Daire JL, Jacob JP, Hyacinthe JN, Croisille P, Montet-Abou K, Richter S, Botsikas D, Lepetit-Coiffé M, Morel D, Vallée JP. Cine and tagged cardiovascular magnetic resonance imaging in normal rat at 1.5 T: a rest and stress study.
J Cardiovasc Magn Reson 2008;
10:48. [PMID:
18980685 PMCID:
PMC2590601 DOI:
10.1186/1532-429x-10-48]
[Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 11/03/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND
The purpose of this study was to measure regional contractile function in the normal rat using cardiac cine and tagged cardiovascular magnetic resonance (CMR) during incremental low doses of dobutamine and at rest.
METHODS
Five rats were investigated for invasive left ventricle pressure measurements and five additional rats were imaged on a clinical 1.5 T MR system using a cine sequence (11-20 phases per cycle, 0.28/0.28/2 mm) and a C-SPAMM tag sequence (18-25 phases per cycle, 0.63/1.79/3 mm, tag spacing 1.25 mm). For each slice, wall thickening (WT) and circumferential strains (CS) were calculated at rest and at stress (2.5, 5 and 10 microg/min/kg of dobutamine).
RESULTS
Good cine and tagged images were obtained in all the rats even at higher heart rate (300-440 bpm). Ejection fraction and left ventricular (LV) end-systolic volume showed significant changes after each dobutamine perfusion dose (p < 0.001). Tagged CMR had the capacity to resolve the CS transmural gradient and showed a significant increase of both WT and CS at stress compared to rest. Intra and interobserver study showed less variability for the tagged technique. In rats in which a LV catheter was placed, dobutamine produced a significant increase of heart rate, LV dP/dtmax and LV pressure significantly already at the lowest infusion dose.
CONCLUSION
Robust cardiac cine and tagging CMR measurements can be obtained in the rat under incremental dobutamine stress using a clinical 1.5 T MR scanner.
Collapse