1
|
Cicolella A, De Rosa C, Sepe E, De Stefano F, Giordano A, Scoti M. The Impact of Regiodefects on the Melt-Memory of Isotactic Polypropylene. Macromol Rapid Commun 2024; 45:e2400233. [PMID: 38777345 DOI: 10.1002/marc.202400233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/12/2024] [Indexed: 05/25/2024]
Abstract
The memory of crystalline phase in the melt of isotactic polypropylene (iPP) in regiodefective samples of iPP characterized by different concentrations regiodefects, constituted by secondary 2,1 propene units, is studied. The self-nucleation (SN) experiments have demonstrated that the presence of 2,1 regiodefects produces a strong memory of the crystalline phase in the melt that persists up to temperatures much higher than the melting temperature. The extension of the heterogeneous melt (domain II) containing self-nuclei increases with increasing the concentration of regiodefects. The higher the concentration of regiodefects the higher the temperature at which the self-nuclei are dissolved and the homogeneous melt is achieved. This demonstrates that a strong memory of the crystalline phase of iPP in the melt exists not only in copolymers with noncrystallizable bulky comonomeric units rejected from the crystals but even when small defects are largely included in the crystals.
Collapse
Affiliation(s)
- Alessandra Cicolella
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", Complesso Monte S.Angelo, Via Cintia, I-80126, Italy
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli, I-80138, Italy
| | - Claudio De Rosa
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", Complesso Monte S.Angelo, Via Cintia, I-80126, Italy
| | - Eleonora Sepe
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", Complesso Monte S.Angelo, Via Cintia, I-80126, Italy
| | - Fabio De Stefano
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", Complesso Monte S.Angelo, Via Cintia, I-80126, Italy
| | - Angelo Giordano
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", Complesso Monte S.Angelo, Via Cintia, I-80126, Italy
| | - Miriam Scoti
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", Complesso Monte S.Angelo, Via Cintia, I-80126, Italy
| |
Collapse
|
2
|
Elgoyhen J, Pirela V, Müller AJ, Tomovska R. Synthesis and Crystallization of Waterborne Thiol-ene Polymers: Toward Innovative Oxygen Barrier Coatings. ACS APPLIED POLYMER MATERIALS 2023; 5:8845-8858. [PMID: 37970532 PMCID: PMC10644330 DOI: 10.1021/acsapm.3c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 11/17/2023]
Abstract
The synthesis of waterborne thiol-ene polymer dispersions is challenging due to the high reactivity of thiol monomers and the premature thiol-ene polymerization that leads to high irreproducibility. By turning this challenge into an advantage, a synthesis approach of high solid content film-forming waterborne poly(thioether) prepolymers is reported based on initiator-free step growth sonopolymerization. Copolymerization of bifunctional thiol and ene monomers diallyl terephthalate, glycol dimercaptoacetate, glycol dimercaptopropionate, and 2,2-(ethylenedioxy)diethanethiol gave rise to linear poly(thioether) functional chains with molar mass ranging between 7 and 23 kDa when synthesized at 30% solid content and between 1 and 9 kDa at increased solid content of 50%. To further increase the polymers' molar mass, an additional photopolymerization step was performed in the presence of a water-soluble photoinitiator, i.e., lithium phenyl-2,4,6-trimethylbenzoylphosphinate, leading to high molar mass chains of up to 200 kDa, the highest reported so far for step grown poly(thioethers). The polymer dispersions presented good film-forming ability at room temperature, yielding semicrystalline films with a high potential for barrier coating applications. Nevertheless, affected by the polymer chemical repeating structure, which includes an aromatic ring, these thiol-ene chains can only crystallize very slowly from the molten state. Herein, for the first time, we present the successful implementation of a self-nucleation (SN) procedure for these types of poly(thioethers), which effectively accelerates their crystallization kinetics.
Collapse
Affiliation(s)
- Justine Elgoyhen
- POLYMAT
and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Avda Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Valentina Pirela
- POLYMAT
and Department of Polymers and Advanced Materials: Physics Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Radmila Tomovska
- POLYMAT
and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Avda Tolosa 72, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
3
|
Sangroniz L, Safari M, Martínez de Ilarduya A, Sardon H, Cavallo D, Müller AJ. Disappearance of Melt Memory Effect with Comonomer Incorporation in Isodimorphic Random Copolyesters. Macromolecules 2023; 56:7879-7888. [PMID: 37841533 PMCID: PMC10569436 DOI: 10.1021/acs.macromol.3c01389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Indexed: 10/17/2023]
Abstract
Melt memory effects in polymer crystallization have attracted much attention in the past few years. Although progress has been made in understanding how the chemical structure of polymers can affect melt memory, there are still some knowledge gaps. In this work, we study how incorporating a second comonomer unit that is partially included in the crystalline unit cell affects the melt memory effect of the major component in a random isodimorphic copolymer for the first time. This second comonomer unit depresses the melting temperature of the homopolymer, reduces the crystallinity, and distorts the crystalline unit cell. However, its effect on the stability of self-nuclei and the production of melt memory has not been studied so far. To this aim, we have selected poly[(butylene succinate)-ran-(ε-caprolactone)] random copolyesters PBS-ran-PCL that are isodimorphic, i.e., they exhibit a pseudoeutectic point. This point separates the formation of BS-rich crystals from CL-rich crystals as a function of composition. The results reveal that the melt memory effect of these isodimorphic copolymers is strongly reduced with the incorporation of even very small amounts of comonomer unit (i.e., 1 molar %). This indicates that the incorporation of a second comonomer unit in the polymer chain disrupts the intermolecular interactions present between the chain segments in the crystal lattice of the major component and reduces the capacity of the material to produce self-nuclei. This reduction is more drastic for copolymers in which the second comonomer unit is mostly rejected from the crystalline phase. Contrary to olefin-based copolymers, for copolyesters, the second comonomer unit eases the process to reach an isotropic melt state upon melting. This work reveals the impact of introducing comonomer units on the melt memory effect in isodimorphic random copolyesters.
