1
|
Ollier RC, Xiang Y, Yacovelli AM, Webber MJ. Biomimetic strain-stiffening in fully synthetic dynamic-covalent hydrogel networks. Chem Sci 2023; 14:4796-4805. [PMID: 37181784 PMCID: PMC10171040 DOI: 10.1039/d3sc00011g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Mechanoresponsiveness is a ubiquitous feature of soft materials in nature; biological tissues exhibit both strain-stiffening and self-healing in order to prevent and repair deformation-induced damage. These features remain challenging to replicate in synthetic and flexible polymeric materials. In recreating both the mechanical and structural features of soft biological tissues, hydrogels have been often explored for a number of biological and biomedical applications. However, synthetic polymeric hydrogels rarely replicate the mechanoresponsive character of natural biological materials, failing to match both strain-stiffening and self-healing functionality. Here, strain-stiffening behavior is realized in fully synthetic ideal network hydrogels prepared from flexible 4-arm polyethylene glycol macromers via dynamic-covalent boronate ester crosslinks. Shear rheology reveals the strain-stiffening response in these networks as a function of polymer concentration, pH, and temperature. Across all three of these variables, hydrogels of lower stiffness exhibit higher degrees of stiffening, as quantified by the stiffening index. The reversibility and self-healing nature of this strain-stiffening response is also evident upon strain-cycling. The mechanism underlying this unusual stiffening response is attributed to a combination of entropic and enthalpic elasticity in these crosslink-dominant networks, contrasting with natural biopolymers that primarily strain-stiffen due to a strain-induced reduction in conformational entropy of entangled fibrillar structures. This work thus offers key insights into crosslink-driven strain-stiffening in dynamic-covalent phenylboronic acid-diol hydrogels as a function of experimental and environmental parameters. Moreover, the biomimetic mechano- and chemoresponsive nature of this simple ideal-network hydrogel offers a promising platform for future applications.
Collapse
Affiliation(s)
- Rachel C Ollier
- Department of Chemical & Biomolecular Engineering, University of Notre Dame Notre Dame IN 46556 USA
| | - Yuanhui Xiang
- Department of Chemical & Biomolecular Engineering, University of Notre Dame Notre Dame IN 46556 USA
| | - Adriana M Yacovelli
- Department of Chemical & Biomolecular Engineering, University of Notre Dame Notre Dame IN 46556 USA
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame Notre Dame IN 46556 USA
| |
Collapse
|
2
|
Altinbasak I, Kocak S, Colby AH, Alp Y, Sanyal R, Grinstaff MW, Sanyal A. pH-Responsive nanofiber buttresses as local drug delivery devices. Biomater Sci 2023; 11:813-821. [PMID: 36408890 PMCID: PMC9930888 DOI: 10.1039/d2bm01199a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electrospun nanofibers are a 3D scaffold of choice for many drug delivery devices due to their high surface area, significant capacity for drug payload, ease of in situ placement, and scalable manufacture. Herein, we report the synthesis of polymeric, pH-responsive nanofiber buttresses via electrospinning. The homopolymer is comprised of an acrylic backbone with acid-sensitive, hydrolyzable, trimethoxybenzaldehyde-protected side chains that lead to buttress transformation from a hydrophobic to a hydrophilic state under physiologically relevant pH conditions (e.g., extracellular tumor environment with pH = 6.5). Hydrolysis of the side chains leads to an increase in fiber diameter from approximately 350 to 900 nm and the release of the encapsulated drug cargo. In vitro drug release profiles demonstrate that significantly more drug is released at pH 5.5 compared to pH 7.4, thereby limiting the release to the target site, with docetaxel releasing over 20 days and doxorubicin over 7 days. Drug burst release, defined as >50% within 24 hours, does not occur at either pH or with either drug. Drug-loaded buttresses preserve drug activity and are cytotoxic to multiple human cancer lines, including breast and lung. Important to their potential application in surgical applications, the tensile strength of the buttresses is 6.3 kPa and, though weaker than commercially available buttresses, they provide sufficient flexibility and mechanical integrity to serve as buttressing materials via the application with a conventional surgical cutting stapler.
Collapse
Affiliation(s)
- Ismail Altinbasak
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
| | - Salli Kocak
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
| | - Aaron H Colby
- Boston University, Department of Biomedical Engineering, Boston, MA, USA.
| | - Yasin Alp
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Mark W Grinstaff
- Boston University, Department of Biomedical Engineering, Boston, MA, USA.
- Boston University, Department of Chemistry, Boston, MA, USA
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| |
Collapse
|
3
|
Recent Advances in Smart Hydrogels Prepared by Ionizing Radiation Technology for Biomedical Applications. Polymers (Basel) 2022; 14:polym14204377. [PMID: 36297955 PMCID: PMC9608571 DOI: 10.3390/polym14204377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Materials with excellent biocompatibility and targeting can be widely used in the biomedical field. Hydrogels are an excellent biomedical material, which are similar to living tissue and cannot affect the metabolic process of living organisms. Moreover, the three-dimensional network structure of hydrogel is conducive to the storage and slow release of drugs. Compared to the traditional hydrogel preparation technologies, ionizing radiation technology has high efficiency, is green, and has environmental protection. This technology can easily adjust mechanical properties, swelling, and so on. This review provides a classification of hydrogels and different preparation methods and highlights the advantages of ionizing radiation technology in smart hydrogels used for biomedical applications.
