1
|
Zhen J, Pan J, Zhou X, Yu Z, Jiang Y, Gong Y, Ding Y, Liu Y, Guo L. FARSB serves as a novel hypomethylated and immune cell infiltration related prognostic biomarker in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:2937-2969. [PMID: 37074800 DOI: 10.18632/aging.204619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/09/2023] [Indexed: 04/20/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a prevalent tumor with high morbidity, and an unfavourable prognosis. FARSB is an aminoacyl tRNA synthase, and plays a key role in protein synthesis in cells. Furthermore, previous reports have indicated that FARSB is overexpressed in gastric tumor tissues and is associated with a poor prognosis and tumorigenesis. However, the function of FARSB in HCC has not been studied. RESULTS The results showed that FARSB mRNA and protein levels were upregulated in HCC and were closely related to many clinicopathological characteristics. Besides, according to multivariate Cox analysis, high FARSB expression was linked with a shorter survival time in HCC and may be an independent prognostic factor. In addition, the FARSB promoter methylation level was negatively associated with the expression of FARSB. Furthermore, enrichment analysis showed that FARSB was related to the cell cycle. And TIMER analysis revealed that the FARSB expression was closely linked to tumor purity and immune cell infiltration. The TCGA and ICGC data analysis suggested that FARSB expression is greatly related to m6A modifier related genes. Potential FARSB-related ceRNA regulatory networks were also constructed. What's more, based on the FARSB-protein interaction network, molecular docking models of FARSB and RPLP1 were constructed. Finally, drug susceptibility testing revealed that FARSB was susceptible to 38 different drugs or small molecules. CONCLUSIONS FARSB can serve as a prognostic biomarker for HCC and provide clues about immune infiltration, and m6A modification.
Collapse
Affiliation(s)
- Jing Zhen
- Second Affiliated Hospital of Nanchang University, Nanchang, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jingying Pan
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yongqi Ding
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yue Liu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Liangyun Guo
- Department of Ultrasonography, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Gao X, Guo R, Li Y, Kang G, Wu Y, Cheng J, Jia J, Wang W, Li Z, Wang A, Xu H, Jia Y, Li Y, Qi X, Wei Z, Wei C. Contribution of upregulated aminoacyl-tRNA biosynthesis to metabolic dysregulation in gastric cancer. J Gastroenterol Hepatol 2021; 36:3113-3126. [PMID: 34159625 PMCID: PMC9292402 DOI: 10.1111/jgh.15592] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Metabolic reprogramming is characterized by dysregulated levels of metabolites and metabolic enzymes. Integrated metabolomic and transcriptomic data analysis can help to elucidate changes in the levels of metabolites and metabolic enzymes, screen the core metabolic pathways, and develop novel therapeutic strategies for cancer. METHODS Here, the metabolome of gastric cancer tissues was determined using liquid chromatography-mass spectrometry. The transcriptome data from The Cancer Genome Atlas dataset were integrated with the liquid chromatography-mass spectrometry data to identify the common dysregulated gastric cancer-specific metabolic pathways. Additionally, the protein expression and clinical significance of key metabolic enzymes were examined using a gastric cancer tissue array. RESULTS Metabolomic analysis of 16 gastric cancer tissues revealed that among the 15 dysregulated metabolomic pathways, the aminoacyl-tRNA biosynthesis pathway in the gastric tissues was markedly upregulated relative to that in the adjacent noncancerous tissues, which was consistent with the results of transcriptome analysis. Bioinformatic analysis revealed that among the key regulators in the aminoacyl-tRNA biosynthesis pathway, the expression levels of threonyl-tRNA synthetase (TARS) and phenylalanyl-tRNA synthetase (FARSB) were correlated with tumor grade and poor survival, respectively. Additionally, gastric tissue array data analysis indicated that TARS and FARSB were upregulated in gastric cancer tissues and were correlated with poor prognosis and tumor metastasis. CONCLUSIONS This study demonstrated that the aminoacyl-tRNA biosynthesis pathway is upregulated in gastric cancer and both TARS and FARSB play key roles in the progression of gastric cancer. Additionally, a novel therapeutic strategy for gastric cancer was proposed that involves targeting the aminoacyl-tRNA biosynthesis pathway.
