1
|
Shakouri S, Khalili B, Nikpasand M, Kefayati H. Adsorption of Tunable aryl alkyl ionic liquids (TILs) on the graphene and Defective graphene nanosheets: A DFT Study. J Mol Graph Model 2023; 125:108612. [PMID: 37657330 DOI: 10.1016/j.jmgm.2023.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Optical and electronic characteristics of the graphene nanosheets (GNS) could be altered by some structural defects such as double-vacancy and Stone-Wales ones. The physisorption manner of [MPI][BF4], [MPT1][BF4], [MPT2][BF4], and [MPTT][BF4] ionic liquids on intact and defective GNS surfaces were investigated using M06-2X/cc-pVDZ computational method. Capability for adsorption on the DV and SW graphene surfaces by TILs is increased by about 1.0-4.3 and 0.4-2.0 kcal/mol respectively. The electrostatic potential of the GNS-DV surface is more negative than the GNS-SW one which enables it to interact with cation parts of the adsorbed TILs so extensively. The highest adsorption energy belongs to the [MPI][BF4]/GNS-DV system. Adsorption of the TILs on the GNS surfaces leads to a decrease in the energy of the LUMO molecular orbital as well as their energy gap of them. Results revealed that the electrical conductivity, as well as absorption spectra of the GNS surfaces, are affected by TILs adsorption and defect nature.
Collapse
Affiliation(s)
- Soheila Shakouri
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Behzad Khalili
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Mohammad Nikpasand
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Hasan Kefayati
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
2
|
New task-specific ionic liquids based on phenyl diazenyl methyl pyridinium cation: Energetic, electronic and optical properties exploration based on DFT calculations. J Mol Graph Model 2023; 118:108352. [DOI: 10.1016/j.jmgm.2022.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
|
3
|
Radicke J, Roos E, Sebastiani D, Brehm M, Kressler J. Lactate‐based ionic liquids as chiral solvents for cellulose. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Julian Radicke
- Department of Chemistry Martin Luther University Halle–Wittenberg Halle (Saale) Germany
| | - Eliane Roos
- Department of Chemistry Martin Luther University Halle–Wittenberg Halle (Saale) Germany
| | - Daniel Sebastiani
- Department of Chemistry Martin Luther University Halle–Wittenberg Halle (Saale) Germany
| | - Martin Brehm
- Department of Chemistry Martin Luther University Halle–Wittenberg Halle (Saale) Germany
| | - Jörg Kressler
- Department of Chemistry Martin Luther University Halle–Wittenberg Halle (Saale) Germany
| |
Collapse
|
4
|
Exploring of spacer fluorination effect on the characteristics and physicochemical properties of the newly designed task specific dicationic imidazolium-based ionic liquids: A quantum chemical approach. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Yang Y, Cheramy J, Brehm M, Xu Y. Raman Optical Activity of N-Acetyl-L-Cysteine in water and in methanol: the "clusters-in-a-liquid" model and ab initio molecular dynamics simulations. Chemphyschem 2022; 23:e202200161. [PMID: 35353934 DOI: 10.1002/cphc.202200161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Indexed: 11/06/2022]
Abstract
Raman and Raman Optical Activity (ROA) spectra of N-acetyl-L-cysteine (NALC), a flexible chiral molecule, were measured in water and in methanol to evaluate the solvent effects. Two different solvation approaches, i.e. the DFT based clusters-in-a-liquid solvent model and the ab initio molecular dynamics (AIMD) simulations, were applied to simulate the Raman and ROA spectra. Systematic conformational searches were carried out using a recently developed conformational searching tool, CREST, with the inclusion of polarizable continuum model of water and of methanol. The CREST candidates of NALC and the NALC-solvent complexes were re-optimized and their Raman and ROA simulations were done at the B3LYP-D3BJ/def2-TZVP and the B3LYP-aug-cc-pVDZ//cc-pVTZ levels. Also, AIMD simulations , which includes some anharmonic effects and all intermolecular interactions in solution, were performed. By empirically weighting the computed Raman and ROA spectra of each conformer, good agreements with the experimental data were achieved with both approaches, while AIMD offered some improvements in the carbonyl and in the low wavenumber regions over the static DFT approach. The pros and cons of these two different approaches for accounting the solvent effects on Raman and ROA of this flexible chiral system will also be discussed.
