1
|
Barmentlo NWG, Meirmans PG, Stiver WH, Yarkovich JG, McCann BE, Piaggio AJ, Wright D, Smyser TJ, Bosse M. Natural selection on feralization genes contributed to the invasive spread of wild pigs throughout the United States. Mol Ecol 2024; 33:e17383. [PMID: 38747342 DOI: 10.1111/mec.17383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
Despite a long presence in the contiguous United States (US), the distribution of invasive wild pigs (Sus scrofa × domesticus) has expanded rapidly since the 1980s, suggesting a more recent evolutionary shift towards greater invasiveness. Contemporary populations of wild pigs represent exoferal hybrid descendants of domestic pigs and European wild boar, with such hybridization expected to enrich genetic diversity and increase the adaptive potential of populations. Our objective was to characterize how genetic enrichment through hybridization increases the invasiveness of populations by identifying signals of selection and the ancestral origins of selected loci. Our study focused on invasive wild pigs within Great Smoky Mountains National Park, which represents a hybrid population descendent from the admixture of established populations of feral pigs and an introduction of European wild boar to North America. Accordingly, we genotyped 881 wild pigs with multiple high-density single-nucleotide polymorphism (SNP) arrays. We found 233 markers under putative selection spread over 79 regions across 16 out of 18 autosomes, which contained genes involved in traits affecting feralization. Among these, genes were found to be related to skull formation and neurogenesis, with two genes, TYRP1 and TYR, also encoding for crucial melanogenesis enzymes. The most common haplotypes associated with regions under selection for the Great Smoky Mountains population were also common among other populations throughout the region, indicating a key role of putatively selective variants in the fitness of invasive populations. Interestingly, many of these haplotypes were absent among European wild boar reference genotypes, indicating feralization through genetic adaptation.
Collapse
Affiliation(s)
- Niek W G Barmentlo
- Section Ecology & Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick G Meirmans
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Blake E McCann
- Theodore Roosevelt National Park, Medora, North Dakota, USA
| | | | - Dominic Wright
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Timothy J Smyser
- USDA APHIS WS National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Mirte Bosse
- Section Ecology & Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Wageningen University & Research - Animal Breeding and Genomics, Wageningen, The Netherlands
| |
Collapse
|
2
|
Wang S, Li Y, Jiang K, Zhou J, Chen J, Liang J, Ndoni A, Xue H, Ye Z, Bu W. Identifying a potentially invasive population in the native range of a species: The enlightenment from the phylogeography of the yellow spotted stink bug, Erthesina fullo (Hemiptera: Pentatomidae). Mol Phylogenet Evol 2024; 195:108056. [PMID: 38493987 DOI: 10.1016/j.ympev.2024.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
The yellow spotted stink bug (YSSB), Erthesina fullo (Thunberg, 1783) is an important Asian pest that has recently successfully invaded Europe and an excellent material for research on the initial stage of biological invasion. Here, we reported the native evolutionary history, recent invasion history, and potential invasion threats of YSSB for the first time based on population genetic methods [using double digest restriction-site associated DNA (ddRAD) data and mitochondrial COI and CYTB] and ecological niche modelling. The results showed that four lineages (east, west, southwest, and Hainan Island) were established in the native range with a strong east-west differentiation phylogeographical structure, and the violent climate fluctuation might cause population divergence during the Middle and Upper Pleistocene. In addition, land bridges and monsoon promote dispersal and directional genetic exchanging between island populations and neighboring continental populations. The east lineage (EA) was identified as the source of invasion in Albania. EA had the widest geographical distribution among all other lineages, with a star-like haplotype network with the main haplotype as the core. It also had a rapid population expansion history, indicating that the source lineage might have stronger diffusion ability and adaptability. Our findings provided a significant biological basis for fine tracking of invasive source at the lineage or population level and promote early invasion warning of potential invasive species on a much subtler lineage level.
Collapse
Affiliation(s)
- Shujing Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yanfei Li
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Kun Jiang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, PR China
| | - Jiayue Zhou
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Juhong Chen
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Jingyu Liang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | | | - Huaijun Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| | - Zhen Ye
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
3
|
Feng S, DeGrey SP, Guédot C, Schoville SD, Pool JE. Genomic Diversity Illuminates the Environmental Adaptation of Drosophila suzukii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547576. [PMID: 37461625 PMCID: PMC10349955 DOI: 10.1101/2023.07.03.547576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Biological invasions carry substantial practical and scientific importance, and represent natural evolutionary experiments on contemporary timescales. Here, we investigated genomic diversity and environmental adaptation of the crop pest Drosophila suzukii using whole-genome sequencing data and environmental metadata for 29 population samples from its native and invasive range. Through a multifaceted analysis of this population genomic data, we increase our understanding of the D. suzukii genome, its diversity and its evolution, and we identify an appropriate genotype-environment association pipeline for our data set. Using this approach, we detect genetic signals of local adaptation associated with nine distinct environmental factors related to altitude, wind speed, precipitation, temperature, and human land use. We uncover unique functional signatures for each environmental variable, such as a prevalence of cuticular genes associated with annual precipitation. We also infer biological commonalities in the adaptation to diverse selective pressures, particularly in terms of the apparent contribution of nervous system evolution to enriched processes (ranging from neuron development to circadian behavior) and to top genes associated with all nine environmental variables. Our findings therefore depict a finer-scale adaptive landscape underlying the rapid invasion success of this agronomically important species.