Collapse
Affiliation(s)
- Xiaoling Gao
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorGansu Provincial HospitalLanzhouChina,The Institute of Clinical Research and Translational MedicineGansu Provincial HospitalLanzhouChina
| | - Rui Guo
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorGansu Provincial HospitalLanzhouChina,The Institute of Clinical Research and Translational MedicineGansu Provincial HospitalLanzhouChina
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorGansu Provincial HospitalLanzhouChina,The Institute of Clinical Research and Translational MedicineGansu Provincial HospitalLanzhouChina
| | - Guolan Kang
- Department of Endoscopic Diagnosis and Treatment CenterGansu Provincial HospitalLanzhouChina
| | - Yu Wu
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorGansu Provincial HospitalLanzhouChina
| | - Jia Cheng
- Department of Endoscopic Diagnosis and Treatment CenterGansu Provincial HospitalLanzhouChina
| | - Jing Jia
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorGansu Provincial HospitalLanzhouChina
| | - Wanxia Wang
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorGansu Provincial HospitalLanzhouChina
| | - Zhenhao Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorGansu Provincial HospitalLanzhouChina
| | - Anqi Wang
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorGansu Provincial HospitalLanzhouChina
| | - Hui Xu
- The Institute of Clinical Research and Translational MedicineGansu Provincial HospitalLanzhouChina
| | - Yanjuan Jia
- The Institute of Clinical Research and Translational MedicineGansu Provincial HospitalLanzhouChina
| | - Yuanting Li
- The Institute of Clinical Research and Translational MedicineGansu Provincial HospitalLanzhouChina
| | - Xiaoming Qi
- The Institute of Clinical Research and Translational MedicineGansu Provincial HospitalLanzhouChina
| | - Zhenhong Wei
- The Institute of Clinical Research and Translational MedicineGansu Provincial HospitalLanzhouChina
| | - Chaojun Wei
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorGansu Provincial HospitalLanzhouChina,The Institute of Clinical Research and Translational MedicineGansu Provincial HospitalLanzhouChina
| |
Collapse
|
3
|
Opinc AH, Makowska JS. Antisynthetase syndrome - much more than just a myopathy. Semin Arthritis Rheum 2020; 51:72-83. [PMID: 33360231 DOI: 10.1016/j.semarthrit.2020.09.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/08/2020] [Accepted: 09/30/2020] [Indexed: 01/06/2023]
Abstract
The aim of the study was to summarize current knowledge on antisynthetase syndrome (ASS), including its epidemiology, pathogenesis, proposed so far diagnostic criteria, heterogeneity of clinical manifestations, prognostic factors and therapeutic possibilities. PubMed database was screened for "antisynthetase syndrome" OR "antisynthetase antibodies" between February and April 2020. Aminoacyl-tRNA synthetases participate in the immune system activation as antigens, but also serve chemoattractive and cytokine-resembling roles, initiating innate and adaptive pathways. Exposure to various inhaled antigens may induce the autoimmune cascade leading to ASS. NK cells with its impaired INF-y production as well as formation of NETs by neutrophils contribute to pathogenesis. The prevalence of symptoms vary significantly depending on the study with muscular, articular and pulmonary involvement being the most frequently observed. Although classified as subtype of idiopathic inflammatory myopathies, myositis may not necessarily be the prominent manifestation. Since clinical presentation is heterogeneous and symptoms can emerge gradually, ASS could be considered as a heterogeneous spectrum rather than a homogenous disease entity. The currently available classification criteria do not fully correspond with the clinical patterns of the disease. Therapy is based on glucocorticosteroids and other immunosuppressive agents. Randomized controlled trials, dedicated for patients with ASS, are needed to form treatment algorithms.
Collapse
Affiliation(s)
| | - Joanna Samanta Makowska
- Department of Rheumatology, Medical University of Lodz, ul. Pieniny 30, 92-115 Łódź, Poland.
| |
Collapse
|
4
|
Jung HJ, Park SH, Cho KM, Jung KI, Cho D, Kim TS. Threonyl-tRNA Synthetase Promotes T Helper Type 1 Cell Responses by Inducing Dendritic Cell Maturation and IL-12 Production via an NF-κB Pathway. Front Immunol 2020; 11:571959. [PMID: 33178197 PMCID: PMC7592646 DOI: 10.3389/fimmu.2020.571959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Threonyl-tRNA synthetase (TRS) is an aminoacyl-tRNA synthetase that catalyzes the aminoacylation of tRNA by transferring threonine. In addition to an essential role in translation, TRS was extracellularly detected in autoimmune diseases and also exhibited pro-angiogenetic activity. TRS is reported to be secreted into the extracellular space when vascular endothelial cells encounter tumor necrosis factor-α. As T helper (Th) type 1 response and IFN-γ levels are associated with autoimmunity and angiogenesis, in this study, we investigated the effects of TRS on dendritic cell (DC) activation and CD4 T cell polarization. TRS-treated DCs exhibited up-regulated expression of activation-related cell-surface molecules, including CD40, CD80, CD86, and MHC class II. Treatment of DCs with TRS resulted in a significant increase of IL-12 production. TRS triggered nuclear translocation of the NF-κB p65 subunit along with the degradation of IκB proteins and the phosphorylation of MAPKs in DCs. Additionally, MAPK inhibitors markedly recovered the degradation of IκB proteins and the increased IL-12 production in TRS-treated DCs, suggesting the involvement of MAPKs as the upstream regulators of NF-κB in TRS-induced DC maturation and activation. Importantly, TRS-stimulated DCs significantly increased the populations of IFN-γ+CD4 T cells, and the levels of IFN-γ when co-cultured with CD4+ T cells. The addition of a neutralizing anti-IL-12 mAb to the cell cultures of TRS-treated DCs and CD4+ T cells resulted in decreased IFN-γ production, indicating that TRS-stimulated DCs may enhance the Th1 response through DC-derived IL-12. Injection of OT-II mice with OVA-pulsed, TRS-treated DCs also enhanced Ag-specific Th1 responses in vivo. Importantly, injection with TRS-treated DC exhibited increased populations of IFN-γ+-CD4+ and -CD8+ T cells as well as secretion level of IFN-γ, resulting in viral clearance and increased survival periods in mice infected with influenza A virus (IAV), as the Th1 response is associated with the enhanced cellular immunity, including anti-viral activity. Taken together, these results indicate that TRS promotes the maturation and activation of DCs, DC-mediated Th1 responses, and anti-viral effect on IAV infection.
