1
|
Markovitsi D. On the Use of the Intrinsic DNA Fluorescence for Monitoring Its Damage: A Contribution from Fundamental Studies. ACS OMEGA 2024; 9:26826-26837. [PMID: 38947837 PMCID: PMC11209687 DOI: 10.1021/acsomega.4c02256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 07/02/2024]
Abstract
The assessment of DNA damage by means of appropriate fluorescent probes is widely spread. In the specific case of UV-induced damage, it has been suggested to use the emission of dimeric photoproducts as an internal indicator for the efficacy of spermicidal lamps. However, in the light of fundamental studies on the UV-induced processes, outlined in this review, this is not straightforward. It is by now well established that, in addition to photodimers formed via an electronic excited state, photoionization also takes place with comparable or higher quantum yields, depending on the irradiation wavelength. Among the multitude of final lesions, some have been fully characterized, but others remain unknown; some of them may emit, while others go undetected upon monitoring fluorescence, the result being strongly dependent on both the irradiation and the excitation wavelength. In contrast, the fluorescence of undamaged nucleobases associated with emission from ππ* states, localized or excitonic, appearing at wavelengths shorter than 330 nm is worthy of being explored to this end. Despite its low quantum yield, it is readily detected nowadays. Its intensity decreases due to the disappearance of the reacting nucleobases and the loss of exciton coherence provoked by the presence of lesions, independently of their type. Thus, it could potentially provide valuable information about the DNA damage induced, not only by UV radiation but also by other sanitizing or therapeutic agents.
Collapse
Affiliation(s)
- Dimitra Markovitsi
- Université Paris-Saclay, CNRS,
Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| |
Collapse
|
2
|
Hennefarth MR, Hermes MR, Truhlar DG, Gagliardi L. Analytic Nuclear Gradients for Complete Active Space Linearized Pair-Density Functional Theory. J Chem Theory Comput 2024; 20:3637-3658. [PMID: 38639604 DOI: 10.1021/acs.jctc.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Accurately modeling photochemical reactions is difficult due to the presence of conical intersections and locally avoided crossings, as well as the inherently multiconfigurational character of excited states. As such, one needs a multistate method that incorporates state interaction in order to accurately model the potential energy surface at all nuclear coordinates. The recently developed linearized pair-density functional theory (L-PDFT) is a multistate extension of multiconfiguration PDFT, and it has been shown to be a cost-effective post-MCSCF method (as compared to more traditional and expensive multireference many-body perturbation methods or multireference configuration interaction methods) that can accurately model potential energy surfaces in regions of strong nuclear-electronic coupling in addition to accurately predicting Franck-Condon vertical excitations. In this paper, we report the derivation of analytic gradients for L-PDFT and their implementation in the PySCF-forge software, and we illustrate the utility of these gradients for predicting ground- and excited-state equilibrium geometries and adiabatic excitation energies for formaldehyde, s-trans-butadiene, phenol, and cytosine.
Collapse
Affiliation(s)
- Matthew R Hennefarth
- Department of Chemistry and Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew R Hermes
- Department of Chemistry and Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute, and Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
3
|
Teng X, Zhang M, Mujumdar AS. Phototreatment (below 1100 nm) improving quality attributes of fresh-cut fruits and vegetables: A review. Food Res Int 2023; 163:112252. [PMID: 36596164 DOI: 10.1016/j.foodres.2022.112252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
The emerging area of phototreatment technology has shown a significant potential to enhance the quality of fresh-cut fruit and vegetable products (FFVP). This review critically evaluates relevant literatures to address the potential for phototreatment technology (Red, blue, green, ultraviolet and pulsed light) applied to FFVP, outline the key to the success of phototreatment processing, and discuss the corresponding problems for phototreatment processing along with research and development needs. Base on photothermal, photophysical and photochemical process, phototreatment displays a great potential to maintain quality attributes of FFVP. The operating parameters of light, the surface properties and matrix components of the targeted material and the equipment design affect the quality of the fresh-cut products. To adapt current phototreatment technology to industrial FFVP processing, it is necessary to offset some limitations, especially control of harmful substances (For example, nitrite and furan) produced by phototreatment, comparison between different phototreatment technologies, and establishment of mathematical models/databases.
