1
|
Świerczyńska M, Kudzin MH, Chruściel JJ. Poly(lactide)-Based Materials Modified with Biomolecules: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5184. [PMID: 39517460 PMCID: PMC11546716 DOI: 10.3390/ma17215184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Poly(lactic acid) (PLA) is characterized by unique features, e.g., it is environmentally friendly, biocompatible, has good thermomechanical properties, and is readily available and biodegradable. Due to the increasing pollution of the environment, PLA is a promising alternative that can potentially replace petroleum-derived polymers. Different biodegradable polymers have numerous biomedical applications and are used as packaging materials. Because the pure form of PLA is delicate, brittle, and is characterized by a slow degradation rate and a low thermal resistance and crystallization rate, these disadvantages limit the range of applications of this polymer. However, the properties of PLA can be improved by chemical or physical modification, e.g., with biomolecules. The subject of this review is the modification of PLA properties with three classes of biomolecules: polysaccharides, proteins, and nucleic acids. A quite extensive description of the most promising strategies leading to improvement of the bioactivity of PLA, through modification with these biomolecules, is presented in this review. Thus, this article deals mainly with a presentation of the major developments and research results concerning PLA-based materials modified with different biomolecules (described in the world literature during the last decades), with a focus on such methods as blending, copolymerization, or composites fabrication. The biomedical and unique biological applications of PLA-based materials, especially modified with polysaccharides and proteins, are reviewed, taking into account the growing interest and great practical potential of these new biodegradable biomaterials.
Collapse
Affiliation(s)
- Małgorzata Świerczyńska
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Łódź, Poland
| | - Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
| | - Jerzy J. Chruściel
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
| |
Collapse
|
2
|
Controlled delivery via hot-melt extrusion: A focus on non-biodegradable carriers for non-oral applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
3
|
Radu ER, Voicu SI, Thakur VK. Polymeric Membranes for Biomedical Applications. Polymers (Basel) 2023; 15:polym15030619. [PMID: 36771921 PMCID: PMC9919920 DOI: 10.3390/polym15030619] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Polymeric membranes are selective materials used in a wide range of applications that require separation processes, from water filtration and purification to industrial separations. Because of these materials' remarkable properties, namely, selectivity, membranes are also used in a wide range of biomedical applications that require separations. Considering the fact that most organs (apart from the heart and brain) have separation processes associated with the physiological function (kidneys, lungs, intestines, stomach, etc.), technological solutions have been developed to replace the function of these organs with the help of polymer membranes. This review presents the main biomedical applications of polymer membranes, such as hemodialysis (for chronic kidney disease), membrane-based artificial oxygenators (for artificial lung), artificial liver, artificial pancreas, and membranes for osseointegration and drug delivery systems based on membranes.
Collapse
Affiliation(s)
- Elena Ruxandra Radu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Stefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Correspondence: (S.I.V.); (V.K.T.)
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
- Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
- Correspondence: (S.I.V.); (V.K.T.)
| |
Collapse
|
4
|
Khan BS, Flores-Romero V, LeBlanc J, Lavoie GG. Lactide Polymerization Using Zinc Dichloride Complexes Containing a Neutral Bidentate Ligand with a Diacylated Cyclic Guanidine. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brandon S. Khan
- Department of Chemistry, York University, 4700 Keele St., Toronto, Ontario M3J 1P3, Canada
| | - Víctor Flores-Romero
- Department of Chemistry, York University, 4700 Keele St., Toronto, Ontario M3J 1P3, Canada
| | - Jesse LeBlanc
- Department of Chemistry, York University, 4700 Keele St., Toronto, Ontario M3J 1P3, Canada
| | - Gino G. Lavoie
- Department of Chemistry, York University, 4700 Keele St., Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
5
|
Mundel R, Thakur T, Chatterjee M. Emerging uses of PLA-PEG copolymer in cancer drug delivery. 3 Biotech 2022; 12:41. [PMID: 35070631 PMCID: PMC8748584 DOI: 10.1007/s13205-021-03105-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023] Open
Abstract
Traditional therapies need high systematic dosages that not only destroys cancerous cells but also healthy cells. To overcome this problem recent advancement in nanotechnology specifically in nanomaterials has been extensively done for various biological applications, such as targeted drug delivery. Nanotechnology, as a frontier science, has the potential to break down all the obstacles to be more effective and secure drug delivery system. It is possible to develop nanopolymer based drug carrier that can target drugs with extreme accuracy. Polymers can advance drug delivery technologies by allowing controlled release of therapeutic drugs in stable amounts over long duration of time. For controlled drug delivery, biodegradable synthetic polymers have various benefits over non-biodegradable polymers. Biodegradable polymer either are less toxic or non-toxic. Polylactic Acid (PLA) is one of the most remarkable amphipathic polymers which make it one of the most suitable materials for polymeric micelles. Amphiphilic nanomaterial, such as Polyethylene Glycol (PEG), is one of the most promising carrier for tumor targeting. PLA-PEG as a copolymer has been generally utilized as drug delivery system for the various types of cancer. Chemotherapeutic drugs are stacked into PLA-PEG copolymer and as a result their duration time delays, hence medications arrive at specific tumor site.