Collapse
Affiliation(s)
- Hak-Jun Jung
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Su-Ho Park
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Kyung-Min Cho
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Kwang Il Jung
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Daeho Cho
- Institute of Convergence Science, Korea University, Seoul, South Korea
| | - Tae Sung Kim
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
5
|
Goughnour PC, Park MC, Kim SB, Jun S, Yang WS, Chae S, Cho S, Song C, Lee J, Hyun JK, Kim BG, Hwang D, Jung HS, Gho YS, Kim S. Extracellular vesicles derived from macrophages display glycyl-tRNA synthetase 1 and exhibit anti-cancer activity. J Extracell Vesicles 2020; 10:e12029. [PMID: 33708357 PMCID: PMC7890555 DOI: 10.1002/jev2.12029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 08/25/2020] [Accepted: 11/07/2020] [Indexed: 12/31/2022] Open
Abstract
Glycyl-tRNA synthetase 1 (GARS1), a cytosolic enzyme secreted from macrophages, promotes apoptosis in cancer cells. However, the mechanism underlying GARS1 secretion has not been elucidated. Here, we report that GARS1 is secreted through unique extracellular vesicles (EVs) with a hydrodynamic diameter of 20-58 nm (mean diameter: 36.9 nm) and a buoyant density of 1.13-1.17 g/ml. GARS1 was anchored to the surface of these EVs through palmitoylated C390 residue. Proteomic analysis identified 164 proteins that were uniquely enriched in the GARS1-containing EVs (GARS1-EVs). Among the identified factors, insulin-like growth factor II receptor, and vimentin also contributed to the anti-cancer activity of GARS1-EVs. This study identified the unique secretory vesicles containing GARS1 and various intracellular factors that are involved in the immunological defence response against tumorigenesis.
Collapse
Affiliation(s)
- Peter C. Goughnour
- Institute for Artificial Intelligence and Biomedical ResearchMedicinal Bioconvergence Research CenterCollege of Pharmacy & College of MedicineGangnam Severance HospitalYonsei UniversityIncheonKorea
| | - Min Chul Park
- Institute for Artificial Intelligence and Biomedical ResearchMedicinal Bioconvergence Research CenterCollege of Pharmacy & College of MedicineGangnam Severance HospitalYonsei UniversityIncheonKorea
| | - Sang Bum Kim
- Institute for Artificial Intelligence and Biomedical ResearchMedicinal Bioconvergence Research CenterCollege of Pharmacy & College of MedicineGangnam Severance HospitalYonsei UniversityIncheonKorea
| | - Sangmi Jun
- Division of Electron Microscopic ResearchKorea Basic Science InstituteDaejeonKorea
| | - Won Suk Yang
- Institute for Artificial Intelligence and Biomedical ResearchMedicinal Bioconvergence Research CenterCollege of Pharmacy & College of MedicineGangnam Severance HospitalYonsei UniversityIncheonKorea
| | - Sehyun Chae
- Daegu Gyeongbuk Institute of Science and TechnologyDaeguKorea
| | - Seongmin Cho
- Institute for Artificial Intelligence and Biomedical ResearchMedicinal Bioconvergence Research CenterCollege of Pharmacy & College of MedicineGangnam Severance HospitalYonsei UniversityIncheonKorea
| | - Chihong Song
- Division of Electron Microscopic ResearchKorea Basic Science InstituteDaejeonKorea
| | - Ji‐Hyun Lee
- Institute for Artificial Intelligence and Biomedical ResearchMedicinal Bioconvergence Research CenterCollege of Pharmacy & College of MedicineGangnam Severance HospitalYonsei UniversityIncheonKorea
| | - Jae Kyung Hyun
- Division of Electron Microscopic ResearchKorea Basic Science InstituteDaejeonKorea
| | - Byung Gyu Kim
- Institute for Artificial Intelligence and Biomedical ResearchMedicinal Bioconvergence Research CenterCollege of Pharmacy & College of MedicineGangnam Severance HospitalYonsei UniversityIncheonKorea
- Center for Genomic IntegrityInstitute for Basic ScienceUlsanKorea
| | - Daehee Hwang
- Daegu Gyeongbuk Institute of Science and TechnologyDaeguKorea
| | - Hyun Suk Jung
- Department of BiochemistryCollege of Natural SciencesKangwon National UniversityChuncheonKorea
| | - Yong Song Gho
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Sunghoon Kim
- Institute for Artificial Intelligence and Biomedical ResearchMedicinal Bioconvergence Research CenterCollege of Pharmacy & College of MedicineGangnam Severance HospitalYonsei UniversityIncheonKorea
| |
Collapse
|
6
|
