Yang X, Slabaugh G. A robust and efficient approach to detect 3D rectal tubes from CT colonography.
Med Phys 2011;
38:6238-47. [PMID:
22047389 DOI:
10.1118/1.3654842]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE
The rectal tube (RT) is a common source of false positives (FPs) in computer-aided detection (CAD) systems for CT colonography. A robust and efficient detection of RT can improve CAD performance by eliminating such "obvious" FPs and increase radiologists' confidence in CAD.
METHODS
In this paper, we present a novel and robust bottom-up approach to detect the RT. Probabilistic models, trained using kernel density estimation on simple low-level features, are employed to rank and select the most likely RT tube candidate on each axial slice. Then, a shape model, robustly estimated using random sample consensus (RANSAC), infers the global RT path from the selected local detections. Subimages around the RT path are projected into a subspace formed from training subimages of the RT. A quadratic discriminant analysis (QDA) provides a classification of a subimage as RT or non-RT based on the projection. Finally, a bottom-top clustering method is proposed to merge the classification predictions together to locate the tip position of the RT.
RESULTS
Our method is validated using a diverse database, including data from five hospitals. On a testing data with 21 patients (42 volumes), 99.5% of annotated RT paths have been successfully detected. Evaluated with CAD, 98.4% of FPs caused by the RT have been detected and removed without any loss of sensitivity.
CONCLUSIONS
The proposed method demonstrates a high detection rate of the RT path, and when tested in a CAD system, reduces FPs caused by the RT without the loss of sensitivity.
Collapse