Collapse
Affiliation(s)
- Xiuxiu Teng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Mansour R, Toldo JM, Barbatti M. Role of the Hydrogen Bond on the Internal Conversion of Photoexcited Adenosine. J Phys Chem Lett 2022; 13:6194-6199. [PMID: 35767744 DOI: 10.1021/acs.jpclett.2c01554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Experiments and theory have revealed that hydrogen bonds modify the excited-state lifetimes of nucleosides compared to nucleobases. Nevertheless, how these bonds impact the internal conversion is still unsettled. This work simulates the non-adiabatic dynamics of adenosine conformers in the gas phase with and without hydrogen bonds between the sugar and adenine moieties. The isomer containing the hydrogen bond (syn) exhibits a significantly shorter excited-state lifetime than the isomer without it (anti). However, internal conversion through electron-driven proton transfer between sugar and adenine plays only a minor (although non-negligible) role in the photophysics of adenosine. Either with or without hydrogen bonds, photodeactivation preferentially occurs following the ring-puckering pathways. The role of the hydrogen bond is to avoid the sugar rotation relative to adenine, shortening the distance to the ring-puckering internal conversion.
Collapse
Affiliation(s)
- Ritam Mansour
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
| | - Josene M Toldo
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
5
|
Diaz-Andres A, Casanova D. Benzene Excimer and Excited Multimers: Electronic Character, Interaction Nature, and Aromaticity. J Phys Chem Lett 2021; 12:7400-7408. [PMID: 34328333 DOI: 10.1021/acs.jpclett.1c01908] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this Letter we analyze the forces involved in the formation of the benzene excimer and its electron structure, and (anti)aromatic character. We extend our study to excited states in molecular aggregates, the triplet excimer and the benzene-tricyanobenzene exciplex. Electronic wave functions are decomposed in terms of localized excitations and ion-pair configurations through diabatization, and we show that excimer (anti)aromaticity can be described as the linear combination of ground, excited, and ionic molecular states. Our analysis concludes that the benzene excimer must be characterized as antiaromatic, with weaker antiaromaticity than the molecular excited singlet. Moreover, we define a model electronic Hamiltonian for the excimer state and we use it as a building block for the extrapolation of electronic Hamiltonians in molecular aggregates. Benzene multimers present a nonuniform (anti)aromatic character, with the center of the column being antiaromatic and the edges behaving as aromatic. The implications of this work go beyond the study of the excimer, providing a general framework for the calculation and characterization of excited states in aggregates.