Collapse
Affiliation(s)
| | | | - Martin Brehm
- Martin-Luther-Universität Halle-Wittenberg: Martin-Luther-Universitat Halle-Wittenberg, Chemistry, GERMANY
| | - Yunjie Xu
- University of Alberta Faculty of Science, Chemistry Department, 11227 Saskatchewan Drive, T6G 2G2, Edmonton, CANADA
| |
Collapse
|
6
|
Diejomaoh Abafe OT, Azim MM, Martincigh BS, Stark A. Cation-fluorinated ionic liquids: Synthesis, physicochemical properties and comparison with non-fluorinated analogues. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Khalili B, Moradpour M. Fluorination effects on the physicochemical properties of the nanostructured tunable ionic liquids: [5F-PhMeTAZ]+ or [5H-PhMeTAZ]+ which one is the better choice? J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.109970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Brehm M, Thomas M. Optimized Atomic Partial Charges and Radii Defined by Radical Voronoi Tessellation of Bulk Phase Simulations. Molecules 2021; 26:1875. [PMID: 33810337 PMCID: PMC8036805 DOI: 10.3390/molecules26071875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/05/2022] Open
Abstract
We present a novel method for the computation of well-defined optimized atomic partial charges and radii from the total electron density. Our method is based on a two-step radical Voronoi tessellation of the (possibly periodic) system and subsequent integration of the total electron density within each Voronoi cell. First, the total electron density is partitioned into the contributions of each molecule, and subsequently the electron density within each molecule is assigned to the individual atoms using a second set of atomic radii for the radical Voronoi tessellation. The radii are optimized on-the-fly to minimize the fluctuation (variance) of molecular and atomic charges. Therefore, our method is completely free of empirical parameters. As a by-product, two sets of optimized atomic radii are produced in each run, which take into account many specific properties of the system investigated. The application of an on-the-fly interpolation scheme reduces discretization noise in the Voronoi integration. The approach is particularly well suited for the calculation of partial charges in periodic bulk phase systems. We apply the method to five exemplary liquid phase simulations and show how the optimized charges can help to understand the interactions in the systems. Well-known effects such as reduced ion charges below unity in ionic liquid systems are correctly predicted without any tuning, empiricism, or rescaling. We show that the basis set dependence of our method is very small. Only the total electron density is evaluated, and thus, the approach can be combined with any electronic structure method that provides volumetric total electron densities-it is not limited to Hartree-Fock or density functional theory (DFT). We have implemented the method into our open-source software tool TRAVIS.
Collapse
Affiliation(s)
- Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany;
| | | |
Collapse
|
9
|
Torkzadeh M, Moosavi M. Probing the Effect of Side Alkyl Chain Length on the Structural and Dynamical Micro-heterogeneities in Dicationic Ionic Liquids. J Phys Chem B 2020; 124:11446-11462. [PMID: 33283503 DOI: 10.1021/acs.jpcb.0c07034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular dynamics simulations and Voronoi tessellation analysis of two dicationic ionic liquids (DILs) including [C5(mim)2][NTf2]2 and [C5(mim)2C4][NTf2]2 have been carried out to investigate the effects of side alkyl chain length on the structural and dynamical micro-heterogeneity of these DILs. Radial distribution functions (RDFs), spatial distribution functions (SDFs), and also neighborhood analysis of ions have been calculated to determine the arrangement of the nearest neighboring ions. To better understand the hydrogen-bonding network, microstructures, inter- and intramolecular orientations of ions in the studied DILs, different kinds of combined distribution functions (CDFs) were computed and analyzed. Also, qualitative and quantitative analyses of the structural heterogeneity were explored through total/partial structure factors, heterogeneity order parameters (HOPs), and domain analysis from Voronoi tessellation. The results showed that the side alkyl chains in DILs have significant effects on their micro-organizations in such a way that [C5(mim)2C4][NTf2]2 with longer side chains has more microstructural heterogeneity than [C5(mim)2][NTf2]2 where the linkage alkyl chain is the same in both of them. Furthermore, to shed light on the dynamical heterogeneity, ion pair, ion cage, and hydrogen-bond stabilities and also the reorientation dynamics of ions have been investigated. Results demonstrated that local dynamics differences originate from local structural heterogeneity.
