1
|
Manu VS, Olivieri C, Veglia G. AI-designed NMR spectroscopy RF pulses for fast acquisition at high and ultra-high magnetic fields. Nat Commun 2023; 14:4144. [PMID: 37438347 DOI: 10.1038/s41467-023-39581-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful high-resolution tool for characterizing biomacromolecular structure, dynamics, and interactions. However, the lengthy longitudinal relaxation of the nuclear spins significantly extends the total experimental time, especially at high and ultra-high magnetic field strengths. Although longitudinal relaxation-enhanced techniques have sped up data acquisition, their application has been limited by the chemical shift dispersion. Here we combined an evolutionary algorithm and artificial intelligence to design 1H and 15N radio frequency (RF) pulses with variable phase and amplitude that cover significantly broader bandwidths and allow for rapid data acquisition. We re-engineered the basic transverse relaxation optimized spectroscopy experiment and showed that the RF shapes enhance the spectral sensitivity of well-folded proteins up to 180 kDa molecular weight. These RF shapes can be tailored to re-design triple-resonance experiments for accelerating NMR spectroscopy of biomacromolecules at high fields.
Collapse
Affiliation(s)
- V S Manu
- Department of Biochemistry, Molecular Biology & Biophysics and Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology & Biophysics and Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Chemistry, University of Milan, 20133, Milan, Italy
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology & Biophysics and Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
2
|
Creutznacher R, Maass T, Dülfer J, Feldmann C, Hartmann V, Lane MS, Knickmann J, Westermann LT, Thiede L, Smith TJ, Uetrecht C, Mallagaray A, Waudby CA, Taube S, Peters T. Distinct dissociation rates of murine and human norovirus P-domain dimers suggest a role of dimer stability in virus-host interactions. Commun Biol 2022; 5:563. [PMID: 35680964 PMCID: PMC9184547 DOI: 10.1038/s42003-022-03497-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
Norovirus capsids are icosahedral particles composed of 90 dimers of the major capsid protein VP1. The C-terminus of the VP1 proteins forms a protruding (P)-domain, mediating receptor attachment, and providing a target for neutralizing antibodies. NMR and native mass spectrometry directly detect P-domain monomers in solution for murine (MNV) but not for human norovirus (HuNoV). We report that the binding of glycochenodeoxycholic acid (GCDCA) stabilizes MNV-1 P-domain dimers (P-dimers) and induces long-range NMR chemical shift perturbations (CSPs) within loops involved in antibody and receptor binding, likely reflecting corresponding conformational changes. Global line shape analysis of monomer and dimer cross-peaks in concentration-dependent methyl TROSY NMR spectra yields a dissociation rate constant koff of about 1 s−1 for MNV-1 P-dimers. For structurally closely related HuNoV GII.4 Saga P-dimers a value of about 10−6 s−1 is obtained from ion-exchange chromatography, suggesting essential differences in the role of GCDCA as a cofactor for MNV and HuNoV infection. NMR and native mass spectrometry reveal that the major capsid VP1 protein from murine and human norovirus exhibit distinct behaviors and are differentially regulated by the binding of glycochenodeoxycholic acid.
Collapse
|
3
|
Studying protein folding in health and disease using biophysical approaches. Emerg Top Life Sci 2021; 5:29-38. [PMID: 33660767 PMCID: PMC8138949 DOI: 10.1042/etls20200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022]
Abstract
Protein folding is crucial for normal physiology including development and healthy aging, and failure of this process is related to the pathology of diseases including neurodegeneration and cancer. Early thermodynamic and kinetic studies based on the unfolding and refolding equilibrium of individual proteins in the test tube have provided insight into the fundamental principles of protein folding, although the problem of predicting how any given protein will fold remains unsolved. Protein folding within cells is a more complex issue than folding of purified protein in isolation, due to the complex interactions within the cellular environment, including post-translational modifications of proteins, the presence of macromolecular crowding in cells, and variations in the cellular environment, for example in cancer versus normal cells. Development of biophysical approaches including fluorescence resonance energy transfer (FRET) and nuclear magnetic resonance (NMR) techniques and cellular manipulations including microinjection and insertion of noncanonical amino acids has allowed the study of protein folding in living cells. Furthermore, biophysical techniques such as single-molecule fluorescence spectroscopy and optical tweezers allows studies of simplified systems at the single molecular level. Combining in-cell techniques with the powerful detail that can be achieved from single-molecule studies allows the effects of different cellular components including molecular chaperones to be monitored, providing us with comprehensive understanding of the protein folding process. The application of biophysical techniques to the study of protein folding is arming us with knowledge that is fundamental to the battle against cancer and other diseases related to protein conformation or protein–protein interactions.