Collapse
Affiliation(s)
- Aitor Diaz-Andres
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Euskadi, Spain
| |
Collapse
|
6
|
Abstract
The intrinsic fluorescence of nucleic acids is extremely weak compared to that of the fluorescent labels used to probe their structural and functional behavior. Thus, for technical reasons, the investigation of the intrinsic DNA fluorescence was limited for a long time. But with the improvement in spectroscopic techniques, the situation started to change around the turn of the century. During the past two decades, various factors modulating the static and dynamic properties of the DNA fluorescence have been determined; it was shown that, under certain conditions, quantum yields may be up 100 times higher than what was known so far. The ensemble of these studies opened up new paths for the development of label-free DNA fluorescence for biochemical applications. In parallel, these studies have shed new light on the primary processes leading to photoreactions that damage DNA when it absorbs UV radiation.We have been studying a variety of DNA systems, ranging from the monomeric nucleobases to double-stranded and four-stranded structures using fluorescence spectroscopy. The specificity of our work resides in the quantitative association of the steady-state fluorescence spectra with time-resolved data recorded from the femtosecond to the nanosecond timescales, made possible by the development of specific methodologies.Among others, our fluorescence studies provide information on the energy and the polarization of electronic transitions. These are valuable indicators for the evolution of electronic excitations in complex systems, where the electronic coupling between chromophores plays a key role. Highlighting collective effects that originate from electronic interactions in DNA multimers is the objective of the present Account.In contrast to the monomeric chromophores, whose fluorescence decays within a few picoseconds, that of DNA multimers persists on the nanosecond timescale. Even if long-lived states represent only a small fraction of electronic excitations, they may be crucial to the DNA photoreactivity because the probability to reach reactive conformations increases over time, owing to the incessant structural dynamics of nucleic acids.Our femtosecond studies have revealed that an ultrafast excitation energy transfer takes place among the nucleobases within duplexes and G-quadruplexes. Such an ultrafast process is possible when collective states are populated directly upon photon absorption. At much longer times, we discovered an unexpected long-lived high-energy emission stemming from what was coined "HELM excitons". These collective states, whose emission increases with the duplex size, could be responsible for the delayed fluorescence of ππ* states observed for genomic DNA.Most studies dealing with excited-state relaxation in DNA were carried out with excitation in the absorption band peaking at around 260 nm. We went beyond this and also performed the first time-resolved study with excitation in the UVA spectral range, where a very weak absorption tail is present. The resulting fluorescence decays are much slower and the fluorescence quantum yields are much higher than for UVC excitation. We showed that the base pairing of DNA strands enhances the UVA fluorescence and, in parallel, increases the photoreactivity because it modifies the nature of the involved collective excited states.
Collapse
Affiliation(s)
- Thomas Gustavsson
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| | - Dimitra Markovitsi
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
7
|
Affiliation(s)
- Felix Plasser
- Department of ChemistryLoughborough University Loughborough LE11 3TU United Kingdom
| |
Collapse
|
8
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
9
|
Martinez-Fernandez L, Improta R. Photoactivated proton coupled electron transfer in DNA: insights from quantum mechanical calculations. Faraday Discuss 2018; 207:199-216. [DOI: 10.1039/c7fd00195a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The energetics of the two main proton coupled electron transfer processes that could occur in DNA are determined by means of time dependent-DFT calculations, using the M052X functional and the polarizable continuum model to include solvent effect.
Collapse
Affiliation(s)
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche
- Istituto di Biostrutture e Bioimmagini
- 80136 Naples
- Italy
- LIDYL
| |
Collapse
|
10
|
Nogueira JJ, Plasser F, González L. Electronic delocalization, charge transfer and hypochromism in the UV absorption spectrum of polyadenine unravelled by multiscale computations and quantitative wavefunction analysis. Chem Sci 2017; 8:5682-5691. [PMID: 28989607 PMCID: PMC5621053 DOI: 10.1039/c7sc01600j] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/09/2017] [Indexed: 12/23/2022] Open
Abstract
The characterization of the electronically excited states of DNA strands populated upon solar UV light absorption is essential to unveil light-induced DNA damage and repair processes. We report a comprehensive analysis of the electronic properties of the UV spectrum of single-stranded polyadenine based on theoretical calculations that include excitations over eight nucleobases of the DNA strand and environmental effects by a multiscale quantum mechanics/molecular mechanics scheme, conformational sampling by molecular dynamics, and a meaningful interpretation of the electronic structure by quantitative wavefunction analysis. We show that electronic excitations are extended mainly over two nucleobases with additional important contributions of monomer-like excitations and excitons delocalized over three monomers. Half of the spectral intensity derives from locally excited and Frenkel exciton states, while states with partial charge-transfer character account for the other half and pure charge-transfer states represent only a minor contribution. The hypochromism observed when going from the isolated monomer to the strand occurs independently from delocalization and charge transfer and is instead explained by long-range environmental perturbations of the monomer states.