Collapse
Affiliation(s)
| | - Majid Moosavi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
10
|
Heydari Dokoohaki M, Zolghadr AR, Ghatee MH, Klein A. Aqueous solutions of binary ionic liquids: insight into structure, dynamics, and interface properties by molecular dynamics simulations and DFT methods. Phys Chem Chem Phys 2020; 22:27882-27895. [PMID: 33284294 DOI: 10.1039/d0cp04303f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The behavior of aqueous solutions of mixtures of ionic liquids (ILs) is of special interest because of their amphiphilic character, from both a fundamental and application viewpoint. In this work, we conducted molecular dynamics (MD) simulations and density functional theory (DFT) calculations to understand the effect of water on the intermolecular interactions in three IL binary mixtures [C4mim]/[Cl]/[BF4], [C4mim]/[Cl]/[PF6] and [C4mim]/[BF4]/[PF6] containing the well-characterized cation, 1-n-butyl-3-methylimidazolium [C4mim]+ and the anions chloride [Cl]-, tetrafluoroborate [BF4]-, and hexafluorophosphate [PF6]-. The perturbation of the structures in the binary IL mixture by water molecules was analyzed in the bulk and at the liquid/vacuum interface using distribution functions, hydrogen-bond statistics, and density profiles. Interactions between anions and cations change drastically when the IL mixtures are dissolved in water. In particular, anion-water interactions are stronger than anion-cation interactions. H-Bonds are the dominant interactions. They are prevalently electrostatic and strong for the two [Cl]-containing systems in both the water-free and the water-containing systems. The very hydrophobic [C4mim]/[BF4]/[PF6] system gains stability from dispersive interactions and consequently segregates water markedly when admixed. The most probable orientations of IL cations in the bulk and at the vicinity of the interface were examined using bivariate distribution calculations and show [PF6]- segregating to the surface in keeping with its highly hydrophobic nature. DFT calculated structures, energies, dipole moments, global hardness and solvation energies using model ion pairs [C4mim][X] or complexes [C4mim]2[X][Y], with [X/Y]- = [Cl]-, [BF4]-, or [PF6]- are completely consistent with the findings for the bulk.
Collapse
|
11
|
Weiß M, Brehm M. Exploring Free Energy Profiles of Enantioselective Organocatalytic Aldol Reactions under Full Solvent Influence. Molecules 2020; 25:E5861. [PMID: 33322424 PMCID: PMC7764805 DOI: 10.3390/molecules25245861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022] Open
Abstract
We present a computational study on the enantioselectivity of organocatalytic proline-catalyzed aldol reactions between aldehydes in dimethylformamide (DMF). To explore the free energy surface of the reaction, we apply two-dimensional metadynamics on top of ab initio molecular dynamics (AIMD) simulations with explicit solvent description on the DFT level of theory. We avoid unwanted side reactions by utilizing our newly developed hybrid AIMD (HyAIMD) simulation scheme, which adds a simple force field to the AIMD simulation to prevent unwanted bond breaking and formation. Our condensed phase simulation results are able to nicely reproduce the experimental findings, including the main stereoisomer that is formed, and give a correct qualitative prediction of the change in syn:anti product ratio with different substituents. Furthermore, we give a microscopic explanation for the selectivity. We show that both the explicit description of the solvent and the inclusion of entropic effects are vital to a good outcome-metadynamics simulations in vacuum and static nudged elastic band (NEB) calculations yield significantly worse predictions when compared to the experiment. The approach described here can be applied to a plethora of other enantioselective or organocatalytic reactions, enabling us to tune the catalyst or determine the solvent with the highest stereoselectivity.
