1
|
Sun MS, Jia Y, Chen XY, Chen JS, Guo Y, Fu FF, Xue LJ. Regulatory microRNAs and phasiRNAs of paclitaxel biosynthesis in Taxus chinensis. FRONTIERS IN PLANT SCIENCE 2024; 15:1403060. [PMID: 38779066 PMCID: PMC11109412 DOI: 10.3389/fpls.2024.1403060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Paclitaxel (trade name Taxol) is a rare diterpenoid with anticancer activity isolated from Taxus. At present, paclitaxel is mainly produced by the semi-synthetic method using extract of Taxus tissues as raw materials. The studies of regulatory mechanisms in paclitaxel biosynthesis would promote the production of paclitaxel through tissue/cell culture approaches. Here, we systematically identified 990 transcription factors (TFs), 460 microRNAs (miRNAs), and 160 phased small interfering RNAs (phasiRNAs) in Taxus chinensis to explore their interactions and potential roles in regulation of paclitaxel synthesis. The expression levels of enzyme genes in cone and root were higher than those in leaf and bark. Nearly all enzyme genes in the paclitaxel synthesis pathway were significantly up-regulated after jasmonate treatment, except for GGPPS and CoA Ligase. The expression level of enzyme genes located in the latter steps of the synthesis pathway was significantly higher in female barks than in male. Regulatory TFs were inferred through co-expression network analysis, resulting in the identification of TFs from diverse families including MYB and AP2. Genes with ADP binding and copper ion binding functions were overrepresented in targets of miRNA genes. The miRNA targets were mainly enriched with genes in plant hormone signal transduction, mRNA surveillance pathway, cell cycle and DNA replication. Genes in oxidoreductase activity, protein-disulfide reductase activity were enriched in targets of phasiRNAs. Regulatory networks were further constructed including components of enzyme genes, TFs, miRNAs, and phasiRNAs. The hierarchical regulation of paclitaxel production by miRNAs and phasiRNAs indicates a robust regulation at post-transcriptional level. Our study on transcriptional and posttranscriptional regulation of paclitaxel synthesis provides clues for enhancing paclitaxel production using synthetic biology technology.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang-Fang Fu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Nanjing Forestry University, Nanjing, China
| | - Liang-Jiao Xue
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Hoqani UA, León R, Purton S. Over-expression of a cyanobacterial gene for 1-deoxy-d-xylulose-5-phosphate synthase in the chloroplast of Chlamydomonas reinhardtii perturbs chlorophyll: carotenoid ratios. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2022; 34:None. [PMID: 35923766 PMCID: PMC9329130 DOI: 10.1016/j.jksus.2022.102141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Terpenoids are a diverse class of naturally occurring compounds consisting of more than 50,000 structurally different molecules and are found in all living organisms. Many terpenoid compounds, in particular those isolated from plants, have applications in various commercial sectors including medicine, agriculture and cosmetics. However, these high value terpenoids are produced in relatively small quantities in their natural hosts and their chemical synthesis for large scale production is costly and complicated. Therefore, there is much focus on producing these compounds in novel biological hosts using metabolic engineering technologies. As a photosynthetic system, the unicellular green alga C. reinhardtii is of particular interest as the most well-studied model alga with well-established molecular tools for genetic manipulation. However, the direct manipulation of terpenoid biosynthetic pathways in C. reinhardtii necessitates a thorough understanding of the basic terpenoid metabolism. To gain a better understanding of the methylerythritol phosphate (MEP) pathway that leads to terpenoid biosynthesis in the chloroplast of C. reinhardtii, hence this study has investigated the effect of over-expressing 1-deoxy-d-xylulose-5-phosphate synthase (DXS) on plastidic downstream terpenoids. We produced marker-free chloroplast transformants of C. reinhardtii lines that express an additional cyanobacterial gene for DXS. The analysis of terpenoid content for the transgenic line demonstrates that overexpressing DXS resulted in a two-fold decrease in the chlorophyll levels while carotenoid levels showed variable changes: zeaxanthin and antherxanthin levels increased several-fold, lutein levels dropped to approximately half, but β-carotene and violaxanthin did not show a significant change.