Collapse
|
4
|
Rodin VV. NMR techniques in studying water in biotechnological systems. Biophys Rev 2020; 12:683-701. [PMID: 32557162 PMCID: PMC7311624 DOI: 10.1007/s12551-020-00694-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Different NMR methodologies have been considered in studying water as a part of the structure of heterogeneous biosystems. The current work mostly describes NMR techniques to investigate slow translational dynamics of molecules affecting anisotropic properties of polymers and biomaterials. With these approaches, information about organized structures and their stability could be obtained in conditions when external factors affect biomolecules. Such changes might include rearrangement of macromolecular conformations at fabrication of nano-scaffolds for tissue engineering applications. The changes in water-fiber interactions could be mirrored by the magnetic resonance methods in various relaxations, double-quantum filtered (DQF), 1D and 2D translational diffusion experiments. These findings effectively demonstrate the current state of NMR studies in applying these experiments to the various systems with the anisotropic properties. For fibrous materials, it is shown how NMR correlation experiments with two gradients (orthogonal or collinear) encode diffusion coefficients in anisotropic materials and how to estimate the permeability of cell walls. It is considered how the DQF NMR technique discovers anisotropic water in natural polymers with various cross-links. The findings clarify hydration sites, dynamic properties, and binding of macromolecules discovering the role of specific states in improving scaffold characteristics in tissue engineering processes. Showing the results in developing these NMR tools, this review focuses on the ways of extracting information about biophysical properties of biomaterials from the NMR data obtained.
Collapse
Affiliation(s)
- Victor V Rodin
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040, Linz, Austria.
| |
Collapse
|
5
|
Dinclaux M, Cahoreau E, Millard P, Létisse F, Lippens G. Increasing field strength versus advanced isotope labeling for NMR-based fluxomics. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:305-311. [PMID: 31909497 DOI: 10.1002/mrc.4988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Nuclear magnetic resonance (NMR)-based fluxomics seeks to measure the incorporation of isotope labels in selected metabolites to follow kinetically the synthesis of the latter. It can however equally be used to understand the biosynthetic origin of the same metabolites. We investigate here different NMR approaches to optimize such experiments in terms of resolution and time requirement. Using the isoleucine biosynthesis as an example, we explore the use of different field strengths ranging from 500 MHz to 1.1 GHz. Because of the different field dependence of chemical shift and heteronuclear J couplings, the spectra change at different field strengths. We equally explore the approach to silence the leucine/valine methyl signals through the use of a suitable deuterated precursor, thereby allowing selective observation of the Ile 13 C labeling pattern. Combining both approaches, we arrive at an efficient procedure for the NMR-based exploration of Ile biosynthesis.