Collapse
Affiliation(s)
| | - Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany;
| |
Collapse
|
12
|
NMR Parameters of Imidazolium Ionic Liquids as Indicators of Their State and Properties in Aqueous Solutions. J SOLUTION CHEM 2020. [DOI: 10.1007/s10953-020-01044-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Wang YL, Li B, Sarman S, Mocci F, Lu ZY, Yuan J, Laaksonen A, Fayer MD. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem Rev 2020; 120:5798-5877. [PMID: 32292036 PMCID: PMC7349628 DOI: 10.1021/acs.chemrev.9b00693] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Ionic liquids (ILs) are a special category of molten salts solely composed of ions with varied molecular symmetry and charge delocalization. The versatility in combining varied cation-anion moieties and in functionalizing ions with different atoms and molecular groups contributes to their peculiar interactions ranging from weak isotropic associations to strong, specific, and anisotropic forces. A delicate interplay among intra- and intermolecular interactions facilitates the formation of heterogeneous microstructures and liquid morphologies, which further contributes to their striking dynamical properties. Microstructural and dynamical heterogeneities of ILs lead to their multifaceted properties described by an inherent designer feature, which makes ILs important candidates for novel solvents, electrolytes, and functional materials in academia and industrial applications. Due to a massive number of combinations of ion pairs with ion species having distinct molecular structures and IL mixtures containing varied molecular solvents, a comprehensive understanding of their hierarchical structural and dynamical quantities is of great significance for a rational selection of ILs with appropriate properties and thereafter advancing their macroscopic functionalities in applications. In this review, we comprehensively trace recent advances in understanding delicate interplay of strong and weak interactions that underpin their complex phase behaviors with a particular emphasis on understanding heterogeneous microstructures and dynamics of ILs in bulk liquids, in mixtures with cosolvents, and in interfacial regions.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bin Li
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Sten Sarman
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
| | - Zhong-Yuan Lu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Jiayin Yuan
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Centre of
Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania
- Department
of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
14
|
Koverga VA, Smortsova Y, Miannay FA, Kalugin ON, Takamuku T, Jedlovszky P, Marekha B, Cordeiro MNDS, Idrissi A. Distance Angle Descriptors of the Interionic and Ion-Solvent Interactions in Imidazolium-Based Ionic Liquid Mixtures with Aprotic Solvents: A Molecular Dynamics Simulation Study. J Phys Chem B 2019; 123:6065-6075. [PMID: 31179700 DOI: 10.1021/acs.jpcb.9b03838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this paper is to quantify the changes of the interionic and ion-solvent interactions in mixtures of imidazolium-based ionic liquids, having tetrafluoroborate (BmimBF4), hexafluorophosphate (BmimPF6), trifluoromethylsulfonate (BmimTFO), or bis(trifluoromethanesulfonyl)imide (BmimTFSI), anions, and polar aprotic molecular solvents, such as acetonitrile (AN), γ-butyrolactone (GBL), and propylene carbonate (PC). For this purpose, we calculate, using the nearest-neighbor approach, the average distance between the imidazolium ring H atom in positions 2, 4, and 5 (H2,4,5) and the nearest high-electronegativity atom of the solvent or anion (X) as distance descriptors, and the mean angle formed by the C2,4,5-H2,4,5 bond and the H2,4,5···X axis around the H2,4,5 atom as angular descriptors of the cation-anion and cation-solvent interactions around the ring C-H groups. The behavior of these descriptors as a function of the ionic liquid mole fraction is analyzed in detail. The obtained results show that the extent of the change of these descriptors with respect to their values in the neat ionic liquid depends both on the nature of the anion and on the mixture composition. Thus, in the case of the mixtures of the molecular solvents with BmimBF4 and BmimTFO, a small change of the distance and a drastic increase of the angular descriptor corresponding to the cation-anion interactions are observed with decreasing mole fraction of the ionic liquid, indicating that the anion moves from the above/below position (with respect to the imidazolium ring plane) to a position that is nearly linearly aligned with the C2-H2 bond and hinders the possible interaction between the C2-H2 group and the solvent molecules. On the other hand, in the case of mixtures of BmimTFSI and BmimPF6 with the molecular solvents, both the observed increase of the distance descriptor and the slight change of the angular descriptor with decreasing ionic liquid mole fraction are compatible with the direct interactions of the solvent with the C2-H2 group. The behavior of these descriptors is correlated with the experimentally observed 1H chemical shift of the C2-H2 group and the red shift of the C2-H2 vibrational mode, particularly at low ionic liquid mole fractions. The present results are thus of great help in interpreting these experimental observations.