Collapse
Affiliation(s)
- Umaima Al Hoqani
- Applied Biology Section, Applied Sciences Department, Higher College of Technology, University of Technology and Applied Sciences, Al-Khuwair 133, Oman
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Rosa León
- Lab Bioquímica y Biología Molecular, Dpto Química, Facultad de Ciencias Experimentales, Universidad de Huelva, Avda Fuerzas Armadas s/n, 21007 Huelva, Spain
| | - Saul Purton
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
3
|
Li CQ, Lei HM, Hu QY, Li GH, Zhao PJ. Recent Advances in the Synthetic Biology of Natural Drugs. Front Bioeng Biotechnol 2021; 9:691152. [PMID: 34395399 PMCID: PMC8358299 DOI: 10.3389/fbioe.2021.691152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Natural drugs have been transformed and optimized during the long process of evolution. These compounds play a very important role in the protection of human health and treatment of human diseases. Sustainable approaches to the generation of raw materials for pharmaceutical products have been extensively investigated in drug research and development because chemical synthesis is costly and generates pollution. The present review provides an overview of the recent advances in the synthetic biology of natural drugs. Particular attention is paid to the investigations of drugs that may be mass-produced by the pharmaceutical industry after optimization of the corresponding synthetic systems. The present review describes the reconstruction and optimization of biosynthetic pathways for nine drugs, including seven drugs from plant sources and two drugs from microbial sources, suggesting a new strategy for the large-scale preparation of some rare natural plant metabolites and highly bioactive microbial compounds. Some of the suggested synthetic methods remain in a preliminary exploration stage; however, a number of these methods demonstrated considerable application potential. The authors also discuss the advantages and disadvantages of the application of synthetic biology and various expression systems for heterologous expression of natural drugs. Thus, the present review provides a useful perspective for researchers attempting to use synthetic biology to produce natural drugs.
Collapse
Affiliation(s)
| | | | | | | | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Wang T, Li L, Zhuang W, Zhang F, Shu X, Wang N, Wang Z. Recent Research Progress in Taxol Biosynthetic Pathway and Acylation Reactions Mediated by Taxus Acyltransferases. Molecules 2021; 26:molecules26102855. [PMID: 34065782 PMCID: PMC8151764 DOI: 10.3390/molecules26102855] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Taxol is one of the most effective anticancer drugs in the world that is widely used in the treatments of breast, lung and ovarian cancer. The elucidation of the taxol biosynthetic pathway is the key to solve the problem of taxol supply. So far, the taxol biosynthetic pathway has been reported to require an estimated 20 steps of enzymatic reactions, and sixteen enzymes involved in the taxol pathway have been well characterized, including a novel taxane-10β-hydroxylase (T10βOH) and a newly putative β-phenylalanyl-CoA ligase (PCL). Moreover, the source and formation of the taxane core and the details of the downstream synthetic pathway have been basically depicted, while the modification of the core taxane skeleton has not been fully reported, mainly concerning the developments from diol intermediates to 2-debenzoyltaxane. The acylation reaction mediated by specialized Taxus BAHD family acyltransferases (ACTs) is recognized as one of the most important steps in the modification of core taxane skeleton that contribute to the increase of taxol yield. Recently, the influence of acylation on the functional and structural diversity of taxanes has also been continuously revealed. This review summarizes the latest research advances of the taxol biosynthetic pathway and systematically discusses the acylation reactions supported by Taxus ACTs. The underlying mechanism could improve the understanding of taxol biosynthesis, and provide a theoretical basis for the mass production of taxol.