Collapse
Affiliation(s)
| | - Edern Cahoreau
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Pierre Millard
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Fabien Létisse
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Guy Lippens
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| |
Collapse
|
6
|
Abstract
The specific interaction of importins with nuclear localization signals (NLSs) of cargo proteins not only mediates nuclear import but also, prevents their aberrant phase separation and stress granule recruitment in the cytoplasm. The importin Transportin-1 (TNPO1) plays a key role in the (patho-)physiology of both processes. Here, we report that both TNPO1 and Transportin-3 (TNPO3) recognize two nonclassical NLSs within the cold-inducible RNA-binding protein (CIRBP). Our biophysical investigations show that TNPO1 recognizes an arginine-glycine(-glycine) (RG/RGG)-rich region, whereas TNPO3 recognizes a region rich in arginine-serine-tyrosine (RSY) residues. These interactions regulate nuclear localization, phase separation, and stress granule recruitment of CIRBP in cells. The presence of both RG/RGG and RSY regions in numerous other RNA-binding proteins suggests that the interaction of TNPO1 and TNPO3 with these nonclassical NLSs may regulate the formation of membraneless organelles and subcellular localization of numerous proteins.
Collapse
|
7
|
Claverie M, Cioci G, Guionnet M, Schörghuber J, Lichtenecker R, Moulis C, Remaud-Simeon M, Lippens G. Futile Encounter Engineering of the DSR-M Dextransucrase Modifies the Resulting Polymer Length. Biochemistry 2019; 58:2853-2859. [DOI: 10.1021/acs.biochem.9b00373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Marion Claverie
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31400 Toulouse, France
| | - Gianluca Cioci
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31400 Toulouse, France
| | - Matthieu Guionnet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31400 Toulouse, France
| | - Julia Schörghuber
- Institute of Organic Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Roman Lichtenecker
- Institute of Organic Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Claire Moulis
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31400 Toulouse, France
| | | | - Guy Lippens
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31400 Toulouse, France
| |
Collapse
|
8
|
Duan Y, Liu Y, Coreas R, Zhong W. Mapping Molecular Structure of Protein Locating on Nanoparticles with Limited Proteolysis. Anal Chem 2019; 91:4204-4212. [PMID: 30798594 PMCID: PMC6613589 DOI: 10.1021/acs.analchem.9b00482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The molecular structure of a protein could be altered when it is attached to nanoparticles (NPs), affecting the performance of NPs present in biological systems. Limited proteolysis coupled with LC-MS/MS could reveal the changes in protein structure when it binds to a variety of entities, including macro-molecules and small drugs, but it has not yet been applied to study protein-NP interaction. Herein, adsorption of proteins, transferrin, and catalase on the polystyrene (PS) or iron oxide (IO) NPs was analyzed with this method. Both increased and decreased proteolytic efficiency in certain regions on the proteins were observed. Identification of the peptides affected by protein-NP interaction led to proper prediction of alterations to protein function as well as to colloidal stability of NPs. Overall, the present work has demonstrated the utility of limited proteolysis in helping to elucidate the potential biological outcomes of the protein-NP conjugate, obtaining knowledge to guide improvement of the rational design of the protein-conjugated NPs for biomedical applications and to understand the biological behaviors of the engineered NPs.
Collapse
Affiliation(s)
- Yaokai Duan
- Department of Chemistry, University of California, Riverside, California 92507, United States
| | - Yang Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92507, United States
| | - Roxana Coreas
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92507, United States
| | - Wenwan Zhong
- Department of Chemistry, University of California, Riverside, California 92507, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92507, United States
| |
Collapse
|
9
|
Cerofolini L, Giuntini S, Carlon A, Ravera E, Calderone V, Fragai M, Parigi G, Luchinat C. Characterization of PEGylated Asparaginase: New Opportunities from NMR Analysis of Large PEGylated Therapeutics. Chemistry 2019; 25:1984-1991. [DOI: 10.1002/chem.201804488] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/09/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Center (CERM)University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM)University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of ChemistryUniversity of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Azzurra Carlon
- Magnetic Resonance Center (CERM)University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM)University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of ChemistryUniversity of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Vito Calderone