Collapse
Affiliation(s)
- Volodymyr A Koverga
- Univ. Lille, CNRS, UMR 8516-LASIR-Laboratoire de Spectrochimie Infrarouge et Raman , F-59000 Lille , France.,Department of Inorganic Chemistry , V.N. Karazin Kharkiv National University , Svoboda sq. 4 , Kharkiv 61022 , Ukraine.,LAQV@REQUIMTE, Faculty of Sciences, Department of Chemistry and Biochemistry , University of Porto , Rua do Campo Alegre , 4169-007 Porto , Portugal
| | - Yevheniia Smortsova
- Univ. Lille, CNRS, UMR 8516-LASIR-Laboratoire de Spectrochimie Infrarouge et Raman , F-59000 Lille , France
| | - François Alexandre Miannay
- Univ. Lille, CNRS, UMR 8516-LASIR-Laboratoire de Spectrochimie Infrarouge et Raman , F-59000 Lille , France
| | - Oleg N Kalugin
- Department of Inorganic Chemistry , V.N. Karazin Kharkiv National University , Svoboda sq. 4 , Kharkiv 61022 , Ukraine
| | - Toshiyuki Takamuku
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Honjo-machi, Saga 840-8502 , Japan
| | - Pal Jedlovszky
- Department of Chemistry , Eszterházy Károly University , Leányka utca 6 , H-3300 Eger , Hungary
| | - Bogdan Marekha
- Molecular Spectroscopy Department , Max Planck Institute for Polymer Research , 10 Ackermannweg , 55128 Mainz , Germany
| | - M Natalia D S Cordeiro
- LAQV@REQUIMTE, Faculty of Sciences, Department of Chemistry and Biochemistry , University of Porto , Rua do Campo Alegre , 4169-007 Porto , Portugal
| | - Abdenacer Idrissi
- Univ. Lille, CNRS, UMR 8516-LASIR-Laboratoire de Spectrochimie Infrarouge et Raman , F-59000 Lille , France
| |
Collapse
|
15
|
Mezzetta A, Rodriguez Douton MJ, Guazzelli L, Pomelli CS, Chiappe C. Microheterogeneity in Ionic Liquid Mixtures: Hydrogen Bonding, Dispersed Ions, and Dispersed Ion Clusters. Aust J Chem 2019. [DOI: 10.1071/ch18375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mixtures of ionic liquids (ILs) having a common ion but differing in the identity of the anion or cation represent highly interesting media. By varying the composition, one can successfully modulate specific physicochemical, structural, and biological properties. The molecular interactions (coulombic, hydrogen-bonding, van der Waals, and π–π intermolecular forces) that determine the three-dimensional structure of pure ILs can indeed be modified by the addition of another IL. In this context, we present here a 1H NMR, Fourier transform (FT)-IR, thermogravimetric, and solvatochromic study of the structural features of IL binary mixtures based on a common imidazolium cation ([CnC1im]+) and anions of different size and hydrogen-bond acceptor ability. For each mixture, the analyses were carried out at different molar ratios of the two components.
