1
|
Sathitkowitchai W, Sathapondecha P, Angthong P, Srimarut Y, Malila Y, Nakkongkam W, Chaiyapechara S, Karoonuthaisiri N, Keawsompong S, Rungrassamee W. Isolation and Characterization of Mannanase-Producing Bacteria for Potential Synbiotic Application in Shrimp Farming. Animals (Basel) 2022; 12:ani12192583. [PMID: 36230324 PMCID: PMC9558954 DOI: 10.3390/ani12192583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Prebiotics such as mannan-oligosaccharides (MOS) are a promising approach to improve performance and disease resistance in shrimp. To improve prebiotic utilization, we investigated the potential probiotics and their feasibility of synbiotic use in vitro. Two bacterial isolates, Man26 and Man122, were isolated from shrimp intestines and screened for mannanase, the enzyme for mannan digestion. The crude mannanase from both isolates showed optimal activities at pH 8 with optimum temperatures at 60 °C and 50 °C, respectively. The enzymes remained stable at pH 8−10 for 3 h (>70% relative activity). The thermostability range of Man26 was 20−40 °C for 20 min (>50%), while that of Man122 was 20−60 °C for 30 min (>50%). The Vmax of Man122 against locust bean gum substrate was 41.15 ± 12.33 U·mg−1, six times higher than that of Man26. The Km of Man26 and Man122 were 18.92 ± 4.36 mg·mL−1 and 34.53 ± 14.46 mg·mL−1, respectively. With the addition of crude enzymes, reducing sugars of copra meal, palm kernel cake, and soybean meal were significantly increased (p < 0.05), as well as protein release. The results suggest that Man26 and Man122 could potentially be used in animal feeds and synbiotically with copra meal to improve absorption and utilization of feedstuffs.
Collapse
Affiliation(s)
- Witida Sathitkowitchai
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Ponsit Sathapondecha
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Pacharaporn Angthong
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Yanee Srimarut
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Yuwares Malila
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wuttichai Nakkongkam
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sage Chaiyapechara
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nitsara Karoonuthaisiri
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
- Institute for Global Food Security, Queen’s University Belfast, Biological Sciences Building, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Suttipun Keawsompong
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Wanilada Rungrassamee
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
- Correspondence:
| |
Collapse
|
2
|
Zhu D, Adebisi WA, Ahmad F, Sethupathy S, Danso B, Sun J. Recent Development of Extremophilic Bacteria and Their Application in Biorefinery. Front Bioeng Biotechnol 2020; 8:483. [PMID: 32596215 PMCID: PMC7303364 DOI: 10.3389/fbioe.2020.00483] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
The biorefining technology for biofuels and chemicals from lignocellulosic biomass has made great progress in the world. However, mobilization of laboratory research toward industrial setup needs to meet a series of criteria, including the selection of appropriate pretreatment technology, breakthrough in enzyme screening, pathway optimization, and production technology, etc. Extremophiles play an important role in biorefinery by providing novel metabolic pathways and catalytically stable/robust enzymes that are able to act as biocatalysts under harsh industrial conditions on their own. This review summarizes the potential application of thermophilic, psychrophilic alkaliphilic, acidophilic, and halophilic bacteria and extremozymes in the pretreatment, saccharification, fermentation, and lignin valorization process. Besides, the latest studies on the engineering bacteria of extremophiles using metabolic engineering and synthetic biology technologies for high-efficiency biofuel production are also introduced. Furthermore, this review explores the comprehensive application potential of extremophiles and extremozymes in biorefinery, which is partly due to their specificity and efficiency, and points out the necessity of accelerating the commercialization of extremozymes.
Collapse
Affiliation(s)
- Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Wasiu Adewale Adebisi
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Fiaz Ahmad
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Blessing Danso
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Mamo G, Mattiasson B. Alkaliphiles: The Versatile Tools in Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 172:1-51. [PMID: 32342125 DOI: 10.1007/10_2020_126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The extreme environments within the biosphere are inhabited by organisms known as extremophiles. Lately, these organisms are attracting a great deal of interest from researchers and industrialists. The motive behind this attraction is mainly related to the desire for new and efficient products of biotechnological importance and human curiosity of understanding nature. Organisms living in common "human-friendly" environments have served humanity for a very long time, and this has led to exhaustion of the low-hanging "fruits," a phenomenon witnessed by the diminishing rate of new discoveries. For example, acquiring novel products such as drugs from the traditional sources has become difficult and expensive. Such challenges together with the basic research interest have brought the exploration of previously neglected or unknown groups of organisms. Extremophiles are among these groups which have been brought to focus and garnering a growing importance in biotechnology. In the last few decades, numerous extremophiles and their products have got their ways into industrial, agricultural, environmental, pharmaceutical, and other biotechnological applications.Alkaliphiles, organisms which thrive optimally at or above pH 9, are one of the most important classes of extremophiles. To flourish in their extreme habitats, alkaliphiles evolved impressive structural and functional adaptations. The high pH adaptation gave unique biocatalysts that are operationally stable at elevated pH and several other novel products with immense biotechnological application potential. Advances in the cultivation techniques, success in gene cloning and expression, metabolic engineering, metagenomics, and other related techniques are significantly contributing to expand the application horizon of these remarkable organisms of the 'bizarre' world. Studies have shown the enormous potential of alkaliphiles in numerous biotechnological applications. Although it seems just the beginning, some fantastic strides are already made in tapping this potential. This work tries to review some of the prominent applications of alkaliphiles by focusing such as on their enzymes, metabolites, exopolysaccharides, and biosurfactants. Moreover, the chapter strives to assesses the whole-cell applications of alkaliphiles including in biomining, food and feed supplementation, bioconstruction, microbial fuel cell, biofuel production, and bioremediation.
Collapse
Affiliation(s)
| | - Bo Mattiasson
- Department of Biotechnology, Lund University, Lund, Sweden
| |
Collapse
|