1
|
Chen J, Garfinkel DJ, Bergman CM. Horizontal transfer and recombination fuel Ty4 retrotransposon evolution in Saccharomyces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572574. [PMID: 38187645 PMCID: PMC10769310 DOI: 10.1101/2023.12.20.572574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Horizontal transposon transfer (HTT) plays an important role in the evolution of eukaryotic genomes, however the detailed evolutionary history and impact of most HTT events remain to be elucidated. To better understand the process of HTT in closely-related microbial eukaryotes, we studied Ty4 retrotransposon subfamily content and sequence evolution across the genus Saccharomyces using short- and long-read whole genome sequence data, including new PacBio genome assemblies for two S. mikatae strains. We find evidence for multiple independent HTT events introducing the Tsu4 subfamily into specific lineages of S. paradoxus, S. cerevisiae, S. eubayanus, S. kudriavzevii and the ancestor of the S. mikatae/S. jurei species pair. In both S. mikatae and S. kudriavzevii, we identified novel Ty4 clades that were independently generated through recombination between resident and horizontally-transferred subfamilies. Our results reveal that recurrent HTT and lineage-specific extinction events lead to a complex pattern of Ty4 subfamily content across the genus Saccharomyces. Moreover, our results demonstrate how HTT can lead to coexistence of related retrotransposon subfamilies in the same genome that can fuel evolution of new retrotransposon clades via recombination.
Collapse
Affiliation(s)
- Jingxuan Chen
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - David J. Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Casey M. Bergman
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Bazzicalupo A. Local adaptation in fungi. FEMS Microbiol Rev 2022; 46:6604384. [PMID: 35675293 DOI: 10.1093/femsre/fuac026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 01/09/2023] Open
Abstract
In this review, I explore the pervasive but underappreciated role of local adaptation in fungi. It has been difficult historically to study local adaptation in fungi because of the limited understanding of fungal species and their traits, but new hope has been offered with technological advances in sequencing. The filamentous nature of fungi invalidates some assumptions made in evolution because of their ability to exist as multinucleate entities with genetically different nuclei sharing the same cytoplasm. Many insights on local adaptation have come from studying fungi, and much of the empirical evidence gathered about local adaptation in the context of host-pathogen interactions comes from studying fungal virulence genes, drug resistance, and environmental adaptation. Together, these insights paint a picture of the variety of processes involved in fungal local adaptation and their connections to the unusual cell biology of Fungi (multinucleate, filamentous habit), but there is much that remains unknown, with major gaps in our knowledge of fungal species, their phenotypes, and the ways by which they adapt to local conditions.
Collapse
Affiliation(s)
- Anna Bazzicalupo
- Department of Zoology, University of British Columbia, 4200 - 6270 University Blvd., Vancouver V6T 1Z4, Canada
| |
Collapse
|
3
|
Tullio V. Yeast Genomics and Its Applications in Biotechnological Processes: What Is Our Present and Near Future? J Fungi (Basel) 2022; 8:jof8070752. [PMID: 35887507 PMCID: PMC9315801 DOI: 10.3390/jof8070752] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Since molecular biology and advanced genetic techniques have become important tools in a variety of fields of interest, including taxonomy, identification, classification, possible production of substances and proteins, applications in pharmacology, medicine, and the food industry, there has been significant progress in studying the yeast genome and its potential applications. Because of this potential, as well as their manageability, safety, ease of cultivation, and reproduction, yeasts are now being extensively researched in order to evaluate a growing number of natural and sustainable applications to provide many benefits to humans. This review will describe what yeasts are, how they are classified, and attempt to provide a rapid overview of the many current and future applications of yeasts. The review will then discuss how yeasts—including those molecularly modified—are used to produce biofuels, proteins such as insulin, vaccines, probiotics, beverage preparations, and food additives and how yeasts could be used in environmental bioremediation and biocontrol for plant infections. This review does not delve into the issues raised during studies and research, but rather presents the positive outcomes that have enabled several industrial, clinical, and agricultural applications in the past and future, including the most recent on cow-free milk.
