1
|
Wang Z, Chen S, Guo Y, Zhang R, Zhang Q, Jiang X, Li M, Jiang Y, Ye L, Guo X, Li C, Zhang G, Li D, Chen L, Chen W. Intestinal carcinogenicity screening of environmental pollutants using organoid-based cell transformation assay. Arch Toxicol 2024; 98:1937-1951. [PMID: 38563870 DOI: 10.1007/s00204-024-03729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
The high incidence of colorectal cancer (CRC) is closely associated with environmental pollutant exposure. To identify potential intestinal carcinogens, we developed a cell transformation assay (CTA) using mouse adult stem cell-derived intestinal organoids (mASC-IOs) and assessed the transformation potential on 14 representative chemicals, including Cd, iPb, Cr-VI, iAs-III, Zn, Cu, PFOS, BPA, MEHP, AOM, DMH, MNNG, aspirin, and metformin. We optimized the experimental protocol based on cytotoxicity, amplification, and colony formation of chemical-treated mASC-IOs. In addition, we assessed the accuracy of in vitro study and the human tumor relevance through characterizing interdependence between cell-cell and cell-matrix adhesions, tumorigenicity, pathological feature of subcutaneous tumors, and CRC-related molecular signatures. Remarkably, the results of cell transformation in 14 chemicals showed a strong concordance with epidemiological findings (8/10) and in vivo mouse studies (12/14). In addition, we found that the increase in anchorage-independent growth was positively correlated with the tumorigenicity of tested chemicals. Through analyzing the dose-response relationship of anchorage-independent growth by benchmark dose (BMD) modeling, the potent intestinal carcinogens were identified, with their carcinogenic potency ranked from high to low as AOM, Cd, MEHP, Cr-VI, iAs-III, and DMH. Importantly, the activity of chemical-transformed mASC-IOs was associated with the degree of cellular differentiation of subcutaneous tumors, altered transcription of oncogenic genes, and activated pathways related to CRC development, including Apc, Trp53, Kras, Pik3ca, Smad4 genes, as well as WNT and BMP signaling pathways. Taken together, we successfully developed a mASC-IO-based CTA, which might serve as a potential alternative for intestinal carcinogenicity screening of chemicals.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Shen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yuzhi Guo
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Rui Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Qi Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xinhang Jiang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Miao Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yue Jiang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Lizhu Ye
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xiaoyu Guo
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Chuang Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Guangtong Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Daochuan Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Liping Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Wen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Fan R, Xu L, Cui B, Li D, Sun X, Qi Y, Rao J, Wang K, Wang C, Zhao K, Zhao Y, Dai J, Chen W, Shen H, Liu Y, Yu D. Genomic Characterization Revealed PM 2.5-Associated Mutational Signatures in Lung Cancer Including Activation of APOBEC3B. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6854-6864. [PMID: 37071573 DOI: 10.1021/acs.est.2c08092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fine particulate matter (PM2.5) exposure causes DNA mutations and abnormal gene expression leading to lung cancer, but the detailed mechanisms remain unknown. Here, analysis of genomic and transcriptomic changes upon a PM2.5 exposure-induced human bronchial epithelial cell-based malignant transformed cell model in vitro showed that PM2.5 exposure led to APOBEC mutational signatures and transcriptional activation of APOBEC3B along with other potential oncogenes. Moreover, by analyzing mutational profiles of 1117 non-small cell lung cancers (NSCLCs) from patients across four different geographic regions, we observed a significantly higher prevalence of APOBEC mutational signatures in non-smoking NSCLCs than smoking in the Chinese cohorts, but this difference was not observed in TCGA or Singapore cohorts. We further validated this association by showing that the PM2.5 exposure-induced transcriptional pattern was significantly enriched in Chinese NSCLC patients compared with other geographic regions. Finally, our results showed that PM2.5 exposure activated the DNA damage repair pathway. Overall, here we report a previously uncharacterized association between PM2.5 and APOBEC activation, revealing a potential molecular mechanism of PM2.5 exposure and lung cancer.