Collapse
Affiliation(s)
- Rohit Mundel
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Sector-25, South Campus, Chandigarh, 160014 India
| | - Tanya Thakur
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Sector-25, South Campus, Chandigarh, 160014 India
| | - Mary Chatterjee
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Sector-25, South Campus, Chandigarh, 160014 India
| |
Collapse
|
6
|
Kricheldorf HR, Weidner SM. ROP
of
L‐lactide
and
ε‐caprolactone
catalyzed by tin(
ii
) and tin(
iv
) acetates–switching from
COOH
terminated linear chains to cycles. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hans R. Kricheldorf
- Institut für Technische und Makromolekulare Chemie Bundestr Universität Hamburg Bundesstr. 45 20146 Hamburg Germany
| | - Steffen M. Weidner
- BAM Federal Institute of Materials Research and Testing Richard‐Willstätter‐Str. 11 12489 Berlin Germany
| |
Collapse
|
7
|
Weidner SM, Kricheldorf HR, Scheliga F. Ring‐Expansion Copolymerization of
l
‐Lactide and Glycolide. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Steffen M. Weidner
- BAM, Federal Institute for Material Research and Testing Richard Willstätter Str. 11 Berlin D‐12489 Germany
| | - Hans R. Kricheldorf
- Institut für Technische und Makromolekulare Chemie Universität Hamburg Bundesstr. 45 Hamburg D‐20146 Germany
| | - Felix Scheliga
- Institut für Technische und Makromolekulare Chemie Universität Hamburg Bundesstr. 45 Hamburg D‐20146 Germany
| |
Collapse
|
8
|
Kricheldorf HR, Weidner SM. High molecular weight poly(
l
‐lactide) via
ring‐opening polymerization
with bismuth subsalicylate–The role of cocatalysts. J Appl Polym Sci 2020. [DOI: 10.1002/app.50394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hans R. Kricheldorf
- Institut für Technische und Makromolekulare Chemie Universität Hamburg Hamburg Germany
| | - Steffen M. Weidner
- 6.3 Strukturanalytik BAM ‐ Bundesanstalt für Materialforschung und ‐prüfung (BAM) Berlin Germany
| |
Collapse
|
9
|
Drug-loading capacity of polylactide-based micro- and nanoparticles - Experimental and molecular modeling study. Int J Pharm 2020; 591:120031. [PMID: 33130219 DOI: 10.1016/j.ijpharm.2020.120031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 01/23/2023]
Abstract
Micro- and nanostructures prepared from biodegradable homopolymers and amphiphilic block copolymers (AmBCs) have found application as drug-delivery systems (DDSs). The ability to accumulate a drug is a very important parameter characterizing a given DDS. This work focuses on the impact of DDS size, the packing of polymer chains in the DDS, and drug - polymer matrix compatibility on the hydrophobic drug - loading capacity (DLC) of nano/microcarriers prepared from a biodegradable polymer or its copolymer. Using experimental measurements in combination with atomistic molecular dynamics simulations, an analysis of curcumin encapsulation in microspheres (MSs) from polylactide (PLA) homopolymer and nanoparticles (NPs) from PLA-block-poly(2-methacryloyloxyethylphosphorylcholine) AmBC was performed. The results show that curcumin has good affinity for the PLA matrix due to its hydrophobic nature. However, the DLC value is limited by the fact that curcumin only accumulates in the peripheral part of these structures. Such uneven drug distribution in the PLA matrix results from the non-homogeneous density of MSs (non-uniform packing of the polymer chains in the coil). The results also indicate that the MSs can retain a greater amount of hydrophobic drug compared to the NPs, which is associated with the formation of drug aggregates inside the PLA microparticles.
Collapse
|
10
|
Samanta P, Srivastava R, Nandan B. Fabrication and crystallization behavior of hollow poly(
l
‐lactic acid) nanofibers. POLYMER CRYSTALLIZATION 2020. [DOI: 10.1002/pcr2.10147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pratick Samanta
- Department of Textile Technology Indian Institute of Technology Delhi New Delhi India
- Department of Fiber and Polymer Technology KTH Royal Institute of Technology Stockholm Sweden
| | - Rajiv Srivastava
- Department of Textile Technology Indian Institute of Technology Delhi New Delhi India
| | - Bhanu Nandan
- Department of Textile Technology Indian Institute of Technology Delhi New Delhi India
| |
Collapse
|
11
|
Mirzaie Z, Barati M, Tokmedash MA. Anticancer Drug Delivery Systems Based on Curcumin Nanostructures: A Review. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02203-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Zhou B, Hu S, Zhang P. Isothermal crystalline polymorphs of poly(l-lactic acid) by FTIR coupled with two-dimensional correlation spectroscopy and perturbation-correlation moving-window two-dimensional analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117953. [PMID: 31865107 DOI: 10.1016/j.saa.2019.117953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
The evolutions of the crystalline polymorphs of poly(l-lactic acid) (PLLA) at 85 °C and 145 °C were respectively studied by Fourier transform infrared (FTIR) spectroscopy coupled with two-dimensional correlation spectroscopy (2DCOS) and perturbation-correlation moving-window two-dimensional (PCMW2D) analysis in the carbonyl stretching band region (1820-1720 cm-1). The perturbation region was divided into a few sub-regions by PCMW2D based on the spectral variations. Further 2DCOS analyses were implemented on these sub-regions. Four stages were identified for crystallization at 85 °C, in which the transformation of amorphous PLLA to α'-PLLA was found in the initial stage (0-30 min), while some of α'-PLLA was also changed to α-PLLA in the growth stage (30-150 min). For isothermal crystallization at 145 °C, the amorphous and the intermediate PLLAs were first changed to the crystalline forms in the initial period (0-30 min), then alternate changes between α-, α'- and intermediate phases occurred in the other periods with the extension of crystallization.
Collapse
Affiliation(s)
- Bingyao Zhou
- College of Chemistry, Analysis & Test Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shui Hu
- College of Chemistry, Analysis & Test Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pudun Zhang
- College of Chemistry, Analysis & Test Center, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
13
|
Alves PE, Soares BG, Lins LC, Livi S, Santos EP. Controlled delivery of dexamethasone and betamethasone from PLA electrospun fibers: A comparative study. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Bonadies I, Longo A, Androsch R, Jehnichen D, Göbel M, Di Lorenzo ML. Biodegradable electrospun PLLA fibers containing the mosquito-repellent DEET. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Sungkapreecha C, Iqbal N, Focke WW, Androsch R. Crystallization of poly(
l
‐lactic acid) in solution with the mosquito‐repellent
N
,
N
‐diethyl‐3‐methylbenzamide. POLYMER CRYSTALLIZATION 2019. [DOI: 10.1002/pcr2.10029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chanita Sungkapreecha
- Interdisciplinary Center for Transfer‐oriented Research in Natural SciencesMartin Luther University Halle‐Wittenberg Halle/Saale Germany
| | - Naeem Iqbal
- Interdisciplinary Center for Transfer‐oriented Research in Natural SciencesMartin Luther University Halle‐Wittenberg Halle/Saale Germany
| | - Walter W. Focke
- Department of Chemical Engineering, University of PretoriaInstitute of Sustainable Malaria Control Hatfield South Africa
- Department of Chemical Engineering, University of PretoriaInstitute of Applied Materials Hatfield South Africa
| | - René Androsch
- Interdisciplinary Center for Transfer‐oriented Research in Natural SciencesMartin Luther University Halle‐Wittenberg Halle/Saale Germany
| |
Collapse
|