Collapse
|
16
|
Nakamura I, Shock CJ, Eggart L, Gao T. Theoretical Aspects of Ionic Liquids for Soft‐Matter Sciences. Isr J Chem 2018. [DOI: 10.1002/ijch.201800143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Issei Nakamura
- Department of PhysicsMichigan Technological University Houghton MI 49931 USA
| | - Cameron J. Shock
- Department of PhysicsMichigan Technological University Houghton MI 49931 USA
| | - Lisa Eggart
- Department of PhysicsMichigan Technological University Houghton MI 49931 USA
| | - Tong Gao
- Department of PhysicsMichigan Technological University Houghton MI 49931 USA
| |
Collapse
|
17
|
Rao SS, Bartolotti LJ, Gejji SP. Noncovalent interactions underlying binary mixtures of amino acid based ionic liquids: insights from theory. Phys Chem Chem Phys 2017; 19:29561-29582. [DOI: 10.1039/c7cp04323f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mixtures of ionic liquids formed by blending a common 1-methyl-3-butylimidazolium [Bmim] cation with the dicarboxylic amino acid anions viz., aspartic acid [Asp], asparagine [Asn], glutamic acid [Glu], and glutamine [Gln], have been investigated by employing dispersion corrected density functional theory.
Collapse
Affiliation(s)
- Soniya S. Rao
- Department of Chemistry
- Savitribai Phule Pune University
- Pune
- India
| | | | | |
Collapse
|
18
|
Marekha BA, Koverga VA, Chesneau E, Kalugin ON, Takamuku T, Jedlovszky P, Idrissi A. Local Structure in Terms of Nearest-Neighbor Approach in 1-Butyl-3-methylimidazolium-Based Ionic Liquids: MD Simulations. J Phys Chem B 2016; 120:5029-41. [PMID: 27192134 DOI: 10.1021/acs.jpcb.6b04066] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Description of the local microscopic structure in ionic liquids (ILs) is a prerequisite to obtain a comprehensive understanding of the influence of the nature of ions on the properties of ILs. The local structure is mainly determined by the spatial arrangement of the nearest neighboring ions. Therefore, the main interaction patterns in ILs, such as cation-anion H-bond-like motifs, cation-cation alkyl tail aggregation, and ring stacking, were considered within the framework of the nearest-neighbor approach with respect to each particular interaction site. We employed classical molecular dynamics (MD) simulations to study in detail the spatial, radial, and orientational relative distribution of ions in a set of imidazolium-based ILs, in which the 1-butyl-3-methylimidazolium (C4mim(+)) cation is coupled with the acetate (OAc(-)), chloride (Cl(-)), tetrafluoroborate (BF4(-)), hexafluorophosphate (PF6(-)), trifluoromethanesulfonate (TfO(-)), or bis(trifluoromethanesulfonyl)amide (TFSA(-)) anion. It was established that several structural properties are strongly anion-specific, while some can be treated as universally applicable to ILs, regardless of the nature of the anion. Namely, strongly basic anions, such as OAc(-) and Cl(-), prefer to be located in the imidazolium ring plane next to the C-H(2/4-5) sites. By contrast, the other four bulky and weakly coordinating anions tend to occupy positions above/below the plane. Similarly, the H-bond-like interactions involving the H(2) site are found to be particularly enhanced in comparison with the ones at H(4-5) in the case of asymmetric and/or more basic anions (C4mimOAc, C4mimCl, C4mimTfO, and C4mimTFSA), in accordance with recent spectroscopic and theoretical findings. Other IL-specific details related to the multiple H-bond-like binding and cation stacking issues are also discussed in this paper. The secondary H-bonding of anions with the alkyl hydrogen atoms of cations as well as the cation-cation alkyl chain aggregation turned out to be poorly sensitive to the nature of the anion.