- Magnetic Resonance Center (CERM)University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of ChemistryUniversity of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM)University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of ChemistryUniversity of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM)University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of ChemistryUniversity of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM)University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of ChemistryUniversity of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| |
Collapse
|
10
|
Pilla KB, Gaalswyk K, MacCallum JL. Molecular modeling of biomolecules by paramagnetic NMR and computational hybrid methods. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [PMID: 28648524 DOI: 10.1016/j.bbapap.2017.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 3D atomic structures of biomolecules and their complexes are key to our understanding of biomolecular function, recognition, and mechanism. However, it is often difficult to obtain structures, particularly for systems that are complex, dynamic, disordered, or exist in environments like cell membranes. In such cases sparse data from a variety of paramagnetic NMR experiments offers one possible source of structural information. These restraints can be incorporated in computer modeling algorithms that can accurately translate the sparse experimental data into full 3D atomic structures. In this review, we discuss various types of paramagnetic NMR/computational hybrid modeling techniques that can be applied to successful modeling of not only the atomic structure of proteins but also their interacting partners. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
| | - Kari Gaalswyk
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
11
|
Narayanan C, Bafna K, Roux LD, Agarwal PK, Doucet N. Applications of NMR and computational methodologies to study protein dynamics. Arch Biochem Biophys 2017; 628:71-80. [PMID: 28483383 DOI: 10.1016/j.abb.2017.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
Abstract
Overwhelming evidence now illustrates the defining role of atomic-scale protein flexibility in biological events such as allostery, cell signaling, and enzyme catalysis. Over the years, spin relaxation nuclear magnetic resonance (NMR) has provided significant insights on the structural motions occurring on multiple time frames over the course of a protein life span. The present review article aims to illustrate to the broader community how this technique continues to shape many areas of protein science and engineering, in addition to being an indispensable tool for studying atomic-scale motions and functional characterization. Continuing developments in underlying NMR technology alongside software and hardware developments for complementary computational approaches now enable methodologies to routinely provide spatial directionality and structural representations traditionally harder to achieve solely using NMR spectroscopy. In addition to its well-established role in structural elucidation, we present recent examples that illustrate the combined power of selective isotope labeling, relaxation dispersion experiments, chemical shift analyses, and computational approaches for the characterization of conformational sub-states in proteins and enzymes.
Collapse
Affiliation(s)
- Chitra Narayanan
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Khushboo Bafna
- Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Louise D Roux
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Pratul K Agarwal
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; Computational Biology Institute and Computer Science and Mathematics Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | - Nicolas Doucet
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; PROTEO, The Quebec Network for Research on Protein Function, Structure, and Engineering, 1045 Avenue de la Médecine, Université Laval, Québec, QC G1V 0A6, Canada; GRASP, The Groupe de Recherche Axé sur la Structure des Protéines, 3649 Promenade Sir William Osler, McGill University, Montréal, QC H3G 0B1, Canada.
| |
Collapse
|
12
|
Abstract
Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Proudfoot A, Frank AO, Ruggiu F, Mamo M, Lingel A. Facilitating unambiguous NMR assignments and enabling higher probe density through selective labeling of all methyl containing amino acids. JOURNAL OF BIOMOLECULAR NMR 2016; 65:15-27. [PMID: 27130242 DOI: 10.1007/s10858-016-0032-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/19/2016] [Indexed: 05/05/2023]
Abstract
The deuteration of proteins and selective labeling of side chain methyl groups has greatly enhanced the molecular weight range of proteins and protein complexes which can be studied using solution NMR spectroscopy. Protocols for the selective labeling of all six methyl group containing amino acids individually are available, however to date, only a maximum of five amino acids have been labeled simultaneously. Here, we describe a new methodology for the simultaneous, selective labeling of all six methyl containing amino acids using the 115 kDa homohexameric enzyme CoaD from E. coli as a model system. The utility of the labeling protocol is demonstrated by efficiently and unambiguously assigning all methyl groups in the enzymatic active site using a single 4D (13)C-resolved HMQC-NOESY-HMQC experiment, in conjunction with a crystal structure. Furthermore, the six fold labeled protein was employed to characterize the interaction between the substrate analogue (R)-pantetheine and CoaD by chemical shift perturbations, demonstrating the benefit of the increased probe density.