Collapse
Affiliation(s)
- Juan J Nogueira
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Straße 17 , 1090 Vienna , Austria . ; ;
| | - Felix Plasser
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Straße 17 , 1090 Vienna , Austria . ; ;
| | - Leticia González
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Straße 17 , 1090 Vienna , Austria . ; ;
| |
Collapse
|
11
|
Mendieta-Moreno JI, Trabada DG, Mendieta J, Lewis JP, Gómez-Puertas P, Ortega J. Quantum Mechanics/Molecular Mechanics Free Energy Maps and Nonadiabatic Simulations for a Photochemical Reaction in DNA: Cyclobutane Thymine Dimer. J Phys Chem Lett 2016; 7:4391-4397. [PMID: 27768300 DOI: 10.1021/acs.jpclett.6b02168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The absorption of ultraviolet radiation by DNA may result in harmful genetic lesions that affect DNA replication and transcription, ultimately causing mutations, cancer, and/or cell death. We analyze the most abundant photochemical reaction in DNA, the cyclobutane thymine dimer, using hybrid quantum mechanics/molecular mechanics (QM/MM) techniques and QM/MM nonadiabatic molecular dynamics. We find that, due to its double helix structure, DNA presents a free energy barrier between nonreactive and reactive conformations leading to the photolesion. Moreover, our nonadiabatic simulations show that most of the photoexcited reactive conformations return to standard B-DNA conformations after an ultrafast nonradiative decay to the ground state. This work highlights the importance of dynamical effects (free energy, excited-state dynamics) for the study of photochemical reactions in biological systems.
Collapse
Affiliation(s)
- Jesús I Mendieta-Moreno
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid , ES-28049 Madrid, Spain
- Molecular Modelling Group, Center of Molecular Biology Severo Ochoa (CSIC-UAM) , ES-28049 Madrid, Spain
| | - Daniel G Trabada
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid , ES-28049 Madrid, Spain
| | - Jesús Mendieta
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid , ES-28049 Madrid, Spain
- Molecular Modelling Group, Center of Molecular Biology Severo Ochoa (CSIC-UAM) , ES-28049 Madrid, Spain
- Departamento de Biotecnología, Universidad Francisco de Vitoria , ctra. Pozuelo-Majadahonda, km 1,800, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - James P Lewis
- Department of Physics, West Virginia University , Morgantown, West Virginia 26506-6315, United States
| | - Paulino Gómez-Puertas
- Molecular Modelling Group, Center of Molecular Biology Severo Ochoa (CSIC-UAM) , ES-28049 Madrid, Spain
| | - José Ortega
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid , ES-28049 Madrid, Spain
| |
Collapse
|
12
|
Affiliation(s)
- Felix Plasser
- Institute for Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 17, 1090 Vienna, Austria
| |
Collapse
|
13
|
Banyasz A, Esposito L, Douki T, Perron M, Lepori C, Improta R, Markovitsi D. Effect of C5-Methylation of Cytosine on the UV-Induced Reactivity of Duplex DNA: Conformational and Electronic Factors. J Phys Chem B 2016; 120:4232-42. [PMID: 27075054 DOI: 10.1021/acs.jpcb.6b03340] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C5-methylation of cytosines is strongly correlated with UV-induced mutations detected in skin cancers. Mutational hot-spots appearing at TCG sites are due to the formation of pyrimidine cyclobutane dimers (CPDs). The present study, performed for the model DNA duplex (TCGTA)3·(TACGA)3 and the constitutive single strands, examines the factors underlying the effect of C5-methylation on pyrimidine dimerization at TCG sites. This effect is quantified for the first time by quantum yields ϕ. They were determined following irradiation at 255, 267, and 282 nm and subsequent photoproduct analysis using HPLC coupled to mass spectrometry. C5-methylation leads to an increase of the CPD quantum yield up to 80% with concomitant decrease of that of pyrimidine(6-4) pyrimidone adducts (64PPs) by at least a factor of 3. The obtained ϕ values cannot be explained only by the change of the cytosine absorption spectrum upon C5-methylation. The conformational and electronic factors that may affect the dimerization reaction are discussed in light of results obtained by fluorescence spectroscopy, molecular dynamics simulations, and quantum mechanical calculations. Thus, it appears that the presence of an extra methyl on cytosine affects the sugar puckering, thereby enhancing conformations of the TC step that are prone to CPD formation but less favorable to 64PPs. In addition, C5-methylation diminishes the amplitude of conformational motions in duplexes; in the resulting stiffer structure, ππ* excitations may be transferred from initially populated exciton states to reactive pyrimidines giving rise to CPDs.