Collapse
Affiliation(s)
- Vivian Tullio
- Department Public Health and Pediatrics, Microbiology Division, University of Turin, Via Santena 9, 10126 Torino, Italy
| |
Collapse
|
4
|
The teenage years of yeast population genomics trace history, admixing and getting wilder. Curr Opin Genet Dev 2022; 75:101942. [PMID: 35753210 DOI: 10.1016/j.gde.2022.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
Abstract
Population genomics studies the evolutionary processes that shape intraspecies genetic variations. In this review, I explore the insights into yeast-population genomics that have emerged from recent advances in sequencing. Genomes of the model Saccharomyces cerevisiae and many new yeast species from around the world are being used to address various aspects of population biology, including geographical origin, the level of introgression, domestication signatures, and outcrossing frequency. New long-read sequencing has enabled a greater capacity to quantify these variations at a finer resolution from complete de novo genomes at the population scale to phasing subgenomes of different origins. These resources provide a platform to dissect the relationship between phenotypes across environmental niches.
Collapse
|
5
|
Spurley WJ, Fisher KJ, Langdon QK, Buh KV, Jarzyna M, Haase MAB, Sylvester K, Moriarty RV, Rodriguez D, Sheddan A, Wright S, Sorlie L, Hulfachor AB, Opulente DA, Hittinger CT. Substrate, temperature, and geographical patterns among nearly 2000 natural yeast isolates. Yeast 2022; 39:55-68. [PMID: 34741351 PMCID: PMC8881392 DOI: 10.1002/yea.3679] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023] Open
Abstract
Yeasts have broad importance as industrially and clinically relevant microbes and as powerful models for fundamental research, but we are only beginning to understand the roles yeasts play in natural ecosystems. Yeast ecology is often more difficult to study compared to other, more abundant microbes, but growing collections of natural yeast isolates are beginning to shed light on fundamental ecological questions. Here, we used environmental sampling and isolation to assemble a dataset of 1962 isolates collected from throughout the contiguous United States of America (USA) and Alaska, which were then used to uncover geographic patterns, along with substrate and temperature associations among yeast taxa. We found some taxa, including the common yeasts Torulaspora delbrueckii and Saccharomyces paradoxus, to be repeatedly isolated from multiple sampled regions of the USA, and we classify these as broadly distributed cosmopolitan yeasts. A number of yeast taxon-substrate associations were identified, some of which were novel and some of which support previously reported associations. Further, we found a strong effect of isolation temperature on the phyla of yeasts recovered, as well as for many species. We speculate that substrate and isolation temperature associations reflect the ecological diversity of and niche partitioning by yeast taxa.
Collapse
Affiliation(s)
| | | | | | - Kelly V. Buh
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Martin Jarzyna
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Max A. B. Haase
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53726, USA; Vilcek Institute of Graduate Biomedical Sciences and Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Kayla Sylvester
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53726, USA; Dept. of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
| | - Ryan V. Moriarty
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Daniel Rodriguez
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Angela Sheddan
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53726, USA; West Carroll High School, Savannah, IL 61074, USA
| | - Sarah Wright
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53726, USA; EAGLE School of Madison, Fitchburg, WI 53711, USA
| | - Lisa Sorlie
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53726, USA; School District of Bonduel, Bonduel, WI 54107, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53726, USA
| | | | | |
Collapse
|
6
|
He PY, Shao XQ, Duan SF, Han DY, Li K, Shi JY, Zhang RP, Han PJ, Wang QM, Bai FY. Highly diverged lineages of Saccharomyces paradoxus in temperate to subtropical climate zones in China. Yeast 2021; 39:69-82. [PMID: 34961959 DOI: 10.1002/yea.3688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/06/2022] Open
Abstract
The wild yeast Saccharomyces paradoxus has become a new model in ecology and evolutionary biology. Different lineages of S. paradoxus have been recognized across the world, but the distribution and genetic diversity of the species remain unknown in China, where the origin of its sibling species S. cerevisiae lies. In this study, we investigated the ecological and geographic distribution of S. paradoxus through an extensive field survey in China and performed population genomic analysis on a set of S. paradoxus strains, including 27 strains, representing different geographic and ecological origins within China, and 59 strains representing all the known lineages of the species recognized in the other regions of the world so far. We found two distinct lineages of S. paradoxus in China. The majority of the Chinese strains studied belong to the Far East lineage, and six strains belong to a novel highly diverged lineage. The distribution of these two lineages overlaps ecologically and geographically in temperate to subtropical climate zones in China. With the addition of the new China lineage, the Eurasian population of S. paradoxus exhibits higher genetic diversity than the American population. We observed more possible lineage-specific introgression events from the Eurasian lineages than from the American lineages. Our results expand the knowledge on ecology, genetic diversity, biogeography, and evolution of S. paradoxus.