Collapse
Affiliation(s)
- Bogdan A Marekha
- LASIR, University of Lille-Science and Technology (UMR CNRS A8516) , Bâtiment C5, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France.,Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, FR CNRS INC3M , Boulevard Becquerel, Caen, 14032 Cedex, France
| | - Volodymyr A Koverga
- LASIR, University of Lille-Science and Technology (UMR CNRS A8516) , Bâtiment C5, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France.,Department of Inorganic Chemistry, V. N. Karazin Kharkiv National University , Svobody Square, 4, Kharkiv, 61022, Ukraine
| | - Erwan Chesneau
- LASIR, University of Lille-Science and Technology (UMR CNRS A8516) , Bâtiment C5, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - Oleg N Kalugin
- Department of Inorganic Chemistry, V. N. Karazin Kharkiv National University , Svobody Square, 4, Kharkiv, 61022, Ukraine
| | - Toshiyuki Takamuku
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University , Honjo-machi, Saga 840-8502, Japan
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly University , Leányka Utca 6, H-3300 Eger, Hungary.,MTA-BME Research Group of Technical Analytical Chemistry, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Abdenacer Idrissi
- LASIR, University of Lille-Science and Technology (UMR CNRS A8516) , Bâtiment C5, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| |
Collapse
|
19
|
Wang H, Kelley SP, Brantley JW, Chatel G, Shamshina J, Pereira JFB, Debbeti V, Myerson AS, Rogers RD. Ionic Fluids Containing Both Strongly and Weakly Interacting Ions of the Same Charge Have Unique Ionic and Chemical Environments as a Function of Ion Concentration. Chemphyschem 2015; 16:993-1002. [DOI: 10.1002/cphc.201402894] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 11/08/2022]
|
20
|
Zahn S, Stark A. Order in the chaos: the secret of the large negative entropy of dissolving 1-alkyl-3-methylimidazolium chloride in trihexyltetradecylphosphonium chloride. Phys Chem Chem Phys 2015; 17:4034-7. [DOI: 10.1039/c4cp05074f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A large symmetric ion cluster cage is formed if 1-alkyl-3-methylimidazolium chloride ionic liquids with short alkyl chains are added to trihexyltetradecylphosphonium chloride which results in a large negative entropy of dissolution and an unexpected ion dynamics.
Collapse
Affiliation(s)
- Stefan Zahn
- Wilhelm Ostwald Institut für Physikalische und Theoretische Chemie
- Universität Leipzig
- 04103 Leipzig
- Germany
| | - Annegret Stark
- Eduard-Zintl Institut for Inorganic and Physical Chemistry
- Technical University Darmstadt
- 64287 Darmstadt
- Germany
| |
Collapse
|
21
|
Oliveira BG. The covalence and infrared spectra of cationic hydrogen bonds and dihydrogen bonds. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2014. [DOI: 10.1142/s0219633614500606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A theoretical study of hydrogen bonds and dihydrogen bonds formed by ethyl cation, hydrocarbons and magnesium hydride is presented with calculations performed at the BHandHLYP/6-31G(d,p) level of theory. The structural results and IR analyses demonstrated great insights, mainly the strengthening and weakness of the CC bond of the ethyl cation and π or pseudo-π bonds, respectively. The interaction strength was measured through the supermolecule as well as by means of additional approaches. The QTAIM calculations were applied to characterize not only the intermolecular interactions but specifically the covalent character in the H + ⋯ π, H + ⋯ pseudo-π and H + ⋯ H contacts. The NBO calculations were useful to interpret the polarization on the CC bond and whether this effect is related with the bond length reduction as well as increase of charge density and frequency shifts.
Collapse
Affiliation(s)
- Boaz G. Oliveira
- Institute of Environmental Sciences and Sustainable Development (ICADS), Federal University of Bahia, 47801-100, Barreiras – BA, Brazil
| |
Collapse
|