Collapse
Affiliation(s)
- Andrew Proudfoot
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA, 94608, USA
| | - Andreas O Frank
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA, 94608, USA
| | - Fiorella Ruggiu
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA, 94608, USA
| | - Mulugeta Mamo
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA, 94608, USA
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA, 94608, USA.
| |
Collapse
|
14
|
Saha S, Jagtap AP, Sigurdsson ST. Site-Directed Spin Labeling of RNA by Postsynthetic Modification of 2'-Amino Groups. Methods Enzymol 2015; 563:397-414. [PMID: 26478493 DOI: 10.1016/bs.mie.2015.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To elucidate mechanisms that govern functions of nucleic acids, it is essential to understand their structure and dynamics. Electron paramagnetic resonance (EPR) spectroscopy is a valuable technique that is routinely used to study those aspects of nucleic acids. A prerequisite for most EPR studies of nucleic acids is incorporation of spin labels at specific sites, known as site-directed spin labeling (SDSL). There are two main strategies for SDSL through formation of covalent bonds, i.e., the phosphoramidite approach and postsynthetic spin-labeling. After describing briefly the advantages and disadvantages of these two strategies, postsynthetic labeling of 2'-amino groups in RNA is delineated. Postsynthetic labeling of 2'-amino groups in RNA using 4-isocyanato-TEMPO has long been established as a useful approach. However, this method has some drawbacks, both with regard to the spin-labeling protocol and the flexibility of the spin label itself. Recently reported isothiocyanate-substituted aromatic isoindoline-derived nitroxides can be used to quantitatively and selectively modify 2'-amino groups in RNA and do not have the drawbacks associated with 4-isocyanato-TEMPO. This chapter provides a detailed description of the postsynthetic spin-labeling methods of 2'-amino groups in RNA with a special focus on using the aromatic isothiocyanate spin labels.
Collapse
Affiliation(s)
- Subham Saha
- Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | - Anil P Jagtap
- Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
15
|
Karamanos TK, Kalverda AP, Thompson GS, Radford SE. Mechanisms of amyloid formation revealed by solution NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:86-104. [PMID: 26282197 PMCID: PMC4568309 DOI: 10.1016/j.pnmrs.2015.05.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 05/29/2023]
Abstract
Amyloid fibrils are proteinaceous elongated aggregates involved in more than fifty human diseases. Recent advances in electron microscopy and solid state NMR have allowed the characterization of fibril structures to different extents of refinement. However, structural details about the mechanism of fibril formation remain relatively poorly defined. This is mainly due to the complex, heterogeneous and transient nature of the species responsible for assembly; properties that make them difficult to detect and characterize in structural detail using biophysical techniques. The ability of solution NMR spectroscopy to investigate exchange between multiple protein states, to characterize transient and low-population species, and to study high molecular weight assemblies, render NMR an invaluable technique for studies of amyloid assembly. In this article we review state-of-the-art solution NMR methods for investigations of: (a) protein dynamics that lead to the formation of aggregation-prone species; (b) amyloidogenic intrinsically disordered proteins; and (c) protein-protein interactions on pathway to fibril formation. Together, these topics highlight the power and potential of NMR to provide atomic level information about the molecular mechanisms of one of the most fascinating problems in structural biology.
Collapse
Affiliation(s)
- Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Arnout P Kalverda
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Gary S Thompson
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
16
|
The study of transient protein-nanoparticle interactions by solution NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:102-14. [PMID: 25936778 DOI: 10.1016/j.bbapap.2015.04.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/30/2022]
Abstract
The rapid development of novel nanoscale materials for applications in biomedicine urges an improved characterization of the nanobio interfaces. Nanoparticles exhibit unique structures and properties, often different from the corresponding bulk materials, and the nature of their interactions with biological systems remains poorly characterized. Solution NMR spectroscopy is a mature technique for the investigation of biomolecular structure, dynamics, and intermolecular associations, however its use in protein-nanoparticle interaction studies remains scarce and highly challenging, particularly due to unfavorable hydrodynamic properties of most nanoscale assemblies. Nonetheless, recent efforts demonstrated that a number of NMR observables, such as chemical shifts, signal intensities, amide exchange rates and relaxation parameters, together with newly designed saturation transfer experiments, could be successfully employed to characterize the orientation, structure and dynamics of proteins adsorbed onto nanoparticle surfaces. This review provides the first survey and critical assessment of the contributions from solution NMR spectroscopy to the study of transient interactions between proteins and both inorganic (gold, silver, and silica) and organic (polymer, carbon and lipid based) nanoparticles. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.