Collapse
Affiliation(s)
- Siyuan Feng
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel P. DeGrey
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christelle Guédot
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean D. Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
North HL, McGaughran A, Jiggins CD. Insights into invasive species from whole-genome resequencing. Mol Ecol 2021; 30:6289-6308. [PMID: 34041794 DOI: 10.1111/mec.15999] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Studies of invasive species can simultaneously inform management strategies and quantify rapid evolution in the wild. The role of genomics in invasion science is increasingly recognised, and the growing availability of reference genomes for invasive species is paving the way for whole-genome resequencing studies in a wide range of systems. Here, we survey the literature to assess the application of whole-genome resequencing data in invasion biology. For some applications, such as the reconstruction of invasion routes in time and space, sequencing the whole genome of many individuals can increase the accuracy of existing methods. In other cases, population genomic approaches such as haplotype analysis can permit entirely new questions to be addressed and new technologies applied. To date whole-genome resequencing has only been used in a handful of invasive systems, but these studies have confirmed the importance of processes such as balancing selection and hybridization in allowing invasive species to reuse existing adaptations and rapidly overcome the challenges of a foreign ecosystem. The use of genomic data does not constitute a paradigm shift per se, but by leveraging new theory, tools, and technologies, population genomics can provide unprecedented insight into basic and applied aspects of invasion science.
Collapse
Affiliation(s)
- Henry L North
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Angela McGaughran
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Population genomic and historical analysis suggests a global invasion by bridgehead processes in Mimulus guttatus. Commun Biol 2021; 4:327. [PMID: 33712659 PMCID: PMC7954805 DOI: 10.1038/s42003-021-01795-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/05/2021] [Indexed: 01/24/2023] Open
Abstract
Imperfect historical records and complex demographic histories present challenges for reconstructing the history of biological invasions. Here, we combine historical records, extensive worldwide and genome-wide sampling, and demographic analyses to investigate the global invasion of Mimulus guttatus from North America to Europe and the Southwest Pacific. By sampling 521 plants from 158 native and introduced populations genotyped at >44,000 loci, we determined that invasive M. guttatus was first likely introduced to the British Isles from the Aleutian Islands (Alaska), followed by admixture from multiple parts of the native range. We hypothesise that populations in the British Isles then served as a bridgehead for vanguard invasions worldwide. Our results emphasise the highly admixed nature of introduced M. guttatus and demonstrate the potential of introduced populations to serve as sources of secondary admixture, producing novel hybrids. Unravelling the history of biological invasions provides a starting point to understand how invasive populations adapt to novel environments. Vallejo-Marín et al. combine historical records, extensive worldwide and genome-wide sampling, and demographic analyses to investigate the global invasion of Mimulus guttatus from North America to Europe and the Southwest Pacific. They found that M. guttatus was first likely introduced to the British Isles from the Aleutian Islands (Alaska), followed by admixture from multiple parts of the native range, and hypothesise that populations in the British Isles then served as a bridgehead for vanguard invasions worldwide.
Collapse
|
6
|
Gering E, Incorvaia D, Henriksen R, Conner J, Getty T, Wright D. Getting Back to Nature: Feralization in Animals and Plants. Trends Ecol Evol 2019; 34:1137-1151. [PMID: 31488326 PMCID: PMC7479514 DOI: 10.1016/j.tree.2019.07.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 11/24/2022]
Abstract
Formerly domesticated organisms and artificially selected genes often escape controlled cultivation, but their subsequent evolution is not well studied. In this review, we examine plant and animal feralization through an evolutionary lens, including how natural selection, artificial selection, and gene flow shape feral genomes, traits, and fitness. Available evidence shows that feralization is not a mere reversal of domestication. Instead, it is shaped by the varied and complex histories of feral populations, and by novel selection pressures. To stimulate further insight we outline several future directions. These include testing how 'domestication genes' act in wild settings, studying the brains and behaviors of feral animals, and comparative analyses of feral populations and taxa. This work offers feasible and exciting research opportunities with both theoretical and practical applications.
Collapse
Affiliation(s)
- Eben Gering
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA; Department of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Davie, FL, USA.
| | - Darren Incorvaia
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Rie Henriksen
- IIFM Biology and AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Jeffrey Conner
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA; Kellogg Biological Station and Dept. of Plant Biology, Michigan State University, Hickory Corners, MI, USA
| | - Thomas Getty
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Dominic Wright
- IIFM Biology and AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Climate outweighs native vs. nonnative range‐effects for genetics and common garden performance of a cosmopolitan weed. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1386] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|