Collapse
Affiliation(s)
- Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (L.L.); (W.Z.); (F.Z.); (X.S.); (N.W.)
| | - Lingyu Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (L.L.); (W.Z.); (F.Z.); (X.S.); (N.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (L.L.); (W.Z.); (F.Z.); (X.S.); (N.W.)
| | - Fengjiao Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (L.L.); (W.Z.); (F.Z.); (X.S.); (N.W.)
| | - Xiaochun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (L.L.); (W.Z.); (F.Z.); (X.S.); (N.W.)
| | - Ning Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (L.L.); (W.Z.); (F.Z.); (X.S.); (N.W.)
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (L.L.); (W.Z.); (F.Z.); (X.S.); (N.W.)
- Correspondence: ; Tel.: +86-025-84347055
| |
Collapse
|
5
|
El‐Sayed E, Ahmed A, Al‐Hagar O. Agro‐industrial wastes for production of paclitaxel by irradiated
Aspergillus fumigatus
under solid‐state fermentation. J Appl Microbiol 2020; 128:1427-1439. [DOI: 10.1111/jam.14574] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 12/20/2022]
Affiliation(s)
- E.R. El‐Sayed
- Plant Research Department Nuclear Research Center Atomic Energy Authority Cairo Egypt
| | - A.S. Ahmed
- Plant Research Department Nuclear Research Center Atomic Energy Authority Cairo Egypt
| | - O.E.A. Al‐Hagar
- Plant Research Department Nuclear Research Center Atomic Energy Authority Cairo Egypt
| |
Collapse
|
6
|
Semi-continuous production of the anticancer drug taxol by Aspergillus fumigatus and Alternaria tenuissima immobilized in calcium alginate beads. Bioprocess Biosyst Eng 2020; 43:997-1008. [PMID: 31997009 DOI: 10.1007/s00449-020-02295-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
Abstract
Taxol is the most profitable drug ever developed in cancer chemotherapy; however, the market demand for the drug greatly exceeds the supply that can be sustained from its natural sources. In this study, Aspergillus fumigatus TXD105-GM6 and Alternaria tenuissima TER995-GM3 were immobilized in calcium alginate beads and used for the production of taxol in shake flask cultures. In an effort to increase the taxol magnitude, immobilization conditions were optimized by response surface methodology program (RSM). The optimum levels of alginate concentration, calcium chloride concentration, and mycelium fresh weight were 5%, 4%, and 15% (w/v), respectively. Under these conditions, taxol production by the respective fungal strains was intensified to 901.94 μg L-1 and 529.01 μg L-1. Moreover, the immobilized mycelia of both strains were successfully used in the repeated production of taxol for six different fermentation cycles. The total taxol concentration obtained in all cycles reached 4540.14 μg L-1 by TXD105-GM6 and 2450.27 μg L-1 by TER995-GM3 strain, which represents 7.85- and 6.31-fold increase, as compared to their initial titers. This is the first report on the production of taxol in semi-continuous fermentation. To our knowledge, the taxol productivity achieved in this study is the highest reported by academic laboratories for microbial cultures which indicates the future possibility to reduce the cost of taxol production.
Collapse
|
7
|
El-Sayed ESR, Ahmed AS, Hassan IA, Ismaiel AA, Karam El-Din AZA. Strain improvement and immobilization technique for enhanced production of the anticancer drug paclitaxel by Aspergillus fumigatus and Alternaria tenuissima. Appl Microbiol Biotechnol 2019; 103:8923-8935. [PMID: 31520132 DOI: 10.1007/s00253-019-10129-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/28/2019] [Accepted: 09/08/2019] [Indexed: 12/16/2022]
Abstract
UV and gamma irradiation mutagenesis was applied on Aspergillus fumigatus and Alternaria tenuissima in order to improve their producing ability of paclitaxel. Among the screened mutants, two stable strains (designated TXD105-GM6 and TER995-GM3) showed the maximum paclitaxel production. Paclitaxel titers of the two respective mutants were dramatically intensified to 1.22- and 1.24-fold, as compared by their respective parents. Immobilization using five different entrapment carriers of calcium alginate, agar-agar, Na-CMC, gelatin, and Arabic gum was successfully applied for production enhancement of paclitaxel by the two mutants. The immobilized cultures were superior to free-cell cultures and paclitaxel production by the immobilized mycelia was much higher than that of the immobilized spores using all the tried carriers. Moreover, calcium alginate gel beads were found the most conductive and proper entrapment carrier for maximum production of paclitaxel. The feasibility of the paclitaxel production by the immobilized mycelia as affected by incubation period, medium volume, and number of beads per flask was adopted. Under the favorable immobilization conditions, the paclitaxel titers were significantly intensified to 1.31- and 1.88-fold by the respective mutants, as compared by their free cultures. The obtained paclitaxel titers by the immobilized mycelia of the respective mutants (694.67 and 388.65 μg L-1) were found promising in terms of fungal production of paclitaxel. Hence, these findings indicate the future possibility to reduce the cost of producing paclitaxel and suggest application of the immobilization technique for the biotechnological production of paclitaxel at an industrial scale.