Collapse
Affiliation(s)
- Rongrong Fan
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lin Xu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Bowen Cui
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xueying Sun
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuan Qi
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jianan Rao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Kai Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Genomic Science and Precision Medicine Institute, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou 350000, China
| | - Dianke Yu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
3
|
Experimental Methods for the Biological Evaluation of Nanoparticle-Based Drug Delivery Risks. Pharmaceutics 2023; 15:pharmaceutics15020612. [PMID: 36839932 PMCID: PMC9959606 DOI: 10.3390/pharmaceutics15020612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Many novel medical therapies use nanoparticle-based drug delivery systems, including nanomaterials through drug delivery systems, diagnostics, or physiologically active medicinal products. The approval of nanoparticles with advanced therapeutic and diagnostic potentials for applications in medication and immunization depends strongly on their synthesizing procedure, efficiency of functionalization, and biological safety and biocompatibility. Nanoparticle biodistribution, absorption, bioavailability, passage across biological barriers, and biodistribution are frequently assessed using bespoke and biological models. These methods largely rely on in vitro cell-based evaluations that cannot predict the complexity involved in preclinical and clinical studies. Therefore, assessing the nanoparticle risk has to involve pharmacokinetics, organ toxicity, and drug interactions manifested at multiple cellular levels. At the same time, there is a need for novel approaches to examine nanoparticle safety risks due to increased constraints on animal exploitation and the demand for high-throughput testing. We focus here on biological evaluation methodologies that provide access to nanoparticle interactions with the organism (positive or negative via toxicity). This work aimed to provide a perception regarding the risks associated with the utilization of nanoparticle-based formulations with a particular focus on assays applied to assess the cytotoxicity of nanomaterials.
Collapse
|
4
|
Komiya M, Ishigamori R, Naruse M, Ochiai M, Miyoshi N, Imai T, Totsuka Y. Establishment of Novel Genotoxicity Assay System Using Murine Normal Epithelial Tissue-Derived Organoids. Front Genet 2021; 12:768781. [PMID: 34868254 PMCID: PMC8638810 DOI: 10.3389/fgene.2021.768781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Short-/middle-term and simple prediction studies for carcinogenesis are needed for the safety assessment of chemical substances. To establish a novel genotoxicity assay with an in vivo mimicking system, we prepared murine colonic/pulmonary organoids from gpt delta mice according to the general procedure using collagenase/dispase and cultured them in a 3D environment. When the organoids were exposed to foodborne carcinogens—2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP) and acrylamide (AA)—in the presence of metabolic activation systems, mutation frequencies (MFs) occurring in the gpt gene dose-dependently increased. Moreover, the mutation spectrum analysis indicated predominant G:C to T:A transversion with PhIP, and A:T to C:G and A:T to T:A transversion with AA. These data correspond to those of a previous study describing in vivo mutagenicity in gpt delta mice. However, organoids derived from the liver, a non-target tissue of PhIP-carcinogenesis, also demonstrated genotoxicity with a potency comparable to colonic organoids. Organoids and PhIP were directly incubated in the presence of metabolic activation systems; therefore, there was a lack of organ specificity, as observed in vivo. Additionally, PhIP-DNA adduct levels were comparable in hepatic and colonic organoids after PhIP exposure. Taken together, the organoids prepared in the present study may be helpful to predict chemical carcinogenesis.
Collapse
Affiliation(s)
- Masami Komiya
- Department of Cancer Model Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Rikako Ishigamori
- Department of Animal Experimentation, National Cancer Center Research Institute, Tokyo, Japan
| | - Mie Naruse
- Department of Animal Experimentation, National Cancer Center Research Institute, Tokyo, Japan
| | - Masako Ochiai
- Food Environment Research Center, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Toshio Imai
- Department of Cancer Model Development, National Cancer Center Research Institute, Tokyo, Japan.,Department of Animal Experimentation, National Cancer Center Research Institute, Tokyo, Japan
| | - Yukari Totsuka
- Department of Cancer Model Development, National Cancer Center Research Institute, Tokyo, Japan.,Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, Japan
| |
Collapse
|
5
|
