1
|
Carter MCD, Yin L, Barbon SM, Bremer M, Grigg D, Jing M, Michels K, Izmitli A, Backer S, Leal L, Abramo GP. Biodegradable Alkali-Swellable Emulsion Polymers: Industrial and Commercial Thickeners. Biomacromolecules 2024; 25:3823-3830. [PMID: 38773865 DOI: 10.1021/acs.biomac.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Sustainability and circularity are key issues facing the global polymer industry. The search for biodegradable and environmentally-friendly polymers that can replace conventional materials is a difficult challenge that has been met with limited success. Alternatives must be cost-effective, scalable, and provide equivalent performance. We report that latexes made by the conventional emulsion polymerization of vinyl acetate and functional vinyl ester monomers are efficient thickeners for consumer products and biodegrade in wastewater. This approach uses readily-available starting materials and polymerization is carried out in water at room temperature, in one pot, and generates negligible waste. Moreover, the knowledge that poly(vinyl ester)s are biodegradable will lead to the design of new green polymer materials.
Collapse
Affiliation(s)
- Matthew C D Carter
- Dow Construction Chemicals, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Ligeng Yin
- Home & Personal Care, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Stephanie M Barbon
- Chemical Sciences, The Dow Chemical Company, 633 Washington, Midland, Michigan 48642, United States
| | - Maelyn Bremer
- Chemical Sciences, The Dow Chemical Company, 633 Washington, Midland, Michigan 48642, United States
| | - David Grigg
- Chemical Sciences, The Dow Chemical Company, 633 Washington, Midland, Michigan 48642, United States
| | - Meng Jing
- Analytical Sciences, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Kathleen Michels
- Analytical Sciences, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Aslin Izmitli
- Home & Personal Care, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Scott Backer
- Home & Personal Care, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Lyndsay Leal
- Home & Personal Care, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Graham P Abramo
- Dow Plastics Additives, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
2
|
Aguirre M, Ballard N, Gonzalez E, Hamzehlou S, Sardon H, Calderon M, Paulis M, Tomovska R, Dupin D, Bean RH, Long TE, Leiza JR, Asua JM. Polymer Colloids: Current Challenges, Emerging Applications, and New Developments. Macromolecules 2023; 56:2579-2607. [PMID: 37066026 PMCID: PMC10101531 DOI: 10.1021/acs.macromol.3c00108] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Indexed: 04/18/2023]
Abstract
Polymer colloids are complex materials that have the potential to be used in a vast array of applications. One of the main reasons for their continued growth in commercial use is the water-based emulsion polymerization process through which they are generally synthesized. This technique is not only highly efficient from an industrial point of view but also extremely versatile and permits the large-scale production of colloidal particles with controllable properties. In this perspective, we seek to highlight the central challenges in the synthesis and use of polymer colloids, with respect to both existing and emerging applications. We first address the challenges in the current production and application of polymer colloids, with a particular focus on the transition toward sustainable feedstocks and reduced environmental impact in their primary commercial applications. Later, we highlight the features that allow novel polymer colloids to be designed and applied in emerging application areas. Finally, we present recent approaches that have used the unique colloidal nature in unconventional processing techniques.