Collapse
|
17
|
Abraham SJ, Cheng RC, Chew TA, Khantwal CM, Liu CW, Gong S, Nakamoto RK, Maduke M. 13C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1. JOURNAL OF BIOMOLECULAR NMR 2015; 61:209-26. [PMID: 25631353 PMCID: PMC4398623 DOI: 10.1007/s10858-015-9898-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/13/2015] [Indexed: 05/03/2023]
Abstract
CLC transporters catalyze the exchange of Cl(-) for H(+) across cellular membranes. To do so, they must couple Cl(-) and H(+) binding and unbinding to protein conformational change. However, the sole conformational changes distinguished crystallographically are small movements of a glutamate side chain that locally gates the ion-transport pathways. Therefore, our understanding of whether and how global protein dynamics contribute to the exchange mechanism has been severely limited. To overcome the limitations of crystallography, we used solution-state (13)C-methyl NMR with labels on methionine, lysine, and engineered cysteine residues to investigate substrate (H(+)) dependent conformational change outside the restraints of crystallization. We show that methyl labels in several regions report H(+)-dependent spectral changes. We identify one of these regions as Helix R, a helix that extends from the center of the protein, where it forms the part of the inner gate to the Cl(-)-permeation pathway, to the extracellular solution. The H(+)-dependent spectral change does not occur when a label is positioned just beyond Helix R, on the unstructured C-terminus of the protein. Together, the results suggest that H(+) binding is mechanistically coupled to closing of the intracellular access-pathway for Cl(-).
Collapse
Affiliation(s)
- Sherwin J. Abraham
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Ricky C. Cheng
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Thomas A. Chew
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Chandra M. Khantwal
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Corey W. Liu
- Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine, 299 Campus Drive West, D105 Fairchild Science Building, Stanford, CA 94305
| | - Shimei Gong
- Department of Molecular Physiology and Biological Physics, University of Virginia, PO Box 10011, Charlottesville, VA 22906-0011
| | - Robert K. Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, PO Box 10011, Charlottesville, VA 22906-0011
| | - Merritt Maduke
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
- corresponding author, , tel (650)-723-9075, fax (650)-725-8021
| |
Collapse
|
18
|
Sani MA, Separovic F. Progression of NMR studies of membrane-active peptides from lipid bilayers to live cells. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:138-142. [PMID: 25631783 DOI: 10.1016/j.jmr.2014.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/24/2014] [Accepted: 11/30/2014] [Indexed: 06/04/2023]
Abstract
Understanding the structure of membrane-active peptides faces many challenges associated with the development of appropriate model membrane systems as the peptide structure depends strongly on the lipid environment. This perspective provides a brief overview of the approach taken to study antimicrobial and amyloid peptides in phospholipid bilayers using oriented bilayers and magic angle spinning techniques. In particular, Boltzmann statistics REDOR and maximum entropy analysis of spinning side bands are used to analyse systems where multiple states of peptide or lipid molecules may co-exist. We propose that in future, rather than model membranes, structural studies in whole cells are feasible.