Collapse
Affiliation(s)
- El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Atomic Energy Authority of Egypt, Cairo, Egypt.
| | - Ashraf S Ahmed
- Plant Research Department, Nuclear Research Center, Atomic Energy Authority of Egypt, Cairo, Egypt
| | - Ismail A Hassan
- Plant Research Department, Nuclear Research Center, Atomic Energy Authority of Egypt, Cairo, Egypt
| | - Ahmed A Ismaiel
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
8
|
Grozdev L, Kaiser J, Berensmeier S. One-Step Purification of Microbially Produced Hydrophobic Terpenes via Process Chromatography. Front Bioeng Biotechnol 2019; 7:185. [PMID: 31417900 PMCID: PMC6681792 DOI: 10.3389/fbioe.2019.00185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022] Open
Abstract
Novel and existing terpenes are already being produced by genetically modified microorganisms, leading to new process challenges for the isolation and purification of these terpenes. Here, eight different chromatographic resins were characterized for the packed bed adsorption of the model terpene β-caryophyllene, showing their applicability on an Escherichia coli fermentation mixture. The polystyrenic Rensa® RP (Ø 50 μm) shows the highest affinity, with a maximum capacity of >100 g L-1 and the best efficiency, with a height equivalent of a theoretical plate (HETP) of 0.022 cm. With this material, an optimized adsorption-based purification of β-caryophyllene from a fermentation mixture was developed, with the green solvent ethanol for desorption. A final yield of >80% and a purity of >99% were reached after only one process step with a total productivity of 0.83 g h-1 L-1. The product solution was loaded with a volume ratio (feed to column) of >500 and the adapted gradient elution yielded a 40 times higher concentration of β-caryophyllene. The adsorption-based chromatography represents therefore a serious alternative to the liquid-liquid extraction and achieves desired purities without the utilization of hazardous solvents.
Collapse
Affiliation(s)
| | | | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| |
Collapse
|
9
|
Ismaiel AA, Ahmed AS, Hassan IA, El-Sayed ESR, Karam El-Din AZA. Production of paclitaxel with anticancer activity by two local fungal endophytes, Aspergillus fumigatus and Alternaria tenuissima. Appl Microbiol Biotechnol 2017; 101:5831-5846. [PMID: 28612104 DOI: 10.1007/s00253-017-8354-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/17/2017] [Accepted: 05/20/2017] [Indexed: 11/30/2022]
Abstract
Among 60 fungal endophytes isolated from twigs, bark, and mature leaves of different plant species, two fungal isolates named TXD105 and TER995 were capable of producing paclitaxel in amounts of up to 84.41 and 37.92 μg L-1, respectively. Based on macroscopic and microscopic characteristics, ITS1-5.8S-ITS2 rDNA sequence, and phylogenetic characteristic analysis, the two respective isolates were identified as Aspergillus fumigatus and Alternaria tenuissima. In the effort to increase paclitaxel magnitude by the two fungal strains, several fermentation conditions including selection of the proper fermentation medium, agitation rate, incubation temperature, fermentation period, medium pH, medium volume, and inoculum nature (size and age of inoculum) were tried. Fermentation process carried out in M1D medium (pH 6.0) and maintained at 120 rpm for 10 days and at 25 °C using 4% (v/v) inoculum of 5-day-old culture stimulated the highest paclitaxel production to attain 307.03 μg L-1 by the A. fumigatus strain. In the case of the A. tenuissima strain, fermentation conditions conducted in flask basal medium (pH 6.0) and maintained at 120 rpm for 14 days and at 25 °C using 8% (v/v) inoculum of 7-day-old culture were found the most favorable to attain the highest paclitaxel production of 124.32 μg L-1. Using the MTT-based assay, fungal paclitaxel significantly inhibited the proliferation of five different cancer cell lines with 50% inhibitory concentration values varied from 3.04 to 14.8 μg mL-1. Hence, these findings offer new and alternate sources with excellent biotechnological potential for paclitaxel production by fungal fermentation.