Collapse
|
4
|
Kandemir D, Luleburgaz S, Gunay US, Durmaz H, Kumbaraci V. Ultrafast Poly(disulfide) Synthesis in the Presence of Organocatalysts. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dilhan Kandemir
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Serter Luleburgaz
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Ufuk Saim Gunay
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Hakan Durmaz
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Volkan Kumbaraci
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
5
|
Balzade Z, Sharif F, Ghaffarian Anbaran SR. Tailor-Made Functional Polyolefins of Complex Architectures: Recent Advances, Applications, and Prospects. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zahra Balzade
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | - Farhad Sharif
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | | |
Collapse
|
6
|
Mei L, Zhang D, Shao H, Hao Y, Zhang T, Zheng W, Ji Y, Ling P, Lu Y, Zhou Q. Injectable and Self-Healing Probiotics-Loaded Hydrogel for Promoting Superbacteria-Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20538-20550. [PMID: 35471815 DOI: 10.1021/acsami.1c23713] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Superbacteria-induced skin wound infections are huge health challenges, resulting in significant financial and medical costs due to notable morbidity and mortality worldwide. Probiotics are found in the skin and are effective in treating bacterial infection, moderating the microbial dysbiosis and inflammation induced by pathogens, regulating the immune system, as well as even promoting tissue repair. However, improving their colonization efficiency and viability remains a large obstacle for proper applications. Inspired by probiotic therapy and the natural extracellular matrix structure, hyaluronate-adipic dihydrazide/aldehyde-terminated Pluronic F127/fucoidan hydrogels loaded with Lactobacillus rhamnosus (HPF@L.rha) with unique (bio)physicochemical characteristics were developed through the dynamic Schiff-base reaction for superbacteria-infected trauma management. The developed HPF@L.rha exhibit a shortened gelation time, enhanced mechanical strength, and excellent self-healing and liquid-absorption abilities. Importantly, their anti-superbacteria (Pseudomonas aeruginosa) effect was greatly increased in a dose-dependent fashion. Additionally, in vitro evaluation shows that the prepared HPF@L.rha containing appropriate probiotic concentrations (less than 1 × 107 CFU/mL) possess satisfactory cytocompatibility and blood compatibility. Further, compared to the HPF hydrogel, in vivo the hydrogel combined with probiotics significantly inhibits P. aeruginosa infection and inflammation, promotes the formation of re-epithelialization and collagen, and thus accelerates full-thickness superbacteria-infected wound repair, which is comparable to commercial Prontosan gel formulation. This work suggests that the combination of biomimicking hydrogels and probiotic therapy displays the great potential to manage superbug-infected trauma.
Collapse
Affiliation(s)
- Li Mei
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin 300038, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Dongjie Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Huarong Shao
- Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Yuanping Hao
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Ting Zhang
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Weiping Zheng
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Yanjing Ji
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Peixue Ling
- Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Yun Lu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Qihui Zhou
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin 300038, China
| |
Collapse
|
7
|
Kilic Boz R, Aydin D, Kocak S, Golba B, Sanyal R, Sanyal A. Redox-Responsive Hydrogels for Tunable and "On-Demand" Release of Biomacromolecules. Bioconjug Chem 2022; 33:839-847. [PMID: 35446015 PMCID: PMC9121344 DOI: 10.1021/acs.bioconjchem.2c00094] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
In
recent years, stimuli-responsive degradation has emerged as
a desirable design criterion for functional hydrogels to tune the
release of encapsulated payload as well as ensure degradation of the
gel upon completion of its function. Herein, redox-responsive hydrogels
with a well-defined network structure were obtained using a highly
efficient thiol-disulfide exchange reaction. In particular, gelation
occurred upon combining thiol-terminated tetra-arm polyethylene glycol
(PEG) polymers with linear telechelic PEG-based polymers containing
pyridyl disulfide units at their chain ends. Rapid gelation proceeds
with good conversions (>85%) to yield macroporous hydrogels possessing
high water uptake. Furthermore, due to the presence of the disulfide
linkages, the thus-obtained hydrogels can self-heal. The obtained
hydrogels undergo complete degradation when exposed to environments
rich in thiol-containing agents such as dithiothreitol (DTT) and L-glutathione
(GSH). Also, the release profile of encapsulated protein, namely,
bovine serum albumin, can be tuned by varying the molecular weight
of the polymeric precursors. Additionally, it was demonstrated that
complete dissolution of the hydrogel to rapidly release the encapsulated
protein occurs upon treating these hydrogels with DTT. Cytotoxicity
evaluation of the hydrogels and their degradation products indicated
the benign nature of these hydrogels. Additionally, the cytocompatible
nature of these materials was also evident from a live/dead cell viability
assay. One can envision that the facile fabrication and their ability
to degrade on-demand and release their payload will make these benign
polymeric scaffolds attractive for various biomedical applications.
Collapse
Affiliation(s)
- Ruveyda Kilic Boz
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
| | - Duygu Aydin
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
| | - Salli Kocak
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
| | - Bianka Golba
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey.,Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey.,Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
8
|
Degirmenci A, Sanyal R, Arslan M, Sanyal A. Benzothiazole-disulfide based redox-responsive polymers: facile access to reversibly functionalizable polymeric coatings. Polym Chem 2022. [DOI: 10.1039/d2py00133k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Redox-responsive polymers and polymeric coatings containing benzothiazole-disulfide groups provide facile access to reversibly functionalizable platforms.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department of Chemistry, Bogazici University, Bebek, Istanbul, 34342, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkey
| | - Mehmet Arslan
- Department of Polymer Materials Engineering, Faculty of Engineering, Yalova University, Yalova 77200, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkey
| |
Collapse
|
9
|
Wu M, Peng QY, Han LB, Zeng HB. Self-healing Hydrogels and Underlying Reversible Intermolecular Interactions. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2631-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Pham HQ, Nguyen ADS, Nguyen LT, Truong TT, Doan TCD, Huynh KPH, Nguyen HT, Nguyen LTT. A reversible healable epoxy network containing dynamic weak covalent crosslinks. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|