Collapse
Affiliation(s)
- Miren Aguirre
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Nicholas Ballard
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Edurne Gonzalez
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Shaghayegh Hamzehlou
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Haritz Sardon
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Marcelo Calderon
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Maria Paulis
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Radmila Tomovska
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Damien Dupin
- CIDETEC,
Parque Científico y Tecnológico de Gipuzkoa, P° Miramón 196, 20014 Donostia-San Sebastian, Spain
| | - Ren H. Bean
- Biodesign
Institute, Center for Sustainable Macromolecular Materials and Manufacturing
(SM3), School of Molecular Sciences, Arizona
State University, Tempe, Arizona 85281, United States
| | - Timothy E. Long
- Biodesign
Institute, Center for Sustainable Macromolecular Materials and Manufacturing
(SM3), School of Molecular Sciences, Arizona
State University, Tempe, Arizona 85281, United States
| | - Jose R. Leiza
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - José M. Asua
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
3
|
Zhang T, Xu G, Blum FD. Eco-Friendly Room-Temperature Polymerization in Emulsions and Beyond. POLYM REV 2023. [DOI: 10.1080/15583724.2023.2176514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Tan Zhang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
- Environmental Research Center, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Gu Xu
- Brewer Science Inc., Rolla, Missouri, USA
| | - Frank D. Blum
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
4
|
Davoodi S, Al-Shargabi M, Woodc DA, Rukavishnikov VS, Minaev KM. Thermally stable and salt-resistant synthetic polymers as drilling fluid additives for deployment in harsh sub-surface conditions: A review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Otieno DB, Bosire GO, Onyari JM, Mwabora JM. Comparative analysis of 3D-printed polylactic acid and acrylonitrile butadiene styrene: Experimental and Materials-Studio-based theoretical studies. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Casas-Soto CR, Conejo-Dávila AS, Osuna V, Chávez-Flores D, Espinoza-Hicks JC, Flores-Gallardo SG, Vega-Rios A. Dibutyl Itaconate and Lauryl Methacrylate Copolymers by Emulsion Polymerization for Development of Sustainable Pressure-Sensitive Adhesives. Polymers (Basel) 2022; 14:polym14030632. [PMID: 35160621 PMCID: PMC8840584 DOI: 10.3390/polym14030632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 02/05/2023] Open
Abstract
Renewable polymers possess the potential to replace monomers from petrochemical sources. The design and development of polymeric materials from sustainable materials are a technological challenge. The main objectives of this study were to study the microstructure of copolymers based on itaconic acid (IA), di-n-butyl itaconate (DBI), and lauryl methacrylate (LMA); and to explore and to evaluate these copolymers as pressure-sensitive adhesives (PSA). The copolymer synthesis was carried out through batch emulsion radical polymerization, an environmentally friendly process. IA was used in a small fixed amount as a functional comonomer, and LMA was selected due to low glass transition temperature (Tg). The structure of synthesized copolymers was studied by FTIR, 1H-NMR, Soxhlet extraction, and molecular weight analyses by GPC. Furthermore, the viscoelastic and thermal properties of copolymer films were characterized by DMA, DSC, and TGA. The single Tg displayed by the poly(DBI-LMA-IA) terpolymers indicates that statistical random composition copolymers were obtained. Moreover, FTIR and NMR spectra confirm the chemical structure and composition. It was found that a cross-linked microstructure and higher molecular weight are observed with an increase of LMA in the feed led. The Tg and modulus (G′) of the copolymers film can be tuned with the ratio of DBI:LMA providing a platform for a wide range of applications as a biobased alternative to produce waterborne PSA.
Collapse
Affiliation(s)
- Carlos Rafael Casas-Soto
- Departament of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, SC, Miguel de Cervantes No. 120, Chihuahua C.P. 31136, Mexico; (C.R.C.-S.); (A.S.C.-D.); (S.G.F.-G.)
| | - Alain Salvador Conejo-Dávila
- Departament of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, SC, Miguel de Cervantes No. 120, Chihuahua C.P. 31136, Mexico; (C.R.C.-S.); (A.S.C.-D.); (S.G.F.-G.)
| | - Velia Osuna
- Consejo Nacional de Ciencia y Tecnología (CONACyT)—Centro de Investigación en Materiales Avanzados, SC (CIMAV), Miguel de Cervantes No. 120, Chihuahua C.P. 31136, Mexico;
| | - David Chávez-Flores
- Facultad de Ciencias en Química, Universidad Autonóma de Chihuahua, Chihuahua C.P. 31125, Mexico; (D.C.-F.); (J.C.E.-H.)
| | - José Carlos Espinoza-Hicks
- Facultad de Ciencias en Química, Universidad Autonóma de Chihuahua, Chihuahua C.P. 31125, Mexico; (D.C.-F.); (J.C.E.-H.)
| | - Sergio Gabriel Flores-Gallardo
- Departament of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, SC, Miguel de Cervantes No. 120, Chihuahua C.P. 31136, Mexico; (C.R.C.-S.); (A.S.C.-D.); (S.G.F.-G.)
| | - Alejandro Vega-Rios
- Departament of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, SC, Miguel de Cervantes No. 120, Chihuahua C.P. 31136, Mexico; (C.R.C.-S.); (A.S.C.-D.); (S.G.F.-G.)