Collapse
Affiliation(s)
- Ahmed A Ismaiel
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Ashraf S Ahmed
- Plant Research Department, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt
| | - Ismail A Hassan
- Plant Research Department, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt
| | | |
Collapse
|
10
|
Li YL, Huang SW, Zhang JY, Bu FJ, Lin T, Zhang ZH, Xiong XY. A protocol of homozygous haploid callus induction from endosperm of Taxus chinensis Rehd. var. mairei. SPRINGERPLUS 2016; 5:659. [PMID: 27350901 PMCID: PMC4899402 DOI: 10.1186/s40064-016-2320-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/10/2016] [Indexed: 01/28/2023]
Abstract
Obtainment and characterization of the novel endosperm callus of Taxus chinensis Rehd. var. mairei are valuable for haploid breeding, genome, and functional genome in Taxus. Callus was obtained by hydropriming with sterile water for 3 days and suitable medium composition. The highest callus induction (70.89 %) and lower browning ratio (7.95 %) were obtained from Gamborg (B5) medium supplemented with 30 g l(-1) of sucrose, 2.5 mg l(-1) of 2,4-dichlorophenoxyacetic (2,4-D), 0.5 mg l(-1) of 6-benzylademine (6-BA) and 7 g l(-1) of agar under dark conditions. The auxin of 2,4-D had a better efficiency of callus induction than naphthylacetic acid, and over 1 mg l(-1) of 6-BA was inhibitory to the callogensis of endosperm. The endosperm callus was haploid which was detectable by the flow cytometry. The genome block of homozygosity of callus was homozygous which was indicated by PCR-based SNP marks. The homozygous haploid of endosperm callus in vitro culture may be useful tools for taxoid-metabolism of gene engineering and bio-fermentation engineering.
Collapse
Affiliation(s)
- Yan-Lin Li
- />Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Changsha, 410128 Hunan People’s Republic of China
- />College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128 Hunan People’s Republic of China
| | - San-Wen Huang
- />Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Changsha, 410128 Hunan People’s Republic of China
- />The Institute of Vegetables and Flowers, Chinese Academy of Agriculture Sciences, Beijing, 100081 People’s Republic of China
| | - Jia-Yin Zhang
- />State Key Laboratory of Subhealth Intervention Technology, Changsha, 410128 Hunan People’s Republic of China
| | - Feng-Jiao Bu
- />The Institute of Vegetables and Flowers, Chinese Academy of Agriculture Sciences, Beijing, 100081 People’s Republic of China
| | - Tao Lin
- />The Institute of Vegetables and Flowers, Chinese Academy of Agriculture Sciences, Beijing, 100081 People’s Republic of China
| | - Zhong-Hua Zhang
- />The Institute of Vegetables and Flowers, Chinese Academy of Agriculture Sciences, Beijing, 100081 People’s Republic of China
| | - Xing-Yao Xiong
- />Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Changsha, 410128 Hunan People’s Republic of China
- />The Institute of Vegetables and Flowers, Chinese Academy of Agriculture Sciences, Beijing, 100081 People’s Republic of China
| |
Collapse
|