Collapse
Affiliation(s)
- Peng-Yu He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Qian Shao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Genetic Engineering Division, China National Intellectual Property Administration (CNIPA), Beijing, China
| | - Shou-Fu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jun-Yan Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ri-Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qi-Ming Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Álvarez-Pérez S, Dhami MK, Pozo MI, Crauwels S, Verstrepen KJ, Herrera CM, Lievens B, Jacquemyn H. Genetic admixture increases phenotypic diversity in the nectar yeast Metschnikowia reukaufii. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2020.101016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Plante S, Landry CR. Closely related budding yeast species respond to different ecological signals for spore activation. Yeast 2020; 38:81-89. [PMID: 33202071 DOI: 10.1002/yea.3538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/27/2020] [Accepted: 11/10/2020] [Indexed: 01/20/2023] Open
Abstract
Spore activation is one of the most important developmental decisions in fungi as it initiates the transition from dormant and stress-resistant cells to vegetative cells. Because in many species mating follows spore activation and germination, signals that trigger this developmental transition can also contribute to species reproductive barriers. Here, we examine the biochemical signals triggering spore activation in a natural species complex of budding yeast, Saccharomyces paradoxus (lineages SpA, SpB, SpC and SpC*). We first demonstrate that we can quantitatively monitor spore activation in these closely related lineages. Second, we dissect the composition of culture media to identify components necessary and/or sufficient to activate spores in the four lineages. We show that, contrary to expectation, glucose is necessary but not sufficient to trigger spore activation. We also show that two of the North American lineages (SpC and SpC*) diverge from the other North American (SpB) and European (SpA) lineages in terms of germination signal as their spore activation requires inorganic phosphate. Our results show that the way budding yeast interpret environmental conditions during spore activation diverged among closely related and incipient species, which means that it may play a role in their ecological differentiation and reproductive isolation. TAKE AWAY: Sensing of multiple compounds allows spore activation in non-domesticated budding yeast. Spore activation cues differ among Saccharomyces paradoxus lineages. Dextrose and phosphate signal activation in SpC and SpC* spores.
Collapse
Affiliation(s)
- Samuel Plante
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, Québec, Québec, Canada.,Département de biologie, Université Laval, Québec, Québec, Canada.,Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, Québec, Canada.,Centre de recherche en données massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, Québec, Québec, Canada.,Département de biologie, Université Laval, Québec, Québec, Canada.,Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, Québec, Canada.,Centre de recherche en données massives (CRDM), Université Laval, Québec, Québec, Canada
| |
Collapse
|
9
|
Hénault M, Marsit S, Charron G, Landry CR. The effect of hybridization on transposable element accumulation in an undomesticated fungal species. eLife 2020; 9:e60474. [PMID: 32955438 PMCID: PMC7584455 DOI: 10.7554/elife.60474] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that can profoundly impact the evolution of genomes and species. A long-standing hypothesis suggests that hybridization could deregulate TEs and trigger their accumulation, although it received mixed support from studies mostly in plants and animals. Here, we tested this hypothesis in fungi using incipient species of the undomesticated yeast Saccharomyces paradoxus. Population genomic data revealed no signature of higher transposition in natural hybrids. As we could not rule out the elimination of past transposition increase signatures by natural selection, we performed a laboratory evolution experiment on a panel of artificial hybrids to measure TE accumulation in the near absence of selection. Changes in TE copy numbers were not predicted by the level of evolutionary divergence between the parents of a hybrid genotype. Rather, they were highly dependent on the individual hybrid genotypes, showing that strong genotype-specific deterministic factors govern TE accumulation in yeast hybrids.
Collapse
Affiliation(s)
- Mathieu Hénault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
| | - Souhir Marsit
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| | - Guillaume Charron
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| |
Collapse
|