- Correspondence: ; Tel.: +52-01-614-439-4831
| |
Collapse
|
7
|
Gabriel VA, Champagne P, Cunningham MF, Dubé MA. In‐situ addition of carboxylated cellulose nanocrystals in seeded semi‐batch emulsion polymerization. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vida A. Gabriel
- Department of Chemical and Biological Engineering Centre for Catalysis Research and Innovation, University of Ottawa Ottawa Ontario Canada
| | - Pascale Champagne
- Department of Chemical Engineering Queen's University Kingston Ontario Canada
| | | | - Marc A. Dubé
- Department of Chemical and Biological Engineering Centre for Catalysis Research and Innovation, University of Ottawa Ottawa Ontario Canada
| |
Collapse
|
8
|
Pakdel AS, Niinivaara E, Cranston ED, Berry RM, Dubé MA. Cellulose Nanocrystal (CNC)-Latex Nanocomposites: Effect of CNC Hydrophilicity and Charge on Rheological, Mechanical, and Adhesive Properties. Macromol Rapid Commun 2020; 42:e2000448. [PMID: 33047439 DOI: 10.1002/marc.202000448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022]
Abstract
Cellulose nanocrystals (CNCs), a sustainable nanomaterial, are in situ incorporated into emulsion-based pressure-sensitive adhesives (PSAs). Commercially available CNCs with different surface hydrophilicity and surface charge (CNC101 and CNC103 from CelluForce) are used to explore their role in PSA property modification. Viscosity measurements and atomic force microscopy reveal differences in degree of association between the CNCs and the latex particles depending on the surface properties of the CNCs. The more hydrophilic and higher surface charge CNCs (CNC101) show less association with the latex particles. Dynamic strain sweep tests are used to analyze the strain-softening of the nanocomposites based on CNC type and loading. The CNC101 nanocomposites soften at lower strains than their CNC103 counterparts. This behavior is confirmed via dynamic frequency tests and modeling of the nanocomposites' storage moduli, which suggest the formation of CNC aggregates of, on average, 3.8 CNC101 and 1.3 CNC103 nanoparticles. Finally, PSA properties, i.e., tack, peel strength, and shear strength, simultaneously increase upon addition of both CNC types, although to different extents. The relationship between the PSA properties and CNC surface properties confirms that the less hydrophilic CNCs lead to improved CNC dispersion in the PSA films and therefore, enhance PSA properties.
Collapse
Affiliation(s)
- Amir Saeid Pakdel
- Department of Chemical and Biological EngineeringCentre for Catalysis Research and Innovation, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, ON, K1N 6N5, Canada
| | - Elina Niinivaara
- Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI0076 Aalto, Espoo, 02150, Finland
| | - Emily D Cranston
- Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Richard M Berry
- CelluForce, 625 President Kennedy Ave., Suite 1705, Montreal, QC, H3A 1K2, Canada
| | - Marc A Dubé
- Department of Chemical and Biological EngineeringCentre for Catalysis Research and Innovation, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
9
|
Pigłowska M, Kurc B, Kubiak A. Physicochemical properties of raw starches and their impact on electrochemical activity - Biomolecule-based anode material. Bioelectrochemistry 2020; 136:107619. [PMID: 32731195 DOI: 10.1016/j.bioelechem.2020.107619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022]
Abstract
Starch is a modern and prospective biodegradable material, which could improve lithium-ion batteries by making them safer and thus increasing the energy density and capacity of the cells. The main aim of this study was to research the influence of the physical and chemical properties of different botanical origin starches on their electrochemical properties. The investigation was carried out by examining the colloid stability of starches in water solution at room temperature, and the size of particles, which gave really good stability results. Moreover, the vibrations and the functional groups structure were described by Fourier Transform Infrared Spectroscopy (FTIR). The surface properties were characterized by determining the specific surface area, pore diameter and volume diameter. The structures of the granules were determined by scanning electron microscope (SEM) measurement. The results of the electrochemical investigations showed good cyclic reversibility and stability. The research was aimed at improving and modifying current lithium-ion cells using biodegradable material as an active anode material, which is connected with the currently well-known "Green Chemistry".