Collapse
Affiliation(s)
- Leire Sangroniz
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Maryam Safari
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- Physical
Chemistry and Soft Matter, Wageningen University
& Research, Wageningen 6708 WE, The Netherlands
| | - Antxon Martínez de Ilarduya
- Department
d’Enginyeria Química, Universitat
Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain
| | - Haritz Sardon
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Dario Cavallo
- Department
of Chemistry and Industrial Chemistry, University
of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
4
|
Zhou Y, Chen J, Liu X, Xu J. Three/Four-Dimensional Printed PLA Nano/Microstructures: Crystallization Principles and Practical Applications. Int J Mol Sci 2023; 24:13691. [PMID: 37761994 PMCID: PMC10531236 DOI: 10.3390/ijms241813691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Compared to traditional methods, three/four-dimensional (3D/4D) printing technologies allow rapid prototyping and mass customization, which are ideal for preparing nano/microstructures of soft polymer materials. Poly (lactic acid) (PLA) is a biopolymer material widely used in additive manufacturing (AM) because of its biocompatibility and biodegradability. Unfortunately, owing to its intrinsically poor nucleation ability, a PLA product is usually in an amorphous state after industrial processing, leading to some undesirable properties such as a barrier property and low thermal resistance. Crystallization mediation offers a most practical way to improve the properties of PLA products. Herein, we summarize and discuss 3D/4D printing technologies in the processing of PLA nano/microstructures, focusing on crystallization principles and practical applications including bio-inspired structures, flexible electronics and biomedical engineering mainly reported in the last five years. Moreover, the challenges and prospects of 3D/4D printing technologies in the fabrication of high-performance PLA materials nano/microstructures will also be discussed.
Collapse
Affiliation(s)
| | | | | | - Jianwei Xu
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (J.C.); (X.L.)
| |
Collapse
|
5
|
López-Beceiro J, Díaz-Díaz AM, Fernández-Pérez E, Ferreira I, Focke WW, Artiaga R. A Relatively Simple Look at the Rather Complex Crystallization Kinetics of PLLA. Polymers (Basel) 2023; 15:polym15081880. [PMID: 37112027 PMCID: PMC10143213 DOI: 10.3390/polym15081880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
This work demonstrates that, despite the existence of a significant number of works on PLA crystallization, there is still a relatively simple way, different from those already described, in which its complex kinetics can be observed. The X-ray diffraction (XRD) results presented here confirm that the PLLA under study crystallizes mostly in the α and α' forms. An interesting observation is that at any temperature in the studied range of the patterns, the X-ray reflections stabilize with a given shape and at a given angle, different for each temperature. That means that both α and α' forms coexist and are stable at the same temperatures so that the shape of each pattern results from both structures. However, the patterns obtained at each temperature are different because the predominance of one crystal form over the other depends on temperature. Thus, a two-component kinetic model is proposed to account for both crystal forms. The method involves the deconvolution of the exothermic DSC peaks using two logistic derivative functions. The existence of the rigid amorphous fraction (RAF) in addition to the two crystal forms increases the complexity of the whole crystallization process. However, the results presented here show that a two-component kinetic model can reproduce the overall crystallization process fairly well over a broad range of temperatures. The method used here for PLLA may be useful for describing the isothermal crystallization processes of other polymers.