Chen KY, Tseng CH, Feng PH, Sun WL, Ho SC, Lin CW, Van Hiep N, Luo CS, Tseng YH, Chen TT, Liu WT, Lee KY, Wu SM. 3-Nitrobenzanthrone promotes malignant transformation in human lung epithelial cells through the epiregulin-signaling pathway. Cell Biol Toxicol 2021; 38:865-887. [PMID: 34036453 DOI: 10.1007/s10565-021-09612-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Exposure to environmental and occupational contaminants leads to lung cancer. 3-Nitrobenzanthrone (3-nitro-7H-benz[de]anthracen-7-one, 3-NBA) is a potential carcinogen in ambient air or diesel particulate matter. Studies have revealed that short-term exposure to 3-NBA induces cell death, reactive oxygen species activation, and DNA adduct formation and damage. However, details of the mechanism by which chronic exposure to 3-NBA influences lung carcinogenesis remain largely unknown. In this study, human lung epithelial BEAS-2B cells were continuously exposed to 0-10-μM 3-NBA for 6 months. NanoString analysis was conducted to evaluate gene expression in the cells, revealing that 3-NBA-mediated transformation results in a distinct gene expression signature including carbon cancer metabolism, metastasis, and angiogenesis. Alterations in tumor-promoting genes such as EREG (epiregulin), SOX9, E-cadherin, TWIST, and IL-6 were involved in epithelial cell aggressiveness. Kaplan-Meier plotter analyses indicated that increased EREG and IL-6 expressions in early-stage lung cancer cells are correlated with poor survival. In vivo xenografts on 3-NBA-transformed cells exhibited prominent tumor formation and metastasis. EREG knockout cells exposed to 3-NBA for a short period exhibited high apoptosis and low colony formation. By contrast, overexpression of EREG in 3-NBA-transformed cells markedly activated the PI3K/AKT and MEK/ERK signaling pathways, resulting in tumorigenicity. Furthermore, elevated IL-6 and EREG expressions synergistically led to STAT3 signaling activation, resulting in clonogenic cell survival and migration. Taken together, chronic exposure of human lung epithelial cells to 3-NBA leads to malignant transformation, in which the EREG signaling pathway plays a pivotal mediating role. • Short-term exposure of lung epithelial cells to 3-NBA can lead to ROS production and cell apoptosis. • Long-term chronic exposure to 3-NBA upregulates the levels of tumor-promoting genes such as EREG and IL-6. • Increased EREG expression in 3-NBA-transformed cells markedly contributes to tumorigenesis through PI3K/AKT and MEK/ERK activation and synergistically enhances the IL-6/STAT3 signaling pathway, which promotes tumorigenicity.
Collapse
Affiliation(s)
- Kuan-Yuan Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chien-Hua Tseng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Lun Sun
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Chuan Ho
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Wei Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nguyen Van Hiep
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Shan Luo
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yen-Han Tseng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Tao Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Te Liu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Yun Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
6
|
Bernardeschi M, Guidi P, Palumbo M, Genovese M, Alfè M, Gargiulo V, Lucchesi P, Scarcelli V, Falleni A, Bergami E, Freyria FS, Bonelli B, Corsi I, Frenzilli G. Suitability of Nanoparticles to Face Benzo(a)pyrene-Induced Genetic and Chromosomal Damage in M. galloprovincialis. An In Vitro Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1309. [PMID: 34063431 PMCID: PMC8155950 DOI: 10.3390/nano11051309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022]
Abstract
Benzo(a)pyrene (B(a)P) is a well-known genotoxic agent, the removal of which from environmental matrices is mandatory, necessitating the application of cleaning strategies that are harmless to human and environmental health. The potential application of nanoparticles (NPs) in the remediation of polluted environments is of increasing interest. Here, specifically designed NPs were selected as being non-genotoxic and able to interact with B(a)P, in order to address the genetic and chromosomal damage it produces. A newly formulated pure anatase nano-titanium (nano-TiO2), a commercial mixture of rutile and anatase, and carbon black-derived hydrophilic NPs (HNP) were applied. Once it had been ascertained that the NPs selected for the work did not induce genotoxicity, marine mussel gill biopsies were exposed in vitro to B(a)P (2 μg/mL), alone and in combination with the selected NPs (50 µg/mL nano-TiO2, 10 µg/mL HNP). DNA primary reversible damage was evaluated by means of the Comet assay. Chromosomal persistent damage was assessed on the basis of micronuclei frequency and nuclear abnormalities by means of the Micronucleus-Cytome assay. Transmission Electron Microscopy (TEM) was performed to investigate the mechanism of action exerted by NPs. Pure Anatase n-TiO2 was found to be the most suitable for our purpose, as it is cyto- and genotoxicity free and able to reduce the genetic and chromosomal damage associated with exposure to B(a)P.