Preger C, Wigren E, Ossipova E, Marks C, Lengqvist J, Hofström C, Andersson O, Jakobsson PJ, Gräslund S, Persson H. Generation and validation of recombinant antibodies to study human aminoacyl-tRNA synthetases. J Biol Chem 2020; 295:13981-13993. [PMID: 32817337 DOI: 10.1074/jbc.ra120.012893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/10/2020] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) have long been viewed as mere housekeeping proteins and have therefore often been overlooked in drug discovery. However, recent findings have revealed that many aaRSs have noncanonical functions, and several of the aaRSs have been linked to autoimmune diseases, cancer, and neurological disorders. Deciphering these roles has been challenging because of a lack of tools to enable their study. To help solve this problem, we have generated recombinant high-affinity antibodies for a collection of thirteen cytoplasmic and one mitochondrial aaRSs. Selected domains of these proteins were produced recombinantly in Escherichia coli and used as antigens in phage display selections using a synthetic human single-chain fragment variable library. All targets yielded large sets of antibody candidates that were validated through a panel of binding assays against the purified antigen. Furthermore, the top-performing binders were tested in immunoprecipitation followed by MS for their ability to capture the endogenous protein from mammalian cell lysates. For antibodies targeting individual members of the multi-tRNA synthetase complex, we were able to detect all members of the complex, co-immunoprecipitating with the target, in several cell types. The functionality of a subset of binders for each target was also confirmed using immunofluorescence. The sequences of these proteins have been deposited in publicly available databases and repositories. We anticipate that this open source resource, in the form of high-quality recombinant proteins and antibodies, will accelerate and empower future research of the role of aaRSs in health and disease.
Collapse
Affiliation(s)
- Charlotta Preger
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Edvard Wigren
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elena Ossipova
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Carolyn Marks
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Camilla Hofström
- Science for Life Laboratory, Drug Discovery and Development, Stockholm, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Oskar Andersson
- Science for Life Laboratory, Drug Discovery and Development, Stockholm, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Susanne Gräslund
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Helena Persson
- Science for Life Laboratory, Drug Discovery and Development, Stockholm, Sweden .,School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
7
|
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes for protein synthesis with evolutionarily conserved enzymatic mechanisms. Despite their similarity across organisms, scientists have been able to generate effective anti-infective agents based on the structural differences in the catalytic clefts of ARSs from pathogens and humans. However, recent genomic, proteomic and functionomic advances have unveiled unexpected disease-associated mutations and altered expression, secretion and interactions in human ARSs, revealing hidden biological functions beyond their catalytic roles in protein synthesis. These studies have also brought to light their potential as a rich and unexplored source for new therapeutic targets and agents through multiple avenues, including direct targeting of the catalytic sites, controlling disease-associated protein-protein interactions and developing novel biologics from the secreted ARS proteins or their parts. This Review addresses the emerging biology and therapeutic applications of human ARSs in diseases including autoimmune and rare diseases, and cancer.
Collapse
|
8
|
Gao W, An C, Xue X, Zheng X, Niu M, Zhang Y, Liu H, Zhang C, Lu Y, Cui J, Zhao Q, Wen S, Thorne RF, Zhang X, Wu Y, Wang B. Mass Spectrometric Analysis Identifies AIMP1 and LTA4H as FSCN1-Binding Proteins in Laryngeal Squamous Cell Carcinoma. Proteomics 2019; 19:e1900059. [PMID: 31287215 DOI: 10.1002/pmic.201900059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/29/2019] [Indexed: 12/24/2022]
Abstract
Dysregulation of fascin actin-bundling protein 1 (FSCN1) enhances cell proliferation, invasion, and motility in laryngeal squamous cell carcinoma (LSCC), while the mechanism remains unclear. Here, co-immunoprecipitation and mass spectrometry is utilized to identify potential FSCN1-binding proteins. Functional annotation of FSCN1-binding proteins are performed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis. Furthermore, the protein-protein interaction network of FSNC1-binding proteins is constructed and the interactions between FSCN1 and novel identified interacting proteins AIMP1 and LTA4H are validated. Moreover, the expression and functional role of AIMP1 and LTA4H in LSCC are investigated. A total of 123 proteins are identified as potential FSCN1-binding proteins, and functional annotation shows that FSCN1-binding proteins are significantly enriched in carcinogenic processes, such as filopodium assembly-regulation and GTPase activity. Co-IP/western blotting and immunofluorescence confirm that AIMP1 and LTA4H bind and colocalize with FSCN1. Furthermore, both AIMP1 and LTA4H are upregulated in LSCC tissues, and knockdown of AIMP1 or LTA4H inhibits LSCC cell proliferation, migration, and invasion. Collectively, the identification of FSCN1-binding partners enhances understanding of the mechanism of FSCN1-mediated malignant phenotypes, and these findings indicate that FSCN1 binds to AIMP1 and LTA4H might promote the progression of LSCC.
