1
|
Shchekotikhin AE, Dezhenkova LG, Tsvetkov VB, Luzikov YN, Volodina YL, Tatarskiy VV, Kalinina AA, Treshalin MI, Treshalina HM, Romanenko VI, Kaluzhny DN, Kubbutat M, Schols D, Pommier Y, Shtil AA, Preobrazhenskaya MN. Discovery of antitumor anthra[2,3-b]furan-3-carboxamides: Optimization of synthesis and evaluation of antitumor properties. Eur J Med Chem 2016; 112:114-129. [PMID: 26890118 DOI: 10.1016/j.ejmech.2016.01.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 01/30/2023]
Abstract
Anthraquinones and their analogues, in particular heteroarene-fused anthracendiones, are prospective scaffolds for new compounds with improved antitumor characteristics. We herein report the use of a 'scaffold hopping' approach for the replacement of the core structure in the previously discovered hit compound naphtho[2,3-f]indole-5,10-dione 2 with an alternative anthra[2,3-b]furan-5,10-dione scaffold. Among 13 newly synthesized derivatives the majority of 4,11-dihydroxy-2-methyl-5,10-dioxoanthra[2,3-b]furan-3-carboxamides demonstrated a high antiproliferative potency against a panel of wild type and drug resistant tumor cell lines, a property superior over the reference drug doxorubicin or lead naphtho[2,3-f]indole-5,10-dione 2. At low micromolar concentrations the selected derivative of (R)-3-aminopyrrolidine 3c and its stereoisomer (S)-3-aminopyrrolidine 3d caused an apoptotic cell death preceded by an arrest in the G2/M phase. Studies of intracellular targets showed that 3c and 3d formed stable intercalative complexes with the duplex DNA as determined by spectral analysis and molecular docking. Both 3c and 3d attenuated topoisomerase 1 and 2 mediated unwinding of the supercoiled DNA via a mechanism different from conventional DNA-enzyme tertiary complex formation. Furthermore, 3d decreased the activity of selected human protein kinases in vitro, indicating multiple targeting by the new chemotype. Finally, 3d demonstrated an antitumor activity in a model of murine intraperitoneally transplanted P388 leukemia, achieving the increase of animal life span up to 262% at tolerable doses. Altogether, the 'scaffold hopping' demonstrated its productivity for obtaining new perspective antitumor drug candidates.
Collapse
Affiliation(s)
- Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125190, Russia.
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Vladimir B Tsvetkov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Avenue, 119991 Moscow, Russia; Institute for Physical-Chemical Medicine, 1A M. Pirogovskaya Street, Moscow 119435, Russia
| | - Yuri N Luzikov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Yulia L Volodina
- Federal State Budgetary Scientific Institution «N.N. Blokhin Cancer Research Center» of the Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Victor V Tatarskiy
- Federal State Budgetary Scientific Institution «N.N. Blokhin Cancer Research Center» of the Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Anastasia A Kalinina
- Federal State Budgetary Scientific Institution «N.N. Blokhin Cancer Research Center» of the Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Michael I Treshalin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Helen M Treshalina
- Federal State Budgetary Scientific Institution «N.N. Blokhin Cancer Research Center» of the Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Vladimir I Romanenko
- Federal State Budgetary Scientific Institution «N.N. Blokhin Cancer Research Center» of the Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | | | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, NIH, 37 Convent Drive, 37-5068, Bethesda, MD 20892, USA
| | - Alexander A Shtil
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; Federal State Budgetary Scientific Institution «N.N. Blokhin Cancer Research Center» of the Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | | |
Collapse
|
2
|
Xiao Z, Morris-Natschke SL, Lee KH. Strategies for the Optimization of Natural Leads to Anticancer Drugs or Drug Candidates. Med Res Rev 2016; 36:32-91. [PMID: 26359649 PMCID: PMC4679534 DOI: 10.1002/med.21377] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Natural products have made significant contribution to cancer chemotherapy over the past decades and remain an indispensable source of molecular and mechanistic diversity for anticancer drug discovery. More often than not, natural products may serve as leads for further drug development rather than as effective anticancer drugs by themselves. Generally, optimization of natural leads into anticancer drugs or drug candidates should not only address drug efficacy, but also improve absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles and chemical accessibility associated with the natural leads. Optimization strategies involve direct chemical manipulation of functional groups, structure-activity relationship directed optimization and pharmacophore-oriented molecular design based on the natural templates. Both fundamental medicinal chemistry principles (e.g., bioisosterism) and state-of-the-art computer-aided drug design techniques (e.g., structure-based design) can be applied to facilitate optimization efforts. In this review, the strategies to optimize natural leads to anticancer drugs or drug candidates are illustrated with examples and described according to their purposes. Furthermore, successful case studies on lead optimization of bioactive compounds performed in the Natural Products Research Laboratories at UNC are highlighted.
Collapse
Affiliation(s)
- Zhiyan Xiao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, USA
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, USA
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|