, which are contained in the lysate, was facilitated by fusion of scFv genes to the insect cell specific signal sequence of honeybee melittin. We compared the binding capabilities of scFv fragments with and without melittin signal peptide and detected that translocated scFv fragments were highly functional, whereas scFvs synthesized in the cytosol of the cell extract showed strongly decreased binding capabilities. Additionally, we describe a cell-free protein synthesis method for the incorporation of noncanonical amino acids into scFv molecules in eukaryotic cell lysates. We demonstrate the successful cotranslational labeling of de novo synthesized scFv molecules with fluorescent amino acids, using residue-specific as well as site-specific labeling.
Collapse
Affiliation(s)
- Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm Potsdam, Germany
| | - Michael Hust
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig Braunschweig, Germany
| | - Corina Schulze
- Department of Life Sciences and Technology, Beuth Hochschule für Technik Berlin, University of Applied Sciences Berlin, Germany
| | - Stefan Dübel
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig Braunschweig, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm Potsdam, Germany
| |
Collapse
|
17
|
Stech M, Quast RB, Sachse R, Schulze C, Wüstenhagen DA, Kubick S. A continuous-exchange cell-free protein synthesis system based on extracts from cultured insect cells. PLoS One 2014; 9:e96635. [PMID: 24804975 PMCID: PMC4013096 DOI: 10.1371/journal.pone.0096635] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/09/2014] [Indexed: 11/22/2022] Open
Abstract
In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds.
Collapse
Affiliation(s)
- Marlitt Stech
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| | - Robert B. Quast
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| | - Rita Sachse
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| | - Corina Schulze
- Beuth Hochschule für Technik Berlin - University of Applied Sciences Berlin, Life Sciences and Technology, Berlin, Germany
| | - Doreen A. Wüstenhagen
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| |
Collapse
|
18
|
Brödel AK, Sonnabend A, Kubick S. Cell‐free protein expression based on extracts from CHO cells. Biotechnol Bioeng 2013; 111:25-36. [DOI: 10.1002/bit.25013] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/08/2013] [Accepted: 07/15/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Andreas K. Brödel
- Fraunhofer Institute for Biomedical Engineering (IBMT)Branch Potsdam‐GolmAm Mühlenberg 1314476PotsdamGermany
| | - Andrei Sonnabend
- Fraunhofer Institute for Biomedical Engineering (IBMT)Branch Potsdam‐GolmAm Mühlenberg 1314476PotsdamGermany
| | - Stefan Kubick
- Fraunhofer Institute for Biomedical Engineering (IBMT)Branch Potsdam‐GolmAm Mühlenberg 1314476PotsdamGermany
| |
Collapse
|