Collapse
Affiliation(s)
- Margherita Bernardeschi
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| | - Patrizia Guidi
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| | - Mara Palumbo
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| | - Massimo Genovese
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy;
| | - Michela Alfè
- Institute of Science and Technology for Sustainable Energy and Mobility STEMS-CNR, 80126 Naples, Italy; (M.A.); (V.G.)
| | - Valentina Gargiulo
- Institute of Science and Technology for Sustainable Energy and Mobility STEMS-CNR, 80126 Naples, Italy; (M.A.); (V.G.)
| | - Paolo Lucchesi
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| | - Vittoria Scarcelli
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| | - Alessandra Falleni
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| | - Elisa Bergami
- Earth and Environmental Sciences and INSTM Local Unit, Department of Physical, University of Siena, 53100 Siena, Italy; (E.B.); (I.C.)
| | - Francesca S. Freyria
- INSTM Unit of Torino-Politecnico, Department of Applied Science and Technology, 10129 Politecnico di Torino, Italy; (F.S.F.); (B.B.)
| | - Barbara Bonelli
- INSTM Unit of Torino-Politecnico, Department of Applied Science and Technology, 10129 Politecnico di Torino, Italy; (F.S.F.); (B.B.)
| | - Ilaria Corsi
- Earth and Environmental Sciences and INSTM Local Unit, Department of Physical, University of Siena, 53100 Siena, Italy; (E.B.); (I.C.)
| | - Giada Frenzilli
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (P.G.); (M.P.); (P.L.); (V.S.); (A.F.)
| |
Collapse
|
7
|
Jamshaid H, Din FU, Khan GM. Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight. J Nanobiotechnology 2021; 19:106. [PMID: 33858436 PMCID: PMC8051083 DOI: 10.1186/s12951-021-00853-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
As a neglected tropical disease, Leishmaniasis is significantly instigating morbidity and mortality across the globe. Its clinical spectrum varies from ulcerative cutaneous lesions to systemic immersion causing hyperthermic hepato-splenomegaly. Curbing leishmanial parasite is toughly attributable to the myriad obstacles in existing chemotherapy and immunization. Since the 1990s, extensive research has been conducted for ameliorating disease prognosis, by resolving certain obstacles of conventional therapeutics viz. poor efficacy, systemic toxicity, inadequate drug accumulation inside the macrophage, scarce antigenic presentation to body's immune cells, protracted length and cost of the treatment. Mentioned hurdles can be restricted by designing nano-drug delivery system (nano-DDS) of extant anti-leishmanials, phyto-nano-DDS, surface modified-mannosylated and thiolated nano-DDS. Likewise, antigen delivery with co-transportation of suitable adjuvants would be achievable through nano-vaccines. In the past decade, researchers have engineered nano-DDS to improve the safety profile of existing drugs by restricting their release parameters. Polymerically-derived nano-DDS were found as a suitable option for oral delivery as well as SLNs due to pharmacokinetic re-modeling of drugs. Mannosylated nano-DDS have upgraded macrophage internalizing of nanosystem and the entrapped drug, provided with minimal toxicity. Cutaneous Leishmaniasis (CL) was tackling by the utilization of nano-DDS designed for topical delivery including niosomes, liposomes, and transfersomes. Transfersomes, however, appears to be superior for this purpose. The nanotechnology-based solution to prevent parasitic resistance is the use of Thiolated drug-loaded and multiple drugs loaded nano-DDS. These surfaces amended nano-DDS possess augmented IC50 values in comparison to conventional drugs and un-modified nano-DDS. Phyto-nano-DDS, another obscure horizon, have also been evaluated for their anti-leishmanial response, however, more intense assessment is a prerequisite. Impoverished Cytotoxic T-cells response followed by Leishmanial antigen proteins delivery have also been vanquished using nano-adjuvants. The eminence of nano-DDS for curtailment of anti-leishmanial chemotherapy and immunization associated challenges are extensively summed up in this review. This expedited approach is ameliorating the Leishmaniasis management successfully. Alongside, total to partial eradication of this disease can be sought along with associated co-morbidities.
Collapse
Affiliation(s)
- Humzah Jamshaid
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
8
|
Guo C, Wang J, Yang M, Li Y, Cui S, Zhou X, Li Y, Sun Z. Amorphous silica nanoparticles induce malignant transformation and tumorigenesis of human lung epithelial cells via P53 signaling. Nanotoxicology 2017; 11:1176-1194. [DOI: 10.1080/17435390.2017.1403658] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Caixia Guo
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Ji Wang
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Man Yang
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Yang Li
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Shuxiang Cui
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Xianqing Zhou
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Yanbo Li
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| |
Collapse
|