Collapse
Affiliation(s)
- M-A Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - F Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
19
|
Rossi P, Shi L, Liu G, Barbieri CM, Lee HW, Grant TD, Luft JR, Xiao R, Acton TB, Snell EH, Montelione GT, Baker D, Lange OF, Sgourakis NG. A hybrid NMR/SAXS-based approach for discriminating oligomeric protein interfaces using Rosetta. Proteins 2015; 83:309-17. [PMID: 25388768 PMCID: PMC5061451 DOI: 10.1002/prot.24719] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/10/2014] [Accepted: 10/29/2014] [Indexed: 01/26/2023]
Abstract
Oligomeric proteins are important targets for structure determination in solution. While in most cases the fold of individual subunits can be determined experimentally, or predicted by homology-based methods, protein-protein interfaces are challenging to determine de novo using conventional NMR structure determination protocols. Here we focus on a member of the bet-V1 superfamily, Aha1 from Colwellia psychrerythraea. This family displays a broad range of crystallographic interfaces none of which can be reconciled with the NMR and SAXS data collected for Aha1. Unlike conventional methods relying on a dense network of experimental restraints, the sparse data are used to limit conformational search during optimization of a physically realistic energy function. This work highlights a new approach for studying minor conformational changes due to structural plasticity within a single dimeric interface in solution.
Collapse
Affiliation(s)
- Paolo Rossi
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Lei Shi
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Gaohua Liu
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Christopher M. Barbieri
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Hsiau-Wei Lee
- Department of Chemistry, Complex Carbohydrate Research Center, and Northeast Structural Genomics Consortium, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center, and Northeast Structural Genomics Consortium, University of Georgia, Athens, Georgia 30602
| | - Thomas D. Grant
- Hauptman–Woodward Medical Research Institute, and Northeast Structural Genomics Consortium, Buffalo, New York 14203
- SUNY Buffalo Department of Structural Biology, Buffalo, New York 14203
| | - Joseph R. Luft
- Hauptman–Woodward Medical Research Institute, and Northeast Structural Genomics Consortium, Buffalo, New York 14203
- SUNY Buffalo Department of Structural Biology, Buffalo, New York 14203
| | - Rong Xiao
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Thomas B. Acton
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Edward H. Snell
- Hauptman–Woodward Medical Research Institute, and Northeast Structural Genomics Consortium, Buffalo, New York 14203
- SUNY Buffalo Department of Structural Biology, Buffalo, New York 14203
| | - Gaetano T. Montelione
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
- Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
| | - Oliver F. Lange
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Nikolaos G. Sgourakis
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
20
|
Nematollahi LA, Garza-Garcia A, Bechara C, Esposito D, Morgner N, Robinson CV, Driscoll PC. Flexible stoichiometry and asymmetry of the PIDDosome core complex by heteronuclear NMR spectroscopy and mass spectrometry. J Mol Biol 2014; 427:737-752. [PMID: 25528640 PMCID: PMC4332690 DOI: 10.1016/j.jmb.2014.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/14/2014] [Accepted: 11/22/2014] [Indexed: 11/24/2022]
Abstract
Homotypic death domain (DD)–DD interactions are important in the assembly of oligomeric signaling complexes such as the PIDDosome that acts as a platform for activation of caspase-2-dependent apoptotic signaling. The structure of the PIDDosome core complex exhibits an asymmetric three-layered arrangement containing five PIDD-DDs in one layer, five RAIDD-DDs in a second layer and an additional two RAIDD-DDs. We addressed complex formation between PIDD-DD and RAIDD-DD in solution using heteronuclear nuclear magnetic resonance (NMR) spectroscopy, nanoflow electrospray ionization mass spectrometry and size-exclusion chromatography with multi-angle light scattering. The DDs assemble into complexes displaying molecular masses in the range 130–158 kDa and RAIDD-DD:PIDD-DD stoichiometries of 5:5, 6:5 and 7:5. These data suggest that the crystal structure is representative of only the heaviest species in solution and that two RAIDD-DDs are loosely attached to the 5:5 core. Two-dimensional 1H,15N-NMR experiments exhibited signal loss upon complexation consistent with the formation of high-molecular-weight species. 