Collapse
Affiliation(s)
- Akos Banyasz
- LIDYL, CEA, CNRS, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | | | - Thierry Douki
- Université Grenoble Alpes, INAC, LCIB, LAN & CEA, INAC, SCIB, LANF-38000 Grenoble, France
| | - Marion Perron
- LIDYL, CEA, CNRS, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Clément Lepori
- LIDYL, CEA, CNRS, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Roberto Improta
- Istituto Biostrutture e Bioimmagini - CNR , 80134 Napoli, Italy
| | - Dimitra Markovitsi
- LIDYL, CEA, CNRS, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
14
|
Vayá I, Brazard J, Huix-Rotllant M, Thazhathveetil AK, Lewis FD, Gustavsson T, Burghardt I, Improta R, Markovitsi D. High-Energy Long-Lived Mixed Frenkel-Charge-Transfer Excitons: From Double Stranded (AT)n to Natural DNA. Chemistry 2016; 22:4904-14. [PMID: 26928984 DOI: 10.1002/chem.201504007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 01/07/2023]
Abstract
The electronic excited states populated upon absorption of UV photons by DNA are extensively studied in relation to the UV-induced damage to the genetic code. Here, we report a new unexpected relaxation pathway in adenine-thymine double-stranded structures (AT)n . Fluorescence measurements on (AT)n hairpins (six and ten base pairs) and duplexes (20 and 2000 base pairs) reveal the existence of an emission band peaking at approximately 320 nm and decaying on the nanosecond time scale. Time-dependent (TD)-DFT calculations, performed for two base pairs and exploring various relaxation pathways, allow the assignment of this emission band to excited states resulting from mixing between Frenkel excitons and adenine-to-thymine charge-transfer states. Emission from such high-energy long-lived mixed (HELM) states is in agreement with their fluorescence anisotropy (0.03), which is lower than that expected for π-π* states (≥0.1). An increase in the size of the system quenches π-π* fluorescence while enhancing HELM fluorescence. The latter process varies linearly with the hypochromism of the absorption spectra, both depending on the coupling between π-π* and charge-transfer states. Subsequently, we identify the common features between the HELM states of (AT)n structures with those reported previously for alternating (GC)n : high emission energy, low fluorescence anisotropy, nanosecond lifetimes, and sensitivity to conformational disorder. These features are also detected for calf thymus DNA in which HELM states could evolve toward reactive π-π* states, giving rise to delayed fluorescence.
Collapse
Affiliation(s)
- Ignacio Vayá
- LIDYL, CEA, CNRS, Université Paris Saclay, 91191, Gif-sur-Yvette, France
| | - Johanna Brazard
- LIDYL, CEA, CNRS, Université Paris Saclay, 91191, Gif-sur-Yvette, France
| | - Miquel Huix-Rotllant
- LIDYL, CEA, CNRS, Université Paris Saclay, 91191, Gif-sur-Yvette, France.,Institut für Physikalische und Theoretische Chemie, Goethe-Universität, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
| | | | - Frederick D Lewis
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA.
| | - Thomas Gustavsson
- LIDYL, CEA, CNRS, Université Paris Saclay, 91191, Gif-sur-Yvette, France
| | - Irene Burghardt
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
| | - Roberto Improta
- Istituto Biostrutture e Bioimmagini-Consiglio Nazionale delle Ricerche, Via mezzocannone 16, 80136, Napoli, Italy.