Collapse
Affiliation(s)
- Marita Pigłowska
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Beata Kurc
- Institute of Chemistry and Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Adam Kubiak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| |
Collapse
|
10
|
Chen H, Zhao R, Hu J, Wei Z, McClements DJ, Liu S, Li B, Li Y. One-Step Dynamic Imine Chemistry for Preparation of Chitosan-Stabilized Emulsions Using a Natural Aldehyde: Acid Trigger Mechanism and Regulation and Gastric Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5412-5425. [PMID: 32320613 DOI: 10.1021/acs.jafc.9b08301] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chitosan is a polysaccharide widely used as a structuring agent in foods and other materials because of its positive charge (amino groups). At present, however, it is difficult to form and stabilize emulsions using chitosan due to its high hydrophilicity. In this study, oil-in-water emulsions were prepared using a one-pot green-chemistry method. The chitosan and aldehyde molecules were in situ interfacially conjugated during homogenization, which promoted the adsorption of chitosan onto the oil droplet surfaces where they created a protective coating. The universality of this method was verified by using chitosan with different molecular weights and four kinds of natural aldehydes [cinnamaldehyde (CA), citral (CT), citronella (CN), and vanillin (VL)]. Chitosan with higher molecular weight facilitated the formation of emulsions. By harnessing the dynamic covalent nature of imine bonds, chitosan emulsions with an imine link display dynamic behavior with acid-catalyzed hydrolysis. The aldehyde structure could control the pH point of trigger for breakdown of emulsions, which was 1.0, 3.0, 4.0, and 4.0 for CA emulsion, CT emulsion, CN emulsion, and VL emulsion, respectively. At pH 6.5, aldehyde helped to decrease the interfacial tension of chitosan to about 10 mN/m, while this value would increase if the pH decreased by adding acid during the measurement. Chemical kinetics studies indicated that the hydrophobicity and conjugation effect of the aldehyde together determined the trigger points and properties of the emulsion. Finally, we used the optimized emulsions to encapsulate and control the release of curcumin. The gastric release behavior of the curcumin depended on aldehyde structure: VL > CN > CT ≈ CA. Hence, a tailor-made trigger release emulsion system can be achieved by rational selection and design of aldehyde structure to control hydrophobicity and conjugation effect of aldehydes.
Collapse
Affiliation(s)
- Huanle Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Runan Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zixiang Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
11
|
Rajput J, Koli S, Mohite B, Bendre R, Patil S, Patil V. A green tactic for the synthesis of classical 3,3-bisindolylmethanes in waste curd water. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
12
|
Zhang Y, Cunningham MF, Smeets NMB, Dubé MA. Increasing Starch Nanoparticle Content in Emulsion Polymer Latexes. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yujie Zhang
- Department of Chemical and Biological Engineering, Centre for Catalysis Research and Innovation, University of Ottawa, 161 Louis Pasteur Private, Ottawa, Ontario K1N 6N5, Canada
| | - Michael F. Cunningham
- Department of Chemical Engineering, Queen’s University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
| | | | - Marc A. Dubé
- Department of Chemical and Biological Engineering, Centre for Catalysis Research and Innovation, University of Ottawa, 161 Louis Pasteur Private, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
13
|
Dastjerdi Z, Cranston ED, Berry R, Fraschini C, Dubé MA. Polymer Nanocomposites for Emulsion‐Based Coatings and Adhesives. MACROMOL REACT ENG 2018. [DOI: 10.1002/mren.201800050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zahra Dastjerdi
- Department of Chemical and Biological EngineeringCentre for Catalysis Research and InnovationUniversity of Ottawa 161 Louis Pasteur Pvt. Ottawa ON K1N 6N5 Canada
| | - Emily D. Cranston
- Department of Chemical EngineeringMcMaster University 1280 Main Street West Hamilton ON L8S 4L7 Canada
| | - Richard Berry
- CelluForce, 625 President Kennedy Ave., Suite 1501 Montreal QC H3A 1K2 Canada
| | - Carole Fraschini
- FPInnovations, 570 St Jean Blvd. Pointe‐Claire QC H9R 3J9 Canada
| | - Marc A. Dubé
- Department of Chemical and Biological EngineeringCentre for Catalysis Research and InnovationUniversity of Ottawa 161 Louis Pasteur Pvt. Ottawa ON K1N 6N5 Canada
| |
Collapse
|
14
|
|