Collapse
Affiliation(s)
- Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Changming An
- Department of Head and Neck Surgery Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Yan Lu
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Jiajia Cui
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Qinli Zhao
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Shuxin Wen
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, School of Medicine, Henan University, Zhengzhou, 450053, Henan, China.,School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xudong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Binquan Wang
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
9
|
Savijoki K, Nyman TA, Kainulainen V, Miettinen I, Siljamäki P, Fallarero A, Sandholm J, Satokari R, Varmanen P. Growth Mode and Carbon Source Impact the Surfaceome Dynamics of Lactobacillus rhamnosus GG. Front Microbiol 2019; 10:1272. [PMID: 31231350 PMCID: PMC6560171 DOI: 10.3389/fmicb.2019.01272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022] Open
Abstract
Bacterial biofilms have clear implications in disease and in food applications involving probiotics. Here, we show that switching the carbohydrate source from glucose to fructose increased the biofilm formation and the total surface-antigenicity of a well-known probiotic, Lactobacillus rhamnosus GG. Surfaceomes (all cell surface-associated proteins) of GG cells grown with glucose and fructose in planktonic and biofilm cultures were identified and compared, which indicated carbohydrate source-dependent variations, especially during biofilm growth. The most distinctive differences under these conditions were detected with several surface adhesins (e.g., MBF, SpaC pilus protein and penicillin-binding proteins), enzymes (glycoside hydrolases, PrsA, PrtP, PrtR, and HtrA) and moonlighting proteins (glycolytic, transcription/translation and stress-associated proteins, r-proteins, tRNA synthetases, Clp family proteins, PepC, PepN, and PepA). The abundance of several known adhesins and candidate moonlighters, including enzymes acting on casein-derived peptides (ClpP, PepC, and PepN), increased in the biofilm cells grown on fructose, from which the surface-associated aminopeptidase activity mediated by PepC and PepN was further confirmed by an enzymatic assay. The mucus binding factor (MBF) was found most abundant in fructose grown biofilm cells whereas SpaC adhesin was identified specifically from planktonic cells growing on fructose. An additional indirect ELISA indicated both growth mode- and carbohydrate-dependent differences in abundance of SpaC, whereas the overall adherence of GG assessed with porcine mucus indicated that the carbon source and the growth mode affected mucus adhesion. The adherence of GG cells to mucus was almost completely inhibited by anti-SpaC antibodies regardless of growth mode and/or carbohydrate source, indicating the key role of the SpaCBA pilus in adherence under the tested conditions. Altogether, our results suggest that carbon source and growth mode coordinate mechanisms shaping the proteinaceous composition of GG cell surface, which potentially contributes to resistance, nutrient acquisition and cell-cell interactions under different conditions. In conclusion, the present study shows that different growth regimes and conditions can have a profound impact on the adherent and antigenic features of GG, thereby providing new information on how to gain additional benefits from this probiotic.
Collapse
Affiliation(s)
- Kirsi Savijoki
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Tuula A. Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Veera Kainulainen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilkka Miettinen
- Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Pia Siljamäki
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Adyary Fallarero
- Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Jouko Sandholm
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pekka Varmanen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Lim HX, Jung HJ, Lee A, Park SH, Han BW, Cho D, Kim TS. Lysyl-Transfer RNA Synthetase Induces the Maturation of Dendritic Cells through MAPK and NF-κB Pathways, Strongly Contributing to Enhanced Th1 Cell Responses. THE JOURNAL OF IMMUNOLOGY 2018; 201:2832-2841. [PMID: 30275047 DOI: 10.4049/jimmunol.1800386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/28/2018] [Indexed: 01/26/2023]
Abstract
In addition to essential roles in protein synthesis, lysyl-tRNA synthetase (KRS) is secreted to trigger a proinflammatory function that induces macrophage activation and TNF-α secretion. KRS has been associated with autoimmune diseases such as polymyositis and dermatomyositis. In this study, we investigated the immunomodulatory effects of KRS on bone marrow-derived dendritic cells (DCs) of C57BL/6 mice and subsequent polarization of Th cells and analyzed the underlying mechanisms. KRS-treated DCs increased the expression of cell surface molecules and proinflammatory cytokines associated with DC maturation and activation. Especially, KRS treatment significantly increased production of IL-12, a Th1-polarizing cytokine, in DCs. KRS triggered the nuclear translocation of the NF-κB p65 subunit along with the degradation of IκB proteins and the phosphorylation of MAPKs in DCs. Additionally, JNK, p38, and ERK inhibitors markedly recovered the degradation of IκB proteins, suggesting the involvement of MAPKs as the upstream regulators of NF-κB in the KRS-induced DC maturation and activation. Importantly, KRS-treated DCs strongly increased the differentiation of Th1 cells when cocultured with CD4+ T cells. The addition of anti-IL-12-neutralizing Ab abolished the secretion of IFN-γ in the coculture, indicating that KRS induces Th1 cell response via DC-derived IL-12. Moreover, KRS enhanced the OVA-specific Th1 cell polarization in vivo following the adoptive transfer of OVA-pulsed DCs. Taken together, these results indicated that KRS effectively induced the maturation and activation of DCs through MAPKs/NF-κB-signaling pathways and favored DC-mediated Th1 cell response.