Collapse
Affiliation(s)
- Jorge López-Beceiro
- Centro de Investigación en Tecnoloxías Navais e Industriais (CITENI), Campus Industrial de Ferrol, Universidade da Coruña, 15403 Ferrol, Spain
| | - Ana-María Díaz-Díaz
- Centro de Investigación en Tecnoloxías Navais e Industriais (CITENI), Campus Industrial de Ferrol, Universidade da Coruña, 15403 Ferrol, Spain
| | - Enrique Fernández-Pérez
- Centro de Investigación en Tecnoloxías Navais e Industriais (CITENI), Campus Industrial de Ferrol, Universidade da Coruña, 15403 Ferrol, Spain
| | - Ignatius Ferreira
- Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa
| | - Walter W Focke
- Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa
| | - Ramón Artiaga
- Centro de Investigación en Tecnoloxías Navais e Industriais (CITENI), Campus Industrial de Ferrol, Universidade da Coruña, 15403 Ferrol, Spain
| |
Collapse
|
6
|
Poisson C, Colaers M, Van Puyvelde P, Goderis B. Memory Effects in the Quiescent Crystallization of Polyamide 12: Self-Seeding, Post-Condensation, Disentangling, and Self-Nucleation beyond the Equilibrium Melting Temperature. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Charlotte Poisson
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J box 2424, 3000 Leuven, Belgium
| | - Maarten Colaers
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3000 Leuven, Belgium
| | - Peter Van Puyvelde
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J box 2424, 3000 Leuven, Belgium
| | - Bart Goderis
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3000 Leuven, Belgium
| |
Collapse
|
7
|
Schmarsow RN, Casado U, Ceolín M, Zucchi IA, Müller AJ, Schroeder WF. Supramolecular Networks Obtained by Block Copolymer Self-Assembly in a Polymer Matrix: Crystallization Behavior and Its Effect on the Mechanical Response. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Ruth N. Schmarsow
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Av. Cristóbal Colón 10850, 7600 Mar del Plata, Argentina
| | - Ulises Casado
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Av. Cristóbal Colón 10850, 7600 Mar del Plata, Argentina
| | - Marcelo Ceolín
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, CONICET, CC 16-Suc. 4, 1900 La Plata, Argentina
| | - Ileana A. Zucchi
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Av. Cristóbal Colón 10850, 7600 Mar del Plata, Argentina
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Walter F. Schroeder
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Av. Cristóbal Colón 10850, 7600 Mar del Plata, Argentina
| |
Collapse
|
8
|
Coba-Daza S, Carmeli E, Otaegi I, Aranburu N, Guerrica-Echevarria G, Kahlen S, Cavallo D, Tranchida D, Müller AJ. Effect of compatibilizer addition on the surface nucleation of dispersed polyethylene droplets in a self-nucleated polypropylene matrix. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Dong Y, Wu J, Hu J, Yan S, Müller AJ, Sun X. Thermal-Field-Tuned Heterogeneous Amorphous States of Poly(vinylidene fluoride) Films with Precise Transition from Nonpolar to Polar Phase. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yufei Dong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Beijing100029, China
| | - Jinghua Wu
- Key Laboratory of Rubber-Plastics of Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, No. 53 Zhengzhou Road, Qingdao266042, China
| | - Jian Hu
- Key Laboratory of Rubber-Plastics of Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, No. 53 Zhengzhou Road, Qingdao266042, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Beijing100029, China
- Key Laboratory of Rubber-Plastics of Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, No. 53 Zhengzhou Road, Qingdao266042, China
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009Bilbao, Spain
| | - Xiaoli Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Beijing100029, China
| |
Collapse
|
10
|
Zennaki A, Zair L, Arabeche K, Benkraled L, Maschke U, Berrayah A. Effect of annealing on thermal and dynamic mechanical properties of poly(lactic acid). J Appl Polym Sci 2022. [DOI: 10.1002/app.53095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Assia Zennaki
- Laboratoire de Recherche sur les Macromolécules, Faculté des Sciences Université Aboubakr Belkaïd Tlemcen Algeria
| | - Latifa Zair
- Laboratoire de Recherche sur les Macromolécules, Faculté des Sciences Université Aboubakr Belkaïd Tlemcen Algeria
| | - Khadidja Arabeche
- Laboratoire de Recherche sur les Macromolécules, Faculté des Sciences Université Aboubakr Belkaïd Tlemcen Algeria
| | - Lina Benkraled
- Laboratoire de Recherche sur les Macromolécules, Faculté des Sciences Université Aboubakr Belkaïd Tlemcen Algeria
| | - Ulrich Maschke
- UMET – Unité Matériaux et Transformations, UMR 8207, University of Lille, CNRS, INRAE, Centrale Lille Lille France
| | - Abdelkader Berrayah
- Laboratoire de Recherche sur les Macromolécules, Faculté des Sciences Université Aboubakr Belkaïd Tlemcen Algeria
| |
Collapse
|
11
|
Liu X, Cui WZ, Yu W. Interfacial Chain Entanglements Induced Melt Memory Effect in Poly(ε-caprolactone)/Silica Nanocomposites. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Mi C, Dong Y, Wang S, Li H, Zhu L, Sun X, Yan S. Facile fabrication of ferroelectric poly(vinylidene fluoride) thin films with pure γ phase. Chem Commun (Camb) 2022; 58:9690-9693. [PMID: 35959645 DOI: 10.1039/d2cc03654a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A simple heating-cooling procedure is employed to make pure polar γ-PVDF thin films. By controlling the relaxation state of the crystals, pure γ crystals are induced by two kinds of mechanism including self-seeding and self-nucleation upon cooling within 30 min. The methodology paves a new way for PVDF homopolymers in flexible ferroelectric device applications.
Collapse
Affiliation(s)
- Ce Mi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Beijing, 100029, China.
| | - Yufei Dong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Beijing, 100029, China.
| | - Shaojuan Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education, Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, No. 53 Zhengzhou Rd, Qingdao 266042, China
| | - Huihui Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Beijing, 100029, China.
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106-7202, USA
| | - Xiaoli Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Beijing, 100029, China.