13C-Methyl-transverse relaxation optimized spectroscopy measurements of the PIDDosome core exhibit signs of differential line broadening, cross-peak splitting and chemical shift heterogeneity that reflect the presence of non-equivalent sites at interfaces within an asymmetric complex. Experiments using a mutant RAIDD-DD that forms a monodisperse 5:5 complex with PIDD-DD show that the spectroscopic signature derives from the quasi- but non-exact equivalent environments of each DD. Since this characteristic was previously demonstrated for the complex between the DDs of CD95 and FADD, the NMR data for this system are consistent with the formation of a structure homologous to the PIDDosome core. The PIDDosome core particle that has been crystallized as a 7:5 complex displays heterogeneous stoichiometry in solution. Methyl-transverse relaxation optimized spectroscopy NMR spectra for the complex suggest that individual PIDD-DDs and RAIDD-DDs experience non-equivalent environments in the PIDDosome core. A mutant PIDDosome core particle that is monodisperse displays similar NMR features, suggesting that the complexity of the spectra is a reflection of the absence of formal symmetry consistent with the crystal structure. The NMR characteristics are reminiscent of those reported for the complex formed between the DDs of CD95 and FADD, suggesting that this latter complex has similar architecture to the PIDDosome core.
Collapse
Affiliation(s)
- Lily A Nematollahi
- Division of Molecular Structure, Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Acely Garza-Garcia
- Division of Molecular Structure, Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Chérine Bechara
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Diego Esposito
- Division of Molecular Structure, Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Nina Morgner
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Paul C Driscoll
- Division of Molecular Structure, Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
21
|
Gul S, Hadian K. Protein–protein interaction modulator drug discovery: past efforts and future opportunities using a rich source of low- and high-throughput screening assays. Expert Opin Drug Discov 2014; 9:1393-404. [DOI: 10.1517/17460441.2014.954544] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Miyanoiri Y, Takeda M, Okuma K, Ono AM, Terauchi T, Kainosho M. Differential isotope-labeling for Leu and Val residues in a protein by E. coli cellular expression using stereo-specifically methyl labeled amino acids. JOURNAL OF BIOMOLECULAR NMR 2013; 57:237-249. [PMID: 24057411 DOI: 10.1007/s10858-013-9784-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/16/2013] [Indexed: 06/02/2023]
Abstract
The (1)H-(13)C HMQC signals of the (13)CH3 moieties of Ile, Leu, and Val residues, in an otherwise deuterated background, exhibit narrow line-widths, and thus are useful for investigating the structures and dynamics of larger proteins. This approach, named methyl TROSY, is economical as compared to laborious methods using chemically synthesized site- and stereo-specifically isotope-labeled amino acids, such as stereo-array isotope labeling amino acids, since moderately priced, commercially available isotope-labeled α-keto acid precursors can be used to prepare the necessary protein samples. The Ile δ1-methyls can be selectively labeled, using isotope-labeled α-ketobutyrates as precursors. However, it is still difficult to prepare a residue-selectively Leu and Val labeled protein, since these residues share a common biosynthetic intermediate, α-ketoisovalerate. Another hindering drawback in using the α-ketoisovalerate precursor is the lack of stereo-selectivity for Leu and Val methyls. Here we present a differential labeling method for Leu and Val residues, using four kinds of stereo-specifically (13)CH3-labeled [U-(2)H;(15)N]-leucine and -valine, which can be efficiently incorporated into a protein using Escherichia coli cellular expression. The method allows the differential labeling of Leu and Val residues with any combination of stereo-specifically isotope-labeled prochiral methyls. Since relatively small amounts of labeled leucine and valine are required to prepare the NMR samples; i.e., 2 and 10 mg/100 mL of culture for leucine and valine, respectively, with sufficient isotope incorporation efficiency, this approach will be a good alternative to the precursor methods. The feasibility of the method is demonstrated for 82 kDa malate synthase G.
Collapse
Affiliation(s)
- Yohei Miyanoiri
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | | | | | | | | | | |
Collapse
|