Collapse
Affiliation(s)
- Hui Xuan Lim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hak-Jun Jung
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Arim Lee
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Si Hoon Park
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Byung Woo Han
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; and
| | - Daeho Cho
- Institute of Convergence Science, Korea University, Seoul 02841, Republic of Korea
| | - Tae Sung Kim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| |
Collapse
|
11
|
Tyrosyl-tRNA synthetase stimulates thrombopoietin-independent hematopoiesis accelerating recovery from thrombocytopenia. Proc Natl Acad Sci U S A 2018; 115:E8228-E8235. [PMID: 30104364 PMCID: PMC6126720 DOI: 10.1073/pnas.1807000115] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) catalyze aminoacylation of tRNAs in the first step of protein synthesis in the cytoplasm. However, in higher eukaryotes, they acquired additional functions beyond translation. In the present study, we show that an activated form of tyrosyl-tRNA synthetase (YRSACT) functions to enhance megakaryopoiesis and platelet production in vitro and in vivo. These findings were confirmed with human megakaryocytes differentiated from peripheral blood CD34+ hematopoietic stem cells and with human induced pluripotent stem (iPS) cells. The activity of YRSACT is independent of thrombopoietin (TPO), as evidenced by expansion of the megakaryocytes from iPS cell-derived hematopoietic stem cells from a patient deficient in TPO signaling. These findings demonstrate a previously unrecognized function of an aaRS which may have implications for therapeutic interventions. New mechanisms behind blood cell formation continue to be uncovered, with therapeutic approaches for hematological diseases being of great interest. Here we report an enzyme in protein synthesis, known for cell-based activities beyond translation, is a factor inducing megakaryocyte-biased hematopoiesis, most likely under stress conditions. We show an activated form of tyrosyl-tRNA synthetase (YRSACT), prepared either by rationally designed mutagenesis or alternative splicing, induces expansion of a previously unrecognized high-ploidy Sca-1+ megakaryocyte population capable of accelerating platelet replenishment after depletion. Moreover, YRSACT targets monocytic cells to induce secretion of transacting cytokines that enhance megakaryocyte expansion stimulating the Toll-like receptor/MyD88 pathway. Platelet replenishment by YRSACT is independent of thrombopoietin (TPO), as evidenced by expansion of the megakaryocytes from induced pluripotent stem cell-derived hematopoietic stem cells from a patient deficient in TPO signaling. We suggest megakaryocyte-biased hematopoiesis induced by YRSACT offers new approaches for treating thrombocytopenia, boosting yields from cell-culture production of platelet concentrates for transfusion, and bridging therapy for hematopoietic stem cell transplantation.
Collapse
|
12
|
Venkat S, Gregory C, Gan Q, Fan C. Biochemical Characterization of the Lysine Acetylation of Tyrosyl-tRNA Synthetase in Escherichia coli. Chembiochem 2017; 18:1928-1934. [PMID: 28741290 PMCID: PMC5629106 DOI: 10.1002/cbic.201700343] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play essential roles in protein synthesis. As a member of the aaRS family, the tyrosyl-tRNA synthetase (TyrRS) in Escherichia coli has been shown in proteomic studies to be acetylated at multiple lysine residues. However, these putative acetylation targets have not yet been biochemically characterized. In this study, we applied a genetic-code-expansion strategy to site-specifically incorporate Nϵ -acetyl-l-lysine into selected positions of TyrRS for in vitro characterization. Enzyme assays demonstrated that acetylation at K85, K235, and K238 could impair the enzyme activity. In vitro deacetylation experiments showed that most acetylated lysine residues in TyrRS were sensitive to the E. coli deacetylase CobB but not YcgC. In vitro acetylation assays indicated that 25 members of the Gcn5-related N-acetyltransferase family in E. coli, including YfiQ, could not acetylate TyrRS efficiently, whereas TyrRS could be acetylated chemically by acetyl-CoA or acetyl-phosphate (AcP) only. Our in vitro characterization experiments indicated that lysine acetylation could be a possible mechanism for modulating aaRS enzyme activities, thus affecting translation.
Collapse
Affiliation(s)
- Sumana Venkat
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Caroline Gregory
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 727011, USA
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
13
|
Abstract
Rabouille discusses the discovery by Kim et al. that caspase-8 controls the release of KRS in exosomes from cancer cells. Cancer cells often trigger an inflammatory process, which in some cases may be driven by the presence of lysyl-tRNA synthetase (KRS) in the medium. Kim et al. (2017. J. Cell Biol.https://doi.org/10.1083/jcb.201605118) now demonstrate that cleavage of the KRS by caspase-8 inside cells triggers its interaction with syntenin and its release in inflammatory exosomes.