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Beijing, 100029, China. .,Key Laboratory of Rubber-Plastics of Ministry of Education, Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, No. 53 Zhengzhou Rd, Qingdao 266042, China
| |
Collapse
|
13
|
Wang W, Buzzi S, Fenni SE, Carmeli E, Wang B, Liu G, Müller AJ, Cavallo D. Surface Nucleation of Dispersed Droplets in Double Semicrystalline Immiscible Blends with Different Matrices. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Wang
- Department of Chemistry and Industrial Chemistry University of Genoa Via Dodecaneso 31 Genova 16146 Italy
| | - Simona Buzzi
- Department of Chemistry and Industrial Chemistry University of Genoa Via Dodecaneso 31 Genova 16146 Italy
| | - Seif Eddine Fenni
- Department of Chemistry and Industrial Chemistry University of Genoa Via Dodecaneso 31 Genova 16146 Italy
| | - Enrico Carmeli
- Innovation & Technology Borealis Polyolefine GmbH St. Peter‐Straße 25 Linz 4021 Austria
| | - Bao Wang
- Institute of Zhejiang University‐Quzhou 78 Jiuhua Boulevard North Quzhou 324000 China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Engineering Plastics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Alejandro J. Müller
- Polymat and Department of Polymers and Advanced Materials: Physics Chemistry and Technology Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 Donostia‐San Sebastián 20018 Spain
- IKERBASQUE Basque Foundation for Science Plaza Euskadi 5 Bilbao 48009 Spain
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry University of Genoa Via Dodecaneso 31 Genova 16146 Italy
| |
Collapse
|
14
|
Qin Y, Song W, Chen M, Litvinov V, Men Y. Chain Entanglements and Interlamellar Links in Isotactic Polybutene-1: The Effect of Condis Crystals and Crystallization Temperature. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanan Qin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, 130022 Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wenbo Song
- SINOPEC Beijing Research Institute of Chemical Industry, 14 North 3rd Ring East Road, 100000 Beijing, P. R. China
| | - Ming Chen
- SINOPEC Beijing Research Institute of Chemical Industry, 14 North 3rd Ring East Road, 100000 Beijing, P. R. China
| | - Victor Litvinov
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, 130022 Changchun, P. R. China
- V.Lit.Consult, Gozewijnstraat 4, 6191 WV Beek, The Netherlands
| | - Yongfeng Men
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, 130022 Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
15
|
Góra M, Tranchida D, Albrecht A, Müller AJ, Cavallo D. Fast successive self‐nucleation and annealing (SSA) thermal fractionation protocol for the characterization of polyolefin blends from mechanical recycling. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Magdalena Góra
- Dipartimento di Chimica e Chimica Industriale Università degli studi di Genova Genoa Italy
- Borealis Polyolefine GmbH, Innovation Headquarters Linz Austria
| | | | | | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry University of the Basque Country UPV/EHU Donostia‐San Sebastian Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| | - Dario Cavallo
- Dipartimento di Chimica e Chimica Industriale Università degli studi di Genova Genoa Italy
| |
Collapse
|
16
|
Sangroniz L, Jang YJ, Hillmyer MA, Müller AJ. The role of intermolecular interactions on melt memory and thermal fractionation of semicrystalline polymers. J Chem Phys 2022; 156:144902. [DOI: 10.1063/5.0087782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The origin of melt memory effects associated with semicrystalline polymers and the physical parameters involved in this process have been widely studied in the literature. However, a comprehensive understanding of the role of intermolecular interactions on melt memory is still being developed. For this purpose, we have considered aliphatic polyesters and we have incorporated amide and additional ester groups. Inserting these additional functional groups, the strength of the intermolecular interactions increases widening the melt memory effect. Not only the presence of the functional groups but also the position of these groups in the repeating unit plays a role in the melt memory effect as it impacts the strength of the intermolecular interactions in the crystals. The study of the effect of intermolecular interactions has been extended to successive self-nucleation and annealing thermal fractionation experiments to explore for the first time the role of intermolecular forces on the fractionation capacity of linear polymers. We demonstrated that intermolecular interactions act as intrinsic defects interrupting the crystallizable chain length, thus facilitating thermal fractionation. Overall, this work sheds light on the role of intermolecular interactions on the crystallization behavior of a series of aliphatic polyesters.
Collapse
Affiliation(s)
- Leire Sangroniz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Yoon-Jung Jang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
17
|
Lou Y, Li W, Qv C, Zhao R, Ma Z. Strong memory effect in higher α-olefin homopolymers with crystalline side chains. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Altorbaq AS, Krauskopf AA, Wen X, Pérez-Camargo RA, Su Y, Wang D, Müller AJ, Kumar SK. Crystallization Kinetics and Nanoparticle Ordering in Semicrystalline Polymer Nanocomposites. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Liu L, Lou Y, Qv C, Ma Z, Li Y. Crystallization and Phase Transition of
1‐Butene
Copolymers with Distinct Cyclic Co‐units. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Long Liu
- Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
| | - Yahui Lou
- Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
| | - Chunjing Qv
- Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
| | - Zhe Ma
- Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, and School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
20
|
Fenni SE, Caputo MR, Müller AJ, Cavallo D. Surface Roughness Enhances Self-Nucleation of High-Density Polyethylene Droplets Dispersed within Immiscible Blends. Macromolecules 2022; 55:1412-1423. [PMID: 35237024 PMCID: PMC8874415 DOI: 10.1021/acs.macromol.1c02487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/21/2022] [Indexed: 11/28/2022]
Abstract
![]()
Highly linear or
high-density polyethylenes (HDPEs) have an intrinsically
high nucleation density compared to other polyolefins. Enhancing their
nucleation density by self-nucleation is therefore difficult, leading
to a narrow self-nucleation Domain (i.e., the so-called DomainII or the temperature Domain where self-nuclei can be injected into the material without the
occurrence of annealing). In this work, we report that when HDPE is
blended (up to 50%) with immiscible matrices, such as atactic polystyrene
(PS) or Nylon 6, its self-nucleation capacity can be greatly increased.
In addition, temperatures higher than the equilibrium melting temperature
of the HDPE phase are needed to erase the significantly enhanced crystalline
memory in the blends. Morphological evidence gathered by Scanning
and Transmission Electron Microscopies (SEM and TEM) indicates that
these unexpected results can be explained by the modification of the
interface between blend components. The filling of the solid HDPE
surface asperities by the low viscosity polystyrene during heating
to the self-nucleation temperature, or the crystallization of the
matrix in the case of Nylon 6, enhances the interface roughness between
the two polymers in the blends. Such rougher interfaces can remarkably
increase the self-nucleation capacity of the HDPE phase via surface
nucleation.