| | - Dimitra Markovitsi
- LIDYL, CEA, CNRS, Université Paris Saclay, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
15
|
Improta R, Santoro F, Blancafort L. Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. Chem Rev 2016; 116:3540-93. [PMID: 26928320 DOI: 10.1021/acs.chemrev.5b00444] [Citation(s) in RCA: 344] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The photophysics and photochemistry of DNA is of great importance due to the potential damage of the genetic code by UV light. Quantum mechanical studies have played a key role in interpretating the results of modern time-resolved pump-probe spectroscopy, and in elucidating the main photoactivated reactive paths. This review provides a concise, complete picture of the computational studies carried out, approximately, in the past decade. We start with an overview of the photophysics of the nucleobases in the gas phase and in solution. We discuss the proposed mechanisms for ultrafast decay to the ground state, that involve conical intersections, consider the role of triplet states, and analyze how the solvent modulates the photophysics. Then we move to larger systems, from dinucleotides to single- and double-stranded oligonucleotides. We focus on the possible role of charge transfer and delocalized or excitonic states in the photophysics of these systems and discuss the main photochemical paths. We finish with an outlook on the current challenges in the field and future directions of research.
Collapse
Affiliation(s)
- Roberto Improta
- Istituto di Biostrutture Biommagini (IBB-CNR), CNR-Consiglio Nazionale delle Ricerche , Via Mezzocannone 16, I-80134, Napoli, Italy
| | - Fabrizio Santoro
- Area della Ricerca di Pisa, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), CNR-Consiglio Nazionale delle Ricerche , Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi , 17071 Girona, Spain
| |
Collapse
|
16
|
Theoretical study on the excited-state π-stacking versus intermolecular hydrogen-transfer processes in the guanine–cytosine/cytosine trimer. Theor Chem Acc 2016. [DOI: 10.1007/s00214-015-1762-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Markovitsi D. UV-induced DNA Damage: The Role of Electronic Excited States. Photochem Photobiol 2015; 92:45-51. [PMID: 26436855 DOI: 10.1111/php.12533] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/27/2015] [Indexed: 01/23/2023]
Abstract
The knowledge of the fundamental processes induced by the direct absorption of UV radiation by DNA allows extrapolating conclusions drawn from in vitro studies to the in-vivo DNA photoreactivity. In this respect, the characterization of the DNA electronic excited states plays a key role. For a long time, the mechanisms of DNA lesion formation were discussed in terms of generic "singlet" and "triplet" excited state reactivity. However, since the beginning of the 21(st) century, both experimental and theoretical studies revealed the existence of "collective" excited states, i.e. excited states delocalized over at least two bases. Two limiting cases are distinguished: Frenkel excitons (delocalized ππ* states) and charge-transfer states in which positive and negative charges are located on different bases. The importance of collective excited states in photon absorption (in particular in the UVA spectral domain), the redistribution of the excitation energy within DNA, and the formation of dimeric pyrimidine photoproducts is discussed. The dependence of the behavior of the collective excited states on conformational motions of the nucleic acids is highlighted.