Collapse
Affiliation(s)
- Catherine Rabouille
- Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences/University Medical Center Utrecht, Utrecht, Netherlands .,Department of Cell Biology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
14
|
Kim SB, Kim HR, Park MC, Cho S, Goughnour PC, Han D, Yoon I, Kim Y, Kang T, Song E, Kim P, Choi H, Mun JY, Song C, Lee S, Jung HS, Kim S. Caspase-8 controls the secretion of inflammatory lysyl-tRNA synthetase in exosomes from cancer cells. J Cell Biol 2017; 216:2201-2216. [PMID: 28611052 PMCID: PMC5496609 DOI: 10.1083/jcb.201605118] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/05/2016] [Accepted: 05/04/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs), enzymes that normally control protein synthesis, can be secreted and have different activities in the extracellular space, but the mechanism of their secretion is not understood. This study describes the secretion route of the ARS lysyl-tRNA synthetase (KRS) and how this process is regulated by caspase activity, which has been implicated in the unconventional secretion of other proteins. We show that KRS is secreted from colorectal carcinoma cells within the lumen of exosomes that can trigger an inflammatory response. Caspase-8 cleaved the N-terminal of KRS, thus exposing a PDZ-binding motif located in the C terminus of KRS. Syntenin bound to the exposed PDZ-binding motif of KRS and facilitated the exosomic secretion of KRS dissociated from the multi-tRNA synthetase complex. KRS-containing exosomes released by cancer cells induced macrophage migration, and their secretion of TNF-α and cleaved KRS made a significant contribution to these activities, which suggests a novel mechanism by which caspase-8 may promote inflammation.
Collapse
Affiliation(s)
- Sang Bum Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Hye Rim Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea
| | - Min Chul Park
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea
| | - Seongmin Cho
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Peter C Goughnour
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Daeyoung Han
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Ina Yoon
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea
| | - YounHa Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Taehee Kang
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea
| | - Eunjoo Song
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyosun Choi
- BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University, Daejeon, South Korea
| | - Ji Young Mun
- BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University, Daejeon, South Korea.,Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam, South Korea
| | - Chihong Song
- National Institute for Physiological Sciences, Okazaki, Japan
| | - Sangmin Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| |
Collapse
|
15
|
Structural characterization of human aminoacyl-tRNA synthetases for translational and nontranslational functions. Methods 2017; 113:83-90. [DOI: 10.1016/j.ymeth.2016.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 11/18/2022] Open
|
16
|
Ahn YH, Park S, Choi JJ, Park BK, Rhee KH, Kang E, Ahn S, Lee CH, Lee JS, Inn KS, Cho ML, Park SH, Park K, Park HJ, Lee JH, Park JW, Kwon NH, Shim H, Han BW, Kim P, Lee JY, Jeon Y, Huh JW, Jin M, Kim S. Secreted tryptophanyl-tRNA synthetase as a primary defence system against infection. Nat Microbiol 2016; 2:16191. [PMID: 27748732 DOI: 10.1038/nmicrobiol.2016.191] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/02/2016] [Indexed: 11/09/2022]
Abstract
The N-terminal truncated form of a protein synthesis enzyme, tryptophanyl-tRNA synthetase (mini-WRS), is secreted as an angiostatic ligand. However, the secretion and function of the full-length WRS (FL-WRS) remain unknown. Here, we report that the FL-WRS, but not mini-WRS, is rapidly secreted upon pathogen infection to prime innate immunity. Blood levels of FL-WRS were increased in sepsis patients, but not in those with sterile inflammation. FL-WRS was secreted from monocytes and directly bound to macrophages via a toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex to induce phagocytosis and chemokine production. Administration of FL-WRS into Salmonella typhimurium-infected mice reduced the levels of bacteria and improved mouse survival, whereas its titration with the specific antibody aggravated the infection. The N-terminal 154-amino-acid eukaryote-specific peptide of WRS was sufficient to recapitulate FL-WRS activity and its interaction mode with TLR4-MD2 is now suggested. Based on these results, secretion of FL-WRS appears to work as a primary defence system against infection, acting before full activation of innate immunity.
Collapse
Affiliation(s)
- Young Ha Ahn
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunyoung Park
- College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Jeong June Choi
- College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Bo-Kyung Park
- College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Kyung Hee Rhee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunjoo Kang
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon 16229, Republic of Korea
| | - Soyeon Ahn
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jong Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung-Soo Inn
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mi-La Cho
- Divison of Rheumatology, Department of Internal Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kyunghee Park
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Institute of Allergy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hye Jung Park
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Institute of Allergy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jae-Hyun Lee
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Institute of Allergy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jung-Won Park
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Institute of Allergy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Nam Hoon Kwon
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon 16229, Republic of Korea
| | - Hyunbo Shim
- Departments of Bioinspired Science and Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Joo-Youn Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,Korea Chemical Bank, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Youngho Jeon
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Mirim Jin
- College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Sunghoon Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,Medicinal Bioconvergence Research Center, Seoul National University, Suwon 16229, Republic of Korea
| |
Collapse
|
17
|
Shan J, Zhang F, Sharkey J, Tang TA, Örd T, Kilberg MS. The C/ebp-Atf response element (CARE) location reveals two distinct Atf4-dependent, elongation-mediated mechanisms for transcriptional induction of aminoacyl-tRNA synthetase genes in response to amino acid limitation. Nucleic Acids Res 2016; 44:9719-9732. [PMID: 27471030 PMCID: PMC5175342 DOI: 10.1093/nar/gkw667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022] Open
Abstract
The response to amino acid (AA) limitation of the entire aminoacyl-tRNA synthetase (ARS) gene family revealed that 16/20 of the genes encoding cytoplasmic-localized enzymes are transcriptionally induced by activating transcription factor 4 (Atf4) via C/ebp-Atf-Response-Element (CARE) enhancers. In contrast, only 4/19 of the genes encoding mitochondrial-localized ARSs were weakly induced. Most of the activated genes have a functional CARE near the transcription start site (TSS), but for others the CARE is downstream. Regardless of the location of CARE enhancer, for all ARS genes there was constitutive association of RNA polymerase II (Pol II) and the general transcription machinery near the TSS. However, for those genes with a downstream CARE, Atf4, C/ebp-homology protein (Chop), Pol II and TATA-binding protein exhibited enhanced recruitment to the CARE during AA limitation. Increased Atf4 binding regulated the association of elongation factors at both the promoter and the enhancer regions, and inhibition of cyclin-dependent kinase 9 (CDK9), that regulates these elongation factors, blocked induction of the AA-responsive ARS genes. Protein pull-down assays indicated that Atf4 directly interacts with CDK9 and its associated protein cyclin T1. The results demonstrate that AA availability modulates the ARS gene family through modulation of transcription elongation.