Collapse
Affiliation(s)
- Seif Eddine Fenni
- Dipartimento di Chimica e Chimica Industriale, Università degli studi di Genova, via Dodecaneso 31, 16146 Genova, Italy
| | - Maria Rosaria Caputo
- Polymat and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Alejandro J. Müller
- Polymat and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Dario Cavallo
- Dipartimento di Chimica e Chimica Industriale, Università degli studi di Genova, via Dodecaneso 31, 16146 Genova, Italy
| |
Collapse
|
21
|
Li JX, Niu DY, Xu PW, Sun ZY, Yang WJ, Ji Y, Ma PM. Tailoring the Crystallization Behavior and Mechanical Property of Poly(glycolic acid) by Self-nucleation. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2671-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Molecular mobility, crystallization and melt-memory investigation of molar mass effects on linear and hydroxyl-terminated Poly(ε-caprolactone). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Mechanical performance and supermolecular morphology of void free polypropylene manufactured by fused filament fabrication. J Appl Polym Sci 2021. [DOI: 10.1002/app.51409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Carmeli E, Fenni SE, Caputo MR, Müller AJ, Tranchida D, Cavallo D. Surface Nucleation of Dispersed Polyethylene Droplets in Immiscible Blends Revealed by Polypropylene Matrix Self-Nucleation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Enrico Carmeli
- Dipartimento di Chimica e Chimica Industriale, Università degli studi di Genova, via Dodecaneso 31, 16146 Genova, Italy
| | - Seif Eddine Fenni
- Dipartimento di Chimica e Chimica Industriale, Università degli studi di Genova, via Dodecaneso 31, 16146 Genova, Italy
| | - Maria Rosaria Caputo
- Polymat and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Alejandro J. Müller
- Polymat and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Davide Tranchida
- Borealis Polyolefine GmbH, Innovation Headquarters, St. Peterstrasse 25, 4021 Linz, Austria
| | - Dario Cavallo
- Dipartimento di Chimica e Chimica Industriale, Università degli studi di Genova, via Dodecaneso 31, 16146 Genova, Italy
| |
Collapse
|
25
|
Abstract
Crystallization of polymeric materials under nanoscopic confinement is highly relevant for nanotechnology applications. When a polymer is confined within rigid nanoporous anodic aluminum oxide (AAO) templates, the crystallization behavior experiences dramatic changes as the pore size is reduced, including nucleation mechanism, crystal orientation, crystallization kinetics, and polymorphic transition, etc. As an experimental prerequisite, exhaustive cleaning procedures after infiltrations of polymers in AAO pores must be performed to ensure producing an ensemble of isolated polymer-filled nanopores. Layers of residual polymers on the AAO surface percolate nanopores and lead to the so-called "fractionated crystallization", i.e., multiple crystallization peaks during cooling.Because the density of isolated nanopores in a typical AAO template exceeds the density of heterogeneities in bulk polymers, the majority of nanopores will be heterogeneity-free. This means that the nucleation will proceed by surface or homogeneous nucleation. As a consequence, a very large supercooling is necessary for crystallization, and its kinetics is reduced to a first-order process that is dominated by nucleation. Self-nucleation is a powerful method to exponentially increase nucleation density. However, when the diameter of the nanopores is lower than a critical value, confinement prevents the possibility to self-nucleate the material.Because of the anisotropic nature of AAO pores, polymer crystals inside AAO also exhibit anisotropy, which is determined by thermodynamic stability and kinetic selection rules. For low molecular weight poly(ethylene oxide) (PEO) with extended chain crystals, the orientation of polymer crystals changes from the "chain perpendicular to" to the "chain parallel to" the AAO pore axis, when the diameter of AAO decreases to the contour length of the PEO, indicating the effect of thermodynamic stability. When the thermodynamic requirement is satisfied, the orientation is determined by kinetics including crystal growth direction, nucleation, and crystal growth rate. An orientation diagram has been established for the PEO/AAO system, considering the cooling condition and pore size.The interfacial polymer layer has different physical properties as compared to the bulk. In poly(l-lactic acid), the relationship between the segmental mobility of the interfacial layer and crystallization rate is established. For the investigation of polymorphic transition of poly(butane-1), the results indicate that a 12 nm interfacial layer hinders the transition of Form II to Form I. Block and random copolymers have also been infiltrated into AAO nanopores, and their crystallization behavior is analogously affected as pore size is reduced.