Collapse
Affiliation(s)
- Dimitra Markovitsi
- CNRS, IRAMIS, LIDYL, Laboratoire Francis Perrin, URA 2453, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
18
|
Altavilla SF, Segarra-Martí J, Nenov A, Conti I, Rivalta I, Garavelli M. Deciphering the photochemical mechanisms describing the UV-induced processes occurring in solvated guanine monophosphate. Front Chem 2015; 3:29. [PMID: 25941671 PMCID: PMC4403598 DOI: 10.3389/fchem.2015.00029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/30/2015] [Indexed: 01/17/2023] Open
Abstract
The photophysics and photochemistry of water-solvated guanine monophosphate (GMP) are here characterized by means of a multireference quantum-chemical/molecular mechanics theoretical approach (CASPT2//CASSCF/AMBER) in order to elucidate the main photo-processes occurring upon UV-light irradiation. The effect of the solvent and of the phosphate group on the energetics and structural features of this system are evaluated for the first time employing high-level ab initio methods and thoroughly compared to those in vacuo previously reported in the literature and to the experimental evidence to assess to which extent they influence the photoinduced mechanisms. Solvated electronic excitation energies of solvated GMP at the Franck-Condon (FC) region show a red shift for the ππ(*) La and Lb states, whereas the energy of the oxygen lone-pair nπ(*) state is blue-shifted. The main photoinduced decay route is promoted through a ring-puckering motion along the bright lowest-lying La state toward a conical intersection (CI) with the ground state, involving a very shallow stationary point along the minimum energy pathway in contrast to the barrierless profile found in gas-phase, the point being placed at the end of the minimum energy path (MEP) thus endorsing its ultrafast deactivation in accordance with time-resolved transient and photoelectron spectroscopy experiments. The role of the nπ(*) state in the solvated system is severely diminished as the crossings with the initially populated La state and also with the Lb state are placed too high energetically to partake prominently in the deactivation photo-process. The proposed mechanism present in solvated and in vacuo DNA/RNA chromophores validates the intrinsic photostability mechanism through CI-mediated non-radiative processes accompanying the bright excited-state population toward the ground state and subsequent relaxation back to the FC region.
Collapse
Affiliation(s)
| | | | - Artur Nenov
- Dipartimento di Chimica “G. Ciamician,” Università di BolognaBologna, Italy
| | - Irene Conti
- Dipartimento di Chimica “G. Ciamician,” Università di BolognaBologna, Italy
| | - Ivan Rivalta
- École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, UMR 5182, Université de LyonLyon, France
| | - Marco Garavelli
- Dipartimento di Chimica “G. Ciamician,” Università di BolognaBologna, Italy
- École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, UMR 5182, Université de LyonLyon, France
| |
Collapse
|
19
|
Solar UV radiation-induced DNA Bipyrimidine photoproducts: formation and mechanistic insights. Top Curr Chem (Cham) 2015; 356:249-75. [PMID: 25370518 DOI: 10.1007/128_2014_553] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review chapter presents a critical survey of the main available information on the UVB and UVA bipyrimidine photoproducts which constitute the predominant recipient classes of photo-induced DNA damage. Evidence is provided that UVB irradiation of isolated DNA in aqueous solutions and in cells gives rise to the predominant generation of cis-syn cyclobutane pyrimidine dimers (CPDs) and, to a lesser extent, of pyrimidine (6-4) pyrimidone photoproducts (6-4PPs), the importance of which is strongly primary sequence dependent. A notable change in the photoproduct distribution is observed when DNA either in the dry or in desiccated microorganisms is exposed to UVC or UVB photons with an overwhelming formation of 5-(α-thymidyl)-5,6-dihydrothymidine, also called spore photoproduct (dSP), at the expense of CPDs and 6-4PPs. UVA irradiation of isolated and cellular DNA gives rise predominantly to bipyrimidine photoproducts with the overwhelming formation of thymine-containing cyclobutane pyrimidine dimers at the exclusion of 6-4PPs. UVA photons have been shown to modulate the distribution of UVB dimeric pyrimidine photoproducts by triggering isomerization of the 6-4PPs into related Dewar valence isomers. Mechanistic aspects of the formation of bipyrimidine photoproducts are discussed in the light of recent photophysical and theoretical studies.
Collapse
|
20
|
Abstract
Photoinduced processes in nucleic acids are phenomena of fundamental interest in diverse fields, from prebiotic studies, through medical research on carcinogenesis, to the development of bioorganic photodevices. In this contribution we survey many aspects of the research across the boundaries. Starting from a historical background, where the main milestones are identified, we review the main findings of the physical-chemical research of photoinduced processes on several types of nucleic-acid fragments, from monomers to duplexes. We also discuss a number of different issues which are still under debate.
Collapse
Affiliation(s)
- Mario Barbatti
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany,
| | | | | |
Collapse
|