Collapse
Affiliation(s)
- Jixiu Shan
- Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Fan Zhang
- Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Jason Sharkey
- Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Tiffany A Tang
- Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Tönis Örd
- Estonian Biocentre, Riia 23, Tartu, 51010, Estonia
| | - Michael S Kilberg
- Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
18
|
Park BS, Yeo SG, Jung J, Jeong NY. A novel therapeutic target for peripheral nerve injury-related diseases: aminoacyl-tRNA synthetases. Neural Regen Res 2015; 10:1656-62. [PMID: 26692865 PMCID: PMC4660761 DOI: 10.4103/1673-5374.167766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aminoacyl-tRNA synthetases (AminoARSs) are essential enzymes that perform the first step of protein synthesis. Beyond their original roles, AminoARSs possess non-canonical functions, such as cell cycle regulation and signal transduction. Therefore, AminoARSs represent a powerful pharmaceutical target if their non-canonical functions can be controlled. Using AminoARSs-specific primers, we screened mRNA expression in the spinal cord dorsal horn of rats with peripheral nerve injury created by sciatic nerve axotomy. Of 20 AminoARSs, we found that phenylalanyl-tRNA synthetase beta chain (FARSB), isoleucyl-tRNA synthetase (IARS) and methionyl-tRNA synthetase (MARS) mRNA expression was increased in spinal dorsal horn neurons on the injured side, but not in glial cells. These findings suggest the possibility that FARSB, IARS and MARS, as a neurotransmitter, may transfer abnormal sensory signals after peripheral nerve damage and become a new target for drug treatment.
Collapse
Affiliation(s)
- Byung Sun Park
- Department of Anatomy and Neurobiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Geun Yeo
- Department of Otolaryngolgy, Head and Neck Surgery, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
19
|
Monnat RJ. "...Rewritten in the skin": clues to skin biology and aging from inherited disease. J Invest Dermatol 2015; 135:1484-1490. [PMID: 25810110 PMCID: PMC4526269 DOI: 10.1038/jid.2015.88] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/07/2015] [Accepted: 02/24/2015] [Indexed: 12/11/2022]
Abstract
The growing diversity of heritable skin diseases, a practical challenge to clinicians and dermato-nosologists alike, has nonetheless served as a rich source of insight into skin biology and disease mechanisms. I summarize below some key insights from the recent gene-driven phase of research on Werner syndrome, a heritable adult progeroid syndrome with prominent dermatologic features, constitutional genomic instability, and an elevated risk of cancer. I also indicate how new insights into skin biology, disease, and aging may come from unexpected sources.
Collapse
Affiliation(s)
- Raymond J Monnat
- Department of Pathology and Genome Sciences, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
20
|
Park BS, Jo HW, Jung J. Expression profile of aminoacyl-tRNA synthetases in dorsal root ganglion neurons after peripheral nerve injury. J Mol Histol 2014; 46:115-22. [PMID: 25467976 DOI: 10.1007/s10735-014-9601-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/26/2014] [Indexed: 12/15/2022]
Abstract
Aminoacyl-tRNA synthetases (AminoARSs) are essential enzymes involved in acylating tRNA with amino acids. In addition to the typical functions of AminoARSs, various non-canonical functions have been reported, such as involvement in cellular regulatory processes and signal transduction. Here, to explore the cellular changes in sensory neurons after nerve injury, we evaluated AARS mRNA expression in rat dorsal root ganglia (DRG) neurons using AminoARS-specific primers. Of 20 AminoARSs, we found that expression of lysyl-tRNA synthetase (KARS) and glutaminyl-tRNA synthetase (QARS) was decreased in the DRG injured side. We observed decreased KARS and QARS expression in DRG neuronal cell bodies, but not in satellite cells. Therefore, we suggest the possibility that KARS and QARS may act as signaling molecules to transfer abnormal sensory signals to the spinal dorsal horn after peripheral nerve damage. Therefore, KARS and QARS may represent powerful pharmaceutical targets via control of their non-canonical functions.
Collapse
Affiliation(s)
- Byung Sun Park
- Department of Anatomy and Neurobiology, School of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | | | | |
Collapse
|