Collapse
Affiliation(s)
- Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Christakopoulos F, Bersenev E, Grigorian S, Brem A, Ivanov DA, Tervoort TA, Litvinov V. Melting-Induced Evolution of Morphology, Entanglement Density, and Ultradrawability of Solution-Crystallized Ultrahigh-Molecular-Weight Polyethylene. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fotis Christakopoulos
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Egor Bersenev
- Lomonosov Moscow State University, 119991 Moscow, Russian Federation
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation
| | - Souren Grigorian
- Institute of Physics, University of Siegen, D-57068 Siegen, Germany
| | - André Brem
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Dimitri A. Ivanov
- Lomonosov Moscow State University, 119991 Moscow, Russian Federation
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, F-68057 Mulhouse, France
| | - Theo A. Tervoort
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Victor Litvinov
- V.Lit.Consult, Gozewijnstraat 4, 6191WV Beek, The Netherlands
| |
Collapse
|
27
|
Jariyavidyanont K, Janke A, Tariq M, Di Lorenzo ML, Schick C, Androsch R. Thermal Stability and Nucleation Efficacy of Shear-Induced Pointlike and Shishlike Crystallization Precursors. ACS Macro Lett 2021; 10:684-689. [PMID: 35549104 DOI: 10.1021/acsmacrolett.1c00101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The different thermal stabilities of shear-induced pointlike and shishlike crystallization precursors of polyamide 11, generated in a parallel-plate rheometer and coexisting in the same sample, were quantified by hot-stage microscopy, by performing self-seed crystallization experiments. Crystals formed at low supercooling of the melt from these different types of precursors melt at about the same temperature. Annealing of the melt at different temperatures for a predefined time revealed dissolution/disordering of these precursors at 10-15 K higher temperature, near the equilibrium melting point. Despite their similar thermal stabilities, pointlike and shishlike crystallization precursors exhibit distinctly different nucleation efficacies. Under identical crystallization conditions, shishlike precursors cause faster crystallization than pointlike crystal nuclei. The faster crystallization of the shishlike nuclei can be explained, for example, by (a) the larger size of the shishlike precursors, providing numerous nucleation sites; (b) the more perfect chain conformation at the shish surface, which serves as a substrate for crystallization; or perhaps (c) the higher local orientation of the surrounding melt compared with molecular segments near pointlike nuclei, reducing the activation energy for crystallization.
Collapse
Affiliation(s)
- Katalee Jariyavidyanont
- Interdisciplinary Center for Transfer-Oriented Research in Natural Sciences (IWE TFN), Martin Luther University Halle-Wittenberg, 06099 Halle/Saale, Germany
| | - Andreas Janke
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Muhammad Tariq
- Institute of Physics, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Maria Laura Di Lorenzo
- Institute of Polymers, Composites and Biomaterials (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Christoph Schick
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
- Department of Physical Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - René Androsch
- Interdisciplinary Center for Transfer-Oriented Research in Natural Sciences (IWE TFN), Martin Luther University Halle-Wittenberg, 06099 Halle/Saale, Germany
| |
Collapse
|
28
|
Sangroniz L, Wang B, Su Y, Liu G, Cavallo D, Wang D, Müller AJ. Fractionated crystallization in semicrystalline polymers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101376] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Wang X, Yi J, Wang L, Yuan Y, Feng J. Thermorheological evidence and structure of heterogeneity in syndiotactic polypropylene melts with strong memory effects. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Vassiliadou O, Chrysostomou V, Pispas S, Klonos PA, Kyritsis A. Molecular dynamics and crystallization in polymers based on ethylene glycol methacrylates (EGMAs) with melt memory characteristics: from linear oligomers to comb-like polymers. SOFT MATTER 2021; 17:1284-1298. [PMID: 33305780 DOI: 10.1039/d0sm01666g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this article we present results on the glass transition, crystallization and molecular dynamics in relatively novel oligomers, oligo-ethylene glycol methacrylate (OEGMA), with short and long chains, as well as in the corresponding nanostructured comb-like polymers (POEGMA, short and long), the latter being prepared via the RAFT polymerization process. For the investigation we employed conventional and temperature modulated differential scanning calorimetry in combination with high resolving power dielectric spectroscopy techniques, broadband dielectric relaxation spectroscopy (BDS) and thermally stimulated depolarization currents (TSDC). Under ambient conditions short OEGMA (475 g mol-1, ∼4 nm in length) exhibits a remarkable low glass transition temperature, Tg, of -91 °C, crystallization temperature Tc = -24 °C and a significant crystalline fraction, CF, of ∼30%. When doubling the number of monomers (OEGMA-long, 950 g mol-1, chain length ∼8 nm) the Tg increases by about 20 K and CF increases to ∼53%, whereas, the Tc migrates to a room-like temperature of 19 °C. Upon formation of comb-like POEGMA structures the grafted OEGMA short chains, strikingly, are not able to crystallize, while in POEGMA-long the crystallization behaviour changes significantly as compared to OEGMA. Our results indicate that in the comb-like architecture the chain diffusion of the amorphous fractions is also strongly affected. The semicrystalline systems exhibit significant melt memory effects, this being stronger in the comb-like architecture. It is shown that these effects are related to the inter- and intra-chain interactions of the crystallizable chains. The dielectric techniques allowed the molecular dynamics mapping of these new systems from the linear oligomers to POEGMAs for the first time. BDS and TSDC detected various dynamics processes, in particular, the local polymer dynamics (γ process) to be sensitive to the Tg, local dynamics triggered in the hydrophilic chain segments by water traces (β), as well as the segmental dynamics (α) related to glass transition. Interestingly, both the short and long linear OEGMAs exhibit an additional relaxation process that resembles the Normal-Mode process appearing in polyethers. In the corresponding POEGMAs this process could not be resolved, this being an effect of the one-side grafted chain on the comb backbone. The revealed variations in molecular mobility and crystallization behavior suggest the potentially manipulable diffusion of small molecules throughout the polymer volume, via both the molecular architecture as well as the thermal treatment. This ability is extremely useful for these novel materials, envisaging their future applications in biomedicine (drug encapsulation).
Collapse
Affiliation(s)
- Olga Vassiliadou
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece.
| | - Varvara Chrysostomou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Panagiotis A Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece.
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece.
| |
Collapse
|
31
|
Wen X, Su Y, Liu G, Li S, Müller AJ, Kumar SK, Wang D. Direct Relationship between Dispersion and Crystallization Behavior in Poly(ethylene oxide)/Poly(ethylene glycol)- g-Silica Nanocomposites. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiangning Wen
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunlan Su
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoming Liu
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaofan Li
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro J. Müller
- POLYMAT and Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48009, Spain
| | - Sanat K. Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Dujin Wang
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Klonos PA, Papadopoulos L, Kasimatis M, Iatrou H, Kyritsis A, Bikiaris DN. Synthesis, Crystallization, Structure Memory Effects, and Molecular Dynamics of Biobased and Renewable Poly( n-alkylene succinate)s with n from 2 to 10. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02109] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Panagiotis A. Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, Thessaloniki GR-541 24, Greece
| | - Lazaros Papadopoulos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, Thessaloniki GR-541 24, Greece
| | - Maria Kasimatis
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece
| | - Hermis Iatrou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
| | - Dimitrios N. Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, Thessaloniki GR-541 24, Greece
| |
Collapse
|
33
|
Wang Y, Liu C, Shen C. Crystallization behavior of poly(lactic acid) and its blends. POLYMER CRYSTALLIZATION 2020. [DOI: 10.1002/pcr2.10171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yaming Wang
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology Zhengzhou University Zhengzhou China
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology Zhengzhou University Zhengzhou China
| | - Changyu Shen
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology Zhengzhou University Zhengzhou China
| |
Collapse
|
34
|
Sangroniz L, Ocando C, Cavallo D, Müller AJ. Melt Memory Effects in Poly(Butylene Succinate) Studied by Differential Fast Scanning Calorimetry. Polymers (Basel) 2020; 12:E2796. [PMID: 33256010 PMCID: PMC7761523 DOI: 10.3390/polym12122796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 11/17/2022] Open
Abstract
It is widely accepted that melt memory effect on polymer crystallization depends on thermal history of the material, however a systematic study of the different parameters involved in the process has been neglected, so far. In this work, poly(butylene succinate) has been selected to analyze the effect of short times and high cooling/heating rates that are relevant from an industrial point of view by taking advantage of fast scanning calorimetry (FSC). The FSC experiments reveal that the width of melt memory temperature range is reduced with the time spent at the self-nucleation temperature (Ts), since annealing of crystals occurs at higher temperatures. The effectiveness of self-nuclei to crystallize the sample is addressed by increasing the cooling rate from Ts temperature. The effect of previous standard state on melt memory is analyzed by (a) changing the cooling/heating rate and (b) applying successive self-nucleation and annealing (SSA) technique, observing a strong correlation between melting enthalpy or crystallinity degree and the extent of melt memory. The acquired knowledge can be extended to other semicrystalline polymers to control accurately the melt memory effect and therefore, the time needed to process the material and its final performance.
Collapse
Affiliation(s)
- Leire Sangroniz
- POLYMAT, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain;
| | - Connie Ocando
- POLYMAT, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain;
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, 16146 Genova, Italy
| | - Alejandro J. Müller
- POLYMAT, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
35
|
Jimenez AM, Altorbaq AS, Müller AJ, Kumar SK. Polymer Crystallization under Confinement by Well-Dispersed Nanoparticles. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01479] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Andrew M. Jimenez
- Department of Chemical Engineering, Columbia University, New York, New York, 10027, United States
| | - Abdullah S. Altorbaq
- Department of Chemical Engineering, Columbia University, New York, New York, 10027, United States
| | - Alejandro J. Müller
- POLYMAT and Faculty of Chemistry, Basque Country University UPV/EHU, Paseo Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Science Foundation, 48011 Bilbao, Spain
| | - Sanat K. Kumar
- Department of Chemical Engineering, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
36
|
Yuan W, Liu K, Zhou J, Ni L, Shan G, Bao Y, Pan P. Stress-Free Two-Way Shape Memory Effects of Semicrystalline Polymer Networks Enhanced by Self-Nucleated Crystallization. ACS Macro Lett 2020; 9:1325-1331. [PMID: 35638620 DOI: 10.1021/acsmacrolett.0c00571] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stress-free two-way shape memory polymers (2W-SMPs) capable of reversible shifting between two distinct shapes are versatile platforms for the development of future smart devices. However, it is challenging to prepare stress-free 2W-SMPs with good actuation performance and shape programmability from single-component semicrystalline polymers. Herein, we demonstrate a straightforward and universal strategy for preparing 2W-SMPs through self-nucleated crystallization (SNC) of semicrystalline polymers. SNC enables the formation of two types of crystals in the 2W-SMPs, annealed and primary crystals, which function as the skeleton phase and actuation phase, respectively. We achieved a high reversible actuation strain of 17.6% and a good reprogrammability of the SNC-treated polymer networks. Complex shape transformations were obtained, and smart devices were fabricated from the SNC-treated networks by using a locally designed folding and kirigami structure. The SNC strategy provides a generalized approach to improve the 2W-shape memory behavior of semicrystalline polymers.
Collapse
Affiliation(s)
- Wenhua Yuan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Kangkang Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Jian Zhou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Lingling Ni
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| |
Collapse
|
37
|
Affiliation(s)
- Xiang Liu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Frontiers Science Center for Transformative Molecules, and State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wei Yu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Frontiers Science Center for Transformative Molecules, and State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
38
|
Wang B, Utzeri R, Castellano M, Stagnaro P, Müller AJ, Cavallo D. Heterogeneous Nucleation and Self-Nucleation of Isotactic Polypropylene Microdroplets in Immiscible Blends: From Nucleation to Growth-Dominated Crystallization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01167] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Bao Wang
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genova, Italy
| | - Roberto Utzeri
- Institute for Chemical Sciences and Technologies “Giulio Natta” (SCITEC), CNR, Via De Marini 6, 16149 Genova, Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genova, Italy
| | - Paola Stagnaro
- Institute for Chemical Sciences and Technologies “Giulio Natta” (SCITEC), CNR, Via De Marini 6, 16149 Genova, Italy
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia/San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genova, Italy
| |
Collapse
|
39
|
Sangroniz L, Sangroniz A, Meabe L, Basterretxea A, Sardon H, Cavallo D, Müller AJ. Chemical Structure Drives Memory Effects in the Crystallization of Homopolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00751] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Leire Sangroniz
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Ainara Sangroniz
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Leire Meabe
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Andere Basterretxea
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Haritz Sardon
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso, 31, 16146 Genova, Italy
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain
| |
Collapse
|
40
|
Affiliation(s)
- Leire Sangroniz
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso, 31, 16146 Genova, Italy
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE - Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
41
|
Iregui Á, Otaegi I, Arandia I, Martin MD, Müller AJ, Irusta L, González A. Fully Reversible Spherulitic Morphology in Cationically Photopolymerized DGEBA/PCL Shape-Memory Blends. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Álvaro Iregui
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, P.O. Box 1072, 20080 Donostia/San Sebastian, Spain
| | - Itziar Otaegi
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, P.O. Box 1072, 20080 Donostia/San Sebastian, Spain
| | - Idoia Arandia
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, P.O. Box 1072, 20080 Donostia/San Sebastian, Spain
| | - M. Dolores Martin
- Macrobehaviour-Mesostructure-Nanotechnology SGIker Service, Polytechnic School, University of the Basque Country UPV-EHU, Plaza Europa 1, 20018 Donostia/San Sebastian, Spain
| | - Alejandro J. Müller
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, P.O. Box 1072, 20080 Donostia/San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Lourdes Irusta
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, P.O. Box 1072, 20080 Donostia/San Sebastian, Spain
| | - Alba González
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, P.O. Box 1072, 20080 Donostia/San Sebastian, Spain
| |
Collapse
|
42
|
Liu X, Wang Y, Wang Z, Cavallo D, Müller AJ, Zhu P, Zhao Y, Dong X, Wang D. The origin of memory effects in the crystallization of polyamides: Role of hydrogen bonding. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122117] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Sangroniz L, van Drongelen M, Cardinaels R, Santamaria A, Peters GW, Müller AJ. Effect of shear rate and pressure on the crystallization of PP nanocomposites and PP/PET polymer blend nanocomposites. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.121950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
|
45
|
Marxsen SF, Alamo RG. Melt-memory of polyethylenes with halogen substitution: Random vs. precise placement. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Kong W, Zhu B, Su F, Wang Z, Shao C, Wang Y, Liu C, Shen C. Melting temperature, concentration and cooling rate-dependent nucleating ability of a self-assembly aryl amide nucleator on poly(lactic acid) crystallization. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Wen X, Su Y, Shui Y, Zhao W, Müller AJ, Wang D. Correlation between Grafting Density and Confined Crystallization Behavior of Poly(ethylene glycol) Grafted to Silica. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02007] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xiangning Wen
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Yunlan Su
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Yudan Shui
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Weiwei Zhao
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque
Foundation for Science, Bilbao, Spain
| | - Dujin Wang
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Wang B, Menyhard A, Alfonso GC, Müller AJ, Cavallo D. Differential scanning calorimetry study of cross-nucleation between polymorphs in isotactic poly(1-butene). POLYM INT 2019. [DOI: 10.1002/pi.5595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bao Wang
- Department of Chemistry and Industrial Chemistry; University of Genova; Genova Italy
| | - Alfred Menyhard
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science; Budapest University of Technology and Economics; Budapest Hungary
| | - Giovanni C Alfonso
- Department of Chemistry and Industrial Chemistry; University of Genova; Genova Italy
| | - Alejandro J Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry; University of the Basque Country UPV/EHU; San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science; Bilbao Spain
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry; University of Genova; Genova Italy
| |
Collapse
|
49
|
Wang Z, Dong X, Cavallo D, Müller AJ, Wang D. Promotion of Self-Nucleation with Latent Form I Nuclei in Polybutene-1 and Its Copolymer. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01313] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zefan Wang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Dong
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso, 31-16146 Genova, Italy
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque
Foundation for Science, Bilbao, Spain
| | - Dujin Wang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Chen X, Qu C, Alamo RG. Effect of annealing time and molecular weight on melt memory of random ethylene 1‐butene copolymers. POLYM INT 2018. [DOI: 10.1002/pi.5586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xuejian Chen
- Department of Chemical and Biomedical Engineering FAMU‐FSU College of Engineering, Tallahassee FL USA
| | - Chen Qu
- Department of Chemical and Biomedical Engineering FAMU‐FSU College of Engineering, Tallahassee FL USA
| | - Rufina G Alamo
- Department of Chemical and Biomedical Engineering FAMU‐FSU College of Engineering, Tallahassee